
The Road to TLS 1.3

Eric Rescorla

Mozilla

ekr@rtfm.com

The Road to TLS 1.3 1



Overview

• How we got to the point of doing TLS 1.3

• Overview of TLS 1.3

• Interaction with the real world

• What can we learn?

The Road to TLS 1.3 2



The State of the World in January 2013∗

• Universal support of SSLv3, TLS 1.0, 11% support for TLS 1.2

• Nearly all certificates are SHA-1

– MD5 disabled in clients in 2012

• Plenty of AES-CBC

– But still lots of RC4

– Chrome and Firefox don’t even support AES-GCM

• Worries about the BEAST attack [DR11]

– People are recommending switching to RC4

• Renegotiation attack is in the rear view mirror

– Though almost no deployment of the fixes

∗https://www.ssllabs.com/ssl-pulse/

The Road to TLS 1.3 3



TLS WG Charter (ca. 2013)

The primary goals of the WG are to maintain:

- The TLS protocol, RFC 5246;

- The DTLS protocol, draft-ietf-tls-rfc4347-bis.

Significant changes to the protocol, such as a new version 1.3, are not

within scope of the working group unless they are explicitly added to

the charter.

The Road to TLS 1.3 4



So TLS 1.2 looks pretty solid

• No big changes on the horizon

• Big challenge is updating algorithms

– AES-GCM (RC4 attacks still to come)

– SHA-256 for certs

• ... and I’m mostly talking about how hard it is to change anything

The Road to TLS 1.3 5



The Road to TLS 1.3 6



The Road to TLS 1.3 7



So what happened?

The Road to TLS 1.3 8



Reminder: TLS 1.2 Handshake

Client Server

ClientHello + Extensions //

ServerHello + Extensions, Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange, CertificateVerify*

[ChangeCipherSpec], Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //

The Road to TLS 1.3 9



Factor 1: Unencrypted Handshake

• There sure is a lot of stuff in the clear

– Server identity (Server Name Indication and Certificate)

– Client identity (if any)

– Any other extensions

• Repeated proposals to encrypt more of the handshake

– With various amounts of improvement

– ... and various degrees of violence to the TLS state machine

– None really got WG acceptance

The Road to TLS 1.3 10



Enter ALPN and NPN

• Background: HTTP/2 negotiation

– Client supports HTTP/2

– Knows that the server supports HTTPS but doesn’t know if it

supports HTTP/2

– Idea: use TLS handshake to discover this

∗ ... without additional round trips

• SPDY initially rolled out with “next protocol negotiation” (NPN)

The Road to TLS 1.3 11



NPN Overview

ClientHello + Extensions[NPN]
//

ServerHello + Extensions[NPN(H1, H2)], Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange,CertificateVerify*

[ChangeCipherSpec], EncryptedExtensions[NPN(H2)] , Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //

The Road to TLS 1.3 12



ALPN

ClientHello + Extensions[ALPN(H1, H2)]
//

ServerHello + Extensions[ALPN(H2)], Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange, CertificateVerify*

[ChangeCipherSpec], Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //

The Road to TLS 1.3 13



We ended up with ALPN

• It’s more TLS-like

– Client offers/server chooses

– No extra messages

• But privacy is worse

– It doesn’t protect the selected protocol

• It was starting to look like we wanted to encrypt more stuff

– But we needed a more generic solution

The Road to TLS 1.3 14



Factor 2: Latency

• Latency is a key performance metric

– Especially as everything else gets faster

– It’s dominated by round-trip time

• TLS 1.2’s best case scenario is 1-RTT

– With resumption or false start/cut-through

– Officially 2-RTT for full handshake

• Existing experiments with 0-RTT data [Lan10, HIS+16]

– Establish context on initial connection

– In later connections, send data in first flight

• Clear demand for a handshake with less latency

The Road to TLS 1.3 15



Factor 3: Problems with existing algorithms

• CBC: BEAST, Lucky 13 [AP13]

• RC4: (No cute name) [ABP+13]

• Compression: CRIME [DR12]

• Plus a pile of old/unused algorithms: 3DES, Camellia, SEED,

secP256k1, ...

• Strong desire to trim things down

The Road to TLS 1.3 16



Factor 4: Triple Handshake [BLF+14]∗

• First real indication that there were structural problems with the

handshake

– People had mostly filed renegotiation away...

• Very complicated to reason about

• How could we not understand TLS 1.2 after 20+ years?

∗Logjam, FREAK, etc. still in the future at this point

The Road to TLS 1.3 17



The reasons build up...

