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Overview

• How we got to the point of doing TLS 1.3

• Overview of TLS 1.3

• Interaction with the real world

• What can we learn?
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The State of the World in January 2013∗

• Universal support of SSLv3, TLS 1.0, 11% support for TLS 1.2

• Nearly all certificates are SHA-1

– MD5 disabled in clients in 2012

• Plenty of AES-CBC

– But still lots of RC4

– Chrome and Firefox don’t even support AES-GCM

• Worries about the BEAST attack [DR11]

– People are recommending switching to RC4

• Renegotiation attack is in the rear view mirror

– Though almost no deployment of the fixes

∗https://www.ssllabs.com/ssl-pulse/
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TLS WG Charter (ca. 2013)

The primary goals of the WG are to maintain:

- The TLS protocol, RFC 5246;

- The DTLS protocol, draft-ietf-tls-rfc4347-bis.

Significant changes to the protocol, such as a new version 1.3, are not

within scope of the working group unless they are explicitly added to

the charter.
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So TLS 1.2 looks pretty solid

• No big changes on the horizon

• Big challenge is updating algorithms

– AES-GCM (RC4 attacks still to come)

– SHA-256 for certs

• ... and I’m mostly talking about how hard it is to change anything
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So what happened?
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Reminder: TLS 1.2 Handshake

Client Server

ClientHello + Extensions //

ServerHello + Extensions, Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange, CertificateVerify*

[ChangeCipherSpec], Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //
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Factor 1: Unencrypted Handshake

• There sure is a lot of stuff in the clear

– Server identity (Server Name Indication and Certificate)

– Client identity (if any)

– Any other extensions

• Repeated proposals to encrypt more of the handshake

– With various amounts of improvement

– ... and various degrees of violence to the TLS state machine

– None really got WG acceptance
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Enter ALPN and NPN

• Background: HTTP/2 negotiation

– Client supports HTTP/2

– Knows that the server supports HTTPS but doesn’t know if it

supports HTTP/2

– Idea: use TLS handshake to discover this

∗ ... without additional round trips

• SPDY initially rolled out with “next protocol negotiation” (NPN)

The Road to TLS 1.3 11



NPN Overview

ClientHello + Extensions[NPN]
//

ServerHello + Extensions[NPN(H1, H2)], Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange,CertificateVerify*

[ChangeCipherSpec], EncryptedExtensions[NPN(H2)] , Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //
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ALPN

ClientHello + Extensions[ALPN(H1, H2)]
//

ServerHello + Extensions[ALPN(H2)], Certificate

ServerKeyExchange*, CertificateRequest*, ServerHelloDone
oo

Certificate*, ClientKeyExchange, CertificateVerify*

[ChangeCipherSpec], Finished
//

[ChangeCipherSpec], Finished
oo

oo Application Data //
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We ended up with ALPN

• It’s more TLS-like

– Client offers/server chooses

– No extra messages

• But privacy is worse

– It doesn’t protect the selected protocol

• It was starting to look like we wanted to encrypt more stuff

– But we needed a more generic solution
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Factor 2: Latency

• Latency is a key performance metric

– Especially as everything else gets faster

– It’s dominated by round-trip time

• TLS 1.2’s best case scenario is 1-RTT

– With resumption or false start/cut-through

– Officially 2-RTT for full handshake

• Existing experiments with 0-RTT data [Lan10, HIS+16]

– Establish context on initial connection

– In later connections, send data in first flight

• Clear demand for a handshake with less latency

The Road to TLS 1.3 15



Factor 3: Problems with existing algorithms

• CBC: BEAST, Lucky 13 [AP13]

• RC4: (No cute name) [ABP+13]

• Compression: CRIME [DR12]

• Plus a pile of old/unused algorithms: 3DES, Camellia, SEED,

secP256k1, ...

• Strong desire to trim things down
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Factor 4: Triple Handshake [BLF+14]∗

• First real indication that there were structural problems with the

handshake

– People had mostly filed renegotiation away...

• Very complicated to reason about

• How could we not understand TLS 1.2 after 20+ years?

∗Logjam, FREAK, etc. still in the future at this point
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The reasons build up...

