
Automated Analysis of TLS 1.3
Cas Cremers

Marko Horvat Jonathan Hoyland Sam Scott

Crypto Welcomes TLS 1.3
19 August 2018

Thyla van der Merwe

Objectives
Analysis of the “logical core” of TLS 1.3 design

● Cover all modes and their interaction
● Detailed threat models
● Accurate authentication properties

Provide (relatively quick) feedback and guarantees

Emperor Tamarin

Monkey species from South
America

Methodology
Perform symbolic analysis
using the Tamarin prover [Tamarin]

Tamarin is a good fit for TLS 1.3:

● Natural modeling of complex state machines
● Support for stateful protocols with loops
● Most accurate DH support in field

Tamarin prover

Constraint solver

Theorem Prover

In one slide: Tamarin is a custom constraint solver impersonating as an (interactive) theorem prover

Tamarin prover

Tamarin prover

Dedicated
constraint

solver

Solution exists:
ATTACK

No solution exists:
PROOFSystem S constraints

from S

Property P constraint
from (not P)

Run out of
time or

memory

Provide hints for
the prover
(e.g. invariants)

Interactive mode
Inspect partial proof

(Simplified view - interface
also allows direct interaction
with solver)

Specifying protocols

Rewrite rules that specify transition system

rule name: LHS --[actions]-> RHS

(Very similar to Oracles that encode protocol behaviour)

Specifying protocols
rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

Specifying protocols
rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

conclusions (RHS)

Specifying protocols
rule name: LHS --[actions]-> RHS

rule my_protocol_step2:

 [In(m1), State(ThreadID, `state1`, previousData)]

 --[Accepted(ThreadID, k)]->

 [Out(m2), State(ThreadID, `state2`, newData)]

premises (LHS)

actions

conclusions (RHS)

Rules model state machine

Example: client state machine

Rules correspond to edges

Specifying adversary capabilities
● Also similar to Oracles

rule SessionKeyReveal:

 [State(ThreadID, … , Key)]

 --[SessionKeyReveal(ThreadID, Key)]->

 [Out(Key)]

Specifying properties
● Guarded fragment of first order logic with timepoints

lemma my_secret_key:

 “Forall tid key #i.

 Accepted(tid, key)@i =>

 (not Ex #j. K(key)@j) ”

Can adversary attack the property?

?

The reality strikes back

Reality Computational Symbolic
In theory, computational models are more accurate than symbolic models, but they also abstract away from
many real-world aspects.

The reality strikes back harder

Reality Computational Symbolic
In practice however, computational analyses only consider very small parts of real-world systems to make
analysis feasible. Symbolic methods may be able to cover larger parts. Hence incomparable guarantees.

Results!
We analysed Draft 10, Draft 10+, Draft 21

Proofs for all main properties on Draft 10 [CHSM16] and Draft 21 [CHHSM17]
in the symbolic model

During our analysis, around Draft 10:

“let’s introduce post-handshake client authentication”

Tamarin finds an attack on Draft 10+! [CHHMS16]

● 18 messages
● 3 modes

Client
Cert_S
Server

nc, g^x

ns, g^y, Cert_S ECDH Handshake
(unilateral, only mentioning relevant items)

Compute session_hash that includes ns, nc, Cert_S

Cert_C
Client Server

Please authenticate

{ session_hash, Cert_C }sk(C)
Post-handshake
Client authentication

psk
Client

psk
Server

nc [, g^x]

ns [, g^y] PSK [-DHE]

Compute session_hash that includes ns, nc

ECDH Handshake

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

Atta
ck

 se
tu

p!

nc2 [, g^x’]

ns2 [, g^y’] 2x PSK [-DHE]

Client
Cert_B

Server Bank

ECDH

authenticates Bank 2x ECDH Handshake

Please authenticate

{ session_hash, Cert_A }sk(A)
2x Post-handshake
Client authentication

nc2 [, g^x]

ns2 [, g^y]

Cert_A
Client Alex Forum

ECDH

authenticates Forum

Adversary

Afterwards: drop connections

Please authenticate

{ session_hash, Cert_A }sk(A)

both session hashes are now based on nc2, ns2

nc2

act as Alex!

ns2

sig

Attack!