• We want to make a lot of changes

• We want to remove a lot of stuff

• This is all disruptive

• Time for a new version

The Road to TLS 1.3 18



Original Goals for TLS 1.3

Clean up: Remove unused or unsafe features

Improve privacy: Encrypt more of the handshake

Improve latency: Target: 1-RTT handshake for näıve clients;

0-RTT handshake for repeat connections

Continuity: Maintain existing important use cases

The Road to TLS 1.3 19



Revised Goals for TLS 1.3

Clean up: Remove unused or unsafe features

Improve privacy: Encrypt more of the handshake

Improve latency: Target: 1-RTT handshake for näıve clients;

0-RTT handshake for repeat connections

Continuity: Maintain existing important use cases

Security Assurance: Have analysis to support our work

The Road to TLS 1.3 20



Look, just don’t break anything...

1. It must be safe to

• Be a TLS 1.3 server with any client

• Offer TLS 1.3 to any server

• Use TLS 1.3 on almost any network∗

2. Drop-in for both servers and clients

• Must work with the same certificates

• Should be able to just update your library

3. Some use cases may require reconfiguration

• But this needs to be detectable

∗Only learned this one later

The Road to TLS 1.3 21



Removed Features

• Static RSA

• Custom (EC)DHE groups

• Compression

• Renegotiation∗

• Non-AEAD ciphers

• Simplified resumption

∗Special accommodation for inline client authentication

The Road to TLS 1.3 22



Optimizing Through Optimism

• TLS 1.2 assumed that the client knew nothing

– First round trip mostly consumed by learning server capabilities

• TLS 1.3 narrows the range of options

– Only (EC)DHE

– Limited number of groups

• Client can make a good guess at server’s capabilities

– Pick its favorite groups and send DH share(s)

The Road to TLS 1.3 23



TLS 1.3 1-RTT Handshake Skeleton

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, Certificate, CertificateVerify, Finished
oo

Application dataoo

Finished //

oo Application data //

• Server can write on its first flight

• Client can write on second flight

• Keys derived from handshake transcript through server Finished

• Server certificate is encrypted

– Only secure against passive attackers

The Road to TLS 1.3 24



Why are we using signatures here?

• Constraint #2: This needs to work with existing certificates

– Biggest issue for RSA (though ECDSA certificates 6= ECDHE

certificates)

• Why not statically sign an (EC)DHE share (cf. QUIC,

OPTLSv1 [KW16])?

– Concerns about bogus signatures

∗ Temporary compromise becomes permanent compromise

(big deal if the signing key is in an HSM)

∗ Remote cryptographic attacks as in [JSS15]

– Concerns about analyzing delegation

The Road to TLS 1.3 25



TLS 1.3 1-RTT Handshake w/ Client Authentication

Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

Certificate, CertificateVerify, Finished //

oo Application data //

• Client certificate is encrypted

• Secure against an active attacker

• Effectively SIGMA [Kra03]

The Road to TLS 1.3 26



Pre-Shared Keys and Resumption

• TLS 1.2 already supported a Pre-Shared Key (PSK) mode

– Used for IoT-type applications

• TLS 1.3 merges PSK and resumption

– Server provides a key label

– ... bound to a key derived from the handshake

– Label can be a “ticket” (encryption of the key)

• Two major modes

– Pure PSK

– PSK + (EC)DHE

The Road to TLS 1.3 27



Initial Handshake:

ClientHello

+ key_share -------->

ServerHello

...

{Finished}

<-------- [Application Data*]

...

{Finished} -------->

<-------- [NewSessionTicket]

[Application Data] <-------> [Application Data]

Subsequent Handshake:

ClientHello

+ pre_shared_key

+ key_share* -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

<-------- [Application Data*]

{Finished} -------->

[Application Data] <-------> [Application Data]

The Road to TLS 1.3 28



0-RTT Handshake

• Basic observation: once we have established a ticket we have a

shared key

– With someone we have authenticated

• We can send application data on the first flight

• TLS 1.3 used to have a DH-based 0-RTT mode

– Got stripped out due to academic and implementor feedback

The Road to TLS 1.3 29



TLS 1.3 0-RTT Handshake Skeleton

ClientHello

+ early_data

+ key_share*

+ psk_key_exchange_modes

+ pre_shared_key

(Application Data*) -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

+ early_data*

{Finished}

<-------- [Application Data*]

(EndOfEarlyData)

{Finished} -------->

[Application Data] <-------> [Application Data]

The Road to TLS 1.3 30



Original Anti-Replay Plan (borrowed from Snap Start)

• Server needs to keep a list of client nonces

• Indexed by a server-provided context token

• Client provides a timestamp so server can maintain an anti-replay

window

• Unfortunately, this doesn’t work...