Impact
Raised awareness:

● subtle bugs
● complex to find for humans

Benefits of methodology:

● Provide quicker analysis for proposed designs
● Complements other analysis approaches

○ There currently exists only a symbolic proof of the absence of this attack, and no
computational one.

Analysis Process for TLS 1.3

protocol
spec properties

Are the keys
secret?

model encode
properties proofs?

secrecy
Establish session
keys

STEP 1

STEP 2
STEP 3

Step 1: Building the Model 10

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

 18 rules

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

 18 rules

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

 21 rules

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

 18 rules

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

 21 rules 15 rules

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

 18 rules

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

 21 rules 15 rules

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

 15 rules

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, ServerKeyShare, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-DHE

 [NewSessionTicket] (previous handshake)

Step 1: Building the Model
● Encode honest party and adversary actions as Tamarin rules
● Honest client and server rules correspond to flights of messages
● Rules transition protocol from one state to the next

10

C S
ClientHello, ClientKeyShare

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

{Certificate*}, {CertificateVerify*}, {Finished}

HelloRetryRequest

ClientHello, ClientKeyShare

Initial (EC)DHE

 18 rules

C S
ClientHello, ClientKeyShare, EarlyDataIndication,

(EncryptedExtensions), (Cerificate*),
(CertificateVerify*), (ApplicationData)

ServerHello, ServerKeyExchange, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate} ,{CertificateRequest*}

{CertificateVerfiy}, {Finished}

[Application Data]

 {Finished}

0-RTT

 21 rules 15 rules

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-resumption

 [NewSessionTicket] (previous handshake)

 15 rules

C S

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, ServerKeyShare, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

[Application Data]

 {Finished}

PSK-DHE

 [NewSessionTicket] (previous handshake)

Record 2 rules

Step 1: Client and Server Rules 10

premises (LHS)

actions

conclusions (RHS)

Step 1: Client and Server Rules 10

DH built-in

Messages going out to the network

Client state created

Step 1: Client and Server Rules 10

Client state accepted
by next client rule

Messages coming in
From the network

10

SessionKey action logs the
session key as computed

Step 1: Is a Complex Task!
● Modelling a complex protocol is not a simple exercise!
● Large number of rules and macros… necessitated by the specification.

10

Step 1: Building the Model
● Modelling a complex protocol in Tamarin is not a simple exercise!
● Large number of rules and macros...

10

Macros for just 3 of our rules!

Key computations

Step 1: Building the Model 10

Step 1: Building the Model 10

Step 1: Building the Model 10

Step 1: Building the Model 10

Step 1: Adversarial Capabilities
● In addition to what Tamarin includes, we need to capture additional

adversarial capabilities - for meaningful security notions

10

Step 2: Encoding Properties 10

Security Property Source

Unilateral authentication (server) D.1.1

Mutual authentication D.1.1

Confidentiality of ephemeral secret D.1.1

Confidentiality of static secret D.1.1

Perfect forward secrecy D.1.1.1

Integrity of handshake messages D.1.3

Confidentiality
of session keys

Step 2: Encoding Properties

10

secret_session_keys:
(1) All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, authenticated>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

 | (Ex #r. RevLtk(actor@r & #r < #i))
(4) ==> not Ex #j. K(k)@j

This says…
● for all possible variables on the first line (1),
● if the key k is accepted at time point i (2), and
● the adversary has not revealed the long-term keys of the actor or the peer

before the key is accepted (3),
● then the adversary cannot derive the key (4).

Step 2: Encoding Properties

10

secret_session_keys:
(1) All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, authenticated>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

 | (Ex #r. RevLtk(actor@r & #r < #i))
(4) ==> not Ex #j. K(k)@j

Aim to show that this holds in possible combinations of client, server and
adversary behaviours!

Step 2: Encoding Properties
Constructed Tamarin encodings for all of the main properties:

10

Security Property

Unilateral authentication (server)

Mutual authentication

Confidentiality of ephemeral secret

Confidentiality of static secret

Perfect forward secrecy

Integrity of handshake messages

entity_authentication
mutual_entity_authentication

secret_early_data_keys
secret_session_keys(with
PFS)

transcript_agreement
mutual_transcript_agreement

Step 3: Producing Proofs
● Let’s simplify our secret_session_keys encoding:

session_key_established ∧ ¬ adversary_performs_reveals
⇒ ¬ adversary_knows_key

session_key_established ∧ ¬ adversary_performs_reveals
∧ adversary_knows_key

● Tamarin looks for a protocol execution that contains
session_key_established and adversary_knows_key but that does not use
adversary_performs_reveals

10

¬

{counterexample} = attack!{ } = property holds!