The Road to TLS 1.3 31



Oops...

• The real problem is multiple data centers

• This is a distributed state problem

– It’s broken in QUIC (both versions) and Snap Start too

• Resolution: mostly don’t try

– Only use 0-RTT client data for “safe” requests (GETs)

– Encourage people to use anti-replay techniques

– But too big a win not to do

– Discourage libraries from enabling by default

– Difficult application integration issue

The Road to TLS 1.3 32



0

|

v

PSK -> HKDF-Extract = Early Secret

|

+-----> Derive-Secret(., "ext binder" | "res binder", "")

| = binder_key

|

+-----> Derive-Secret(., "c e traffic", ClientHello)

| = client_early_traffic_secret

|

+-----> Derive-Secret(., "e exp master", ClientHello)

| = early_exporter_master_secret

v

Derive-Secret(., "derived", "")

|

v

(EC)DHE -> HKDF-Extract = Handshake Secret

|

+-----> Derive-Secret(., "c hs traffic",

| ClientHello...ServerHello)

| = client_handshake_traffic_secret

|

+-----> Derive-Secret(., "s hs traffic",

| ClientHello...ServerHello)

The Road to TLS 1.3 33



| = server_handshake_traffic_secret

v

Derive-Secret(., "derived", "")

|

v

0 -> HKDF-Extract = Master Secret

|

+-----> Derive-Secret(., "c ap traffic",

| ClientHello...server Finished)

| = client_application_traffic_secret_0

|

+-----> Derive-Secret(., "s ap traffic",

| ClientHello...server Finished)

| = server_application_traffic_secret_0

|

+-----> Derive-Secret(., "exp master",

| ClientHello...server Finished)

| = exporter_master_secret

|

+-----> Derive-Secret(., "res master",

ClientHello...client Finished)

= resumption_master_secret

The Road to TLS 1.3 34



Packet Format

PayloadLengthVersionType

TLS 1.2 Packet Layout

PayloadLengthVersion
(Fixed)23

TLS 1.3 Packet Layout

Type Pad
(0s)

The Road to TLS 1.3 35



Traffic Analysis Defenses

• TLS 1.2 is very susceptible to traffic analysis

– Content “type” in the clear

– Packet length has minimal padding

∗ 0-255 bytes in block cipher modes

∗ No padding in stream and AEAD modes

• TLS 1.3 changes

– Content type is encrypted

– Arbitrary amounts of padding allowed

– ... but it’s the application’s job to set padding policy

The Road to TLS 1.3 36



The role of analysis

• Find problems early

• Get confidence in the security of the various designs

• Shape the protocol so that analysis is easier

The Road to TLS 1.3 37



Example: PSK and Client Authentication

• What happens when you combine PSK and client auth?

• This is something you want to work but we hadn’t put in the spec

– Idea is to add client authentication to “resumed” sessions

– In TLS 1.2, this is done with renegotiation

• Näıve design: just send Certificate, CertificateVerify, Finished

– In draft-10, client didn’t sign over server Finished

– ... no binding to previous handshakes → Attack![CHvdMS]

• Resolution: sign over server Finished

• Supported by analysis [Kra16, CHSvdM16]

• Lesson: Get analysis for everything

The Road to TLS 1.3 38



Example: Key Separation

• TLS 1.2 uses the same key for Finished and for application data

– This causes huge problems for a compositional analysis of the

handshake and the record layer [KPW13]

– Number one request from cryptographers to fix...

• TLS 1.3 uses separate keys for handshake and application layer

traffic

– Also allows us to derive the application keys from more of the

handshake

• But not complete separation

– NewSessionTicket is encrypted with traffic keys

– ... key separation here was too hard to make work

• Lesson: Protocol engineering involves compromise

The Road to TLS 1.3 39



The Great Middlebox Mess

• Some middleboxes break when you negotiate TLS 1.3

• Error rates (Firefox Beta versus Cloudflare)

– 2.2% for TLS 1.2

– 3.9% for TLS 1.3

• What’s happening?

– They’re trying to look at handshake details

– Even when they don’t know the version

• This means you need fallback to deploy TLS 1.3

• ... which also breaks anti-downgrade

• Only found this out right when everything else was done

– Only see it when you try to deploy

The Road to TLS 1.3 40



The fix: TLS 1.3 looks like TLS 1.2 Resumption

ClientHello + session id //

ServerHello + session id echo, [ChangeCipherSpecs]

CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

[ChangeCipherSpecs]

Certificate, CertificateVerify, Finished
//

oo Application data //

• CCS is just a dummy and doesn’t affect the state machine

– Recipient ignores it

• Middlebox expects everything after CCS to be encrypted

– And doesn’t try to look inside

• This gives comparable error rates between 1.2 and 1.3 → No fallback

• Lesson: sometimes protocol engineering requires big compromises∗

∗And delays

The Road to TLS 1.3 41



Static RSA, Passive Inspection, and You

• A lot of enterprises do TLS passive inspection

– Inspection box attached to a span port

– You give the RSA private key to the inspection box

– Decrypt the EPMS and hence the whole connection?∗

• TLS 1.3 breaks this (no static RSA)

• Lot of requests from enterprises to do something

– But we didn’t.