Step 3: Producing Proofs
● Tamarin translates the encoding into a constraint system - refines

knowledge until it can determine that the encoding holds in all cases, or
that a counterexample exists

● Tamarin uses a set of heuristics to determine what to do next
● ‘Autoprove’ or ‘Interactive’
● Let’s get interactive...

10

encoding

constraint system

proof approaches

Solve for this...

Step 3: Producing Proofs 10

Will eventually show
that there is no solution

- the set is empty

Step 3: Producing Proofs 10

Needed to write
and prove

45
auxiliary lemmas!

Step 3: Producing Proofs 10

Step 3: Producing Proofs 10

+ mutual

Step 3: Producing Proofs 10

+ mutual

+ mutual

Step 3: Producing Proofs 10

+ mutual

Step 3: Producing Proofs 10

+ mutual

● You’ve seen the message flows of the attack

● BUT how did we find it?!

Finding An Attack 10
+

2x PSK [-DHE]

2x ECDH Handshake

2x Post-handshake
Client authentication

Attack!

Finding An Attack 10
+

Finding An Attack 10
+

Proof not
working out in

the tool

Bug in the
model?

Incorrect
interpretation of

the spec?

Is the
counterexample
possible in the

real world?

Look at spec
again, logical

flow of
messages

N

N

N

FIX it

FIX it

Y

Y

2x PSK [-DHE]

2x ECDH Handshake

2x Post-handshake
Client authentication

Attack!

Step 1: Building the Model
● TLS 1.3 has been a rapidly moving target
● Draft 21 - a completely new protocol!
● We now modelled in a far more granular

fashion
○ higher transparency - good for us, also good

for everyone else!

21

model model

Step 1: Building the Model 21

Step 1: Building the Model 21

Step 2: Encoding Security Properties 21

auto-provable

manual interaction

Step 3: Producing Proofs 21

Security Property

Establishing the same session keys

Secret session keys

Peer authentication

Uniqueness of session keys

Downgrade protection (within 1.3)

Perfect forward secrecy

Key Compromise Impersonation (KCI) resistance

More fine-grained model →
more computational power
required

● 48-core machine,
512GB of RAM

● 10GB RAM to load, can
consume 100GB RAM
for a proof

● 1 week to prove entire
model

● 3 person-months of
modelling

See [CHHMS17]

Future Work
● Feedback loop - modelling complex protocols is making Tamarin better

○ Improved precision (granularity) of modelling
○ Improve automation

● TLS 1.3 extensions

● TLS 1.1 and TLS 1.2 for protocol version downgrades

Takeaways
● Logical core of TLS 1.3 seems sound!
● We have built a transparent model others can build on (Github)
● Symbolic analysis

○ Complementary approach to other analysis methods

● Relatively fast turnaround and can directly produce attacks

 The future is bright! Tamarin Tutorial at Eurocrypt in
Darmstadt. See you there!

 cas.cremers@cispa.saarland, tvandermerwe@mozilla.com
https://tls13tamarin.github.io/TLS13Tamarin/

May 19 - 23, 2019

Bonus Slide

See [CHHMS17] for details.

Resources
❏ TLS 1.3 analysis github page:

https://tls13tamarin.github.io/TLS13Tamarin/
❏ Papers:

❏ [CHSM16] Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and
Delayed Authentication, https://ieeexplore.ieee.org/document/7546518/

❏ [CHHSM17] A Comprehensive Symbolic Analysis of TLS 1.3,
https://dl.acm.org/citation.cfm?id=3134063

❏ Symbolic analysis tools:
❏ [Tamarin] Tamarin Prover, http://tamarin-prover.github.io/
❏ [ProVerif] ProVerif, http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

https://tls13tamarin.github.io/TLS13Tamarin/
https://ieeexplore.ieee.org/document/7546518/
https://dl.acm.org/citation.cfm?id=3134063
http://tamarin-prover.github.io/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