– (they don’t really need our help)

• Lesson: sometimes protocol engineering requires not

compromising

∗Don’t forget to disable (EC)DHE cipher suites

The Road to TLS 1.3 42



Where are we now

• RFC Published August 10

• Browsers: Firefox, Chrome, Safari (off by default)

• Server operators: Akamai, Cloudflare. Facebook, Google

• Libraries: OpenSSL, BoringSSL, NSS, Fizz, PicoTLS, ...

• 5+% of Firefox connections

• > 50% of Facebook connections!

The Road to TLS 1.3 43



Lessons?

• First major security protocol to be co-designed by standards,

implementation, and academic communities

• Successes

– Got a protocol we can mostly analyze

– Design largely informed by specific analysis

– Lots of results already published

• Points of friction

– Time scale of analysis versus design

– “Semantic gap” between the communities

– Engineering compromises

• Challenges for the future

– How do we incrementally improve TLS (ESNI, subcerts, etc.)?

– Applying this to a new protocol (MLS/instant messaging).

The Road to TLS 1.3 44



Thank you

The Road to TLS 1.3 45



References

[ABP+13] Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson,
Bertram Poettering, and Jacob CN Schuldt. On the Security
of RC4 in TLS. In USENIX Security, pages 305–320, 2013.

[AP13] N AlFardan and Kenneth G Paterson. Lucky 13: Breaking
the TLS and DTLS record protocols. In IEEE Symposium on
Security and Privacy, 2013.

[BLF+14] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric
Fournet, Alfredo Pironti, and Pierre Yves Strub. Triple hand-
shakes and cookie cutters: Breaking and fixing authentication
over tls. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 98–113. IEEE, 2014.

[CHSvdM16] C. Cremers, M. Horvat, S. Scott, and T. v. d. Merwe. Au-
tomated analysis and verification of tls 1.3: 0-rtt, resumption

The Road to TLS 1.3 45



and delayed authentication. In 2016 IEEE Symposium on Se-
curity and Privacy (SP), pages 470–485, May 2016.

[CHvdMS] Cas Cremers, Marko Horvat, Thyla van der Merwe, and
Sam Scott. Revision 10: possible attack if client authen-
tication is allowed during PSK. https://www.ietf.org/

mail-archive/web/tls/current/msg18215.html.

[DR11] Thai Duong and Juliano Rizzo. Beast-here come the xor nin-
jas, 2011.

[DR12] Thai Duong and Juliano Rizzo. The crime attack. In Presen-
tation at ekoparty Security Conference, 2012.

[HIS+16] Ryan Hamilton, Janardhan Iyengar, Ian Swett, Alyssa Wilk,
et al. Quic: A udp-based secure and reliable transport for
http/2. IETF, draft-tsvwg-quic-protocol-02, 2016.

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On the
security of tls 1.3 and quic against weaknesses in pkcs#1 v1.5

The Road to TLS 1.3 45



encryption. In Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’15,
pages 1185–1196, New York, NY, USA, 2015. ACM.

[KPW13] Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee.
On the security of the tls protocol: A systematic analysis.
In Advances in Cryptology–CRYPTO 2013, pages 429–448.
Springer, 2013.

[Kra03] Hugo Krawczyk. Sigma: The ‘sign-and-mac’ approach to au-
thenticated diffie-hellman and its use in the ike protocols. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003,
pages 400–425, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[Kra16] Hugo Krawczyk. A unilateral-to-mutual authentication com-
piler for key exchange (with applications to client authentica-
tion in tls 1.3). Cryptology ePrint Archive, Report 2016/711,
2016. https://eprint.iacr.org/2016/711.

The Road to TLS 1.3 45



[KW16] Hugo Krawczyk and Hoeteck Wee. The optls protocol and tls
1.3. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on, pages 81–96. IEEE, 2016.

[Lan10] Adam Langley. Transport Layer Security (TLS) Snap Start.
Internet-Draft draft-agl-tls-snapstart-00, Internet Engineering
Task Force, June 2010. Work in progress.

The Road to TLS 1.3 45