• We want to make a lot of changes

• We want to remove a lot of stuff

• This is all disruptive

• Time for a new version
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Original Goals for TLS 1.3

Clean up: Remove unused or unsafe features

Improve privacy: Encrypt more of the handshake

Improve latency: Target: 1-RTT handshake for näıve clients;

0-RTT handshake for repeat connections

Continuity: Maintain existing important use cases
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Revised Goals for TLS 1.3

Clean up: Remove unused or unsafe features

Improve privacy: Encrypt more of the handshake

Improve latency: Target: 1-RTT handshake for näıve clients;

0-RTT handshake for repeat connections

Continuity: Maintain existing important use cases

Security Assurance: Have analysis to support our work
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Look, just don’t break anything...

1. It must be safe to

• Be a TLS 1.3 server with any client

• Offer TLS 1.3 to any server

• Use TLS 1.3 on almost any network∗

2. Drop-in for both servers and clients

• Must work with the same certificates

• Should be able to just update your library

3. Some use cases may require reconfiguration

• But this needs to be detectable

∗Only learned this one later
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Removed Features

• Static RSA

• Custom (EC)DHE groups

• Compression

• Renegotiation∗

• Non-AEAD ciphers

• Simplified resumption

∗Special accommodation for inline client authentication
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Optimizing Through Optimism

• TLS 1.2 assumed that the client knew nothing

– First round trip mostly consumed by learning server capabilities

• TLS 1.3 narrows the range of options

– Only (EC)DHE

– Limited number of groups

• Client can make a good guess at server’s capabilities

– Pick its favorite groups and send DH share(s)
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TLS 1.3 1-RTT Handshake Skeleton

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, Certificate, CertificateVerify, Finished
oo

Application dataoo

Finished //

oo Application data //

• Server can write on its first flight

• Client can write on second flight

• Keys derived from handshake transcript through server Finished

• Server certificate is encrypted

– Only secure against passive attackers
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Why are we using signatures here?

• Constraint #2: This needs to work with existing certificates

– Biggest issue for RSA (though ECDSA certificates 6= ECDHE

certificates)

• Why not statically sign an (EC)DHE share (cf. QUIC,

OPTLSv1 [KW16])?

– Concerns about bogus signatures

∗ Temporary compromise becomes permanent compromise

(big deal if the signing key is in an HSM)

∗ Remote cryptographic attacks as in [JSS15]

– Concerns about analyzing delegation
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TLS 1.3 1-RTT Handshake w/ Client Authentication

Skeleton

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]

EncryptedExtensions, CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

Certificate, CertificateVerify, Finished //

oo Application data //

• Client certificate is encrypted

• Secure against an active attacker

• Effectively SIGMA [Kra03]
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Pre-Shared Keys and Resumption

• TLS 1.2 already supported a Pre-Shared Key (PSK) mode

– Used for IoT-type applications

• TLS 1.3 merges PSK and resumption

– Server provides a key label

– ... bound to a key derived from the handshake

– Label can be a “ticket” (encryption of the key)

• Two major modes

– Pure PSK

– PSK + (EC)DHE
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Initial Handshake:

ClientHello

+ key_share -------->

ServerHello

...

{Finished}

<-------- [Application Data*]

...

{Finished} -------->

<-------- [NewSessionTicket]

[Application Data] <-------> [Application Data]

Subsequent Handshake:

ClientHello

+ pre_shared_key

+ key_share* -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

<-------- [Application Data*]

{Finished} -------->

[Application Data] <-------> [Application Data]
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0-RTT Handshake

• Basic observation: once we have established a ticket we have a

shared key

– With someone we have authenticated

• We can send application data on the first flight

• TLS 1.3 used to have a DH-based 0-RTT mode

– Got stripped out due to academic and implementor feedback
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TLS 1.3 0-RTT Handshake Skeleton

ClientHello

+ early_data

+ key_share*

+ psk_key_exchange_modes

+ pre_shared_key

(Application Data*) -------->

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

+ early_data*

{Finished}

<-------- [Application Data*]

(EndOfEarlyData)

{Finished} -------->

[Application Data] <-------> [Application Data]
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Original Anti-Replay Plan (borrowed from Snap Start)

• Server needs to keep a list of client nonces

• Indexed by a server-provided context token

• Client provides a timestamp so server can maintain an anti-replay

window

• Unfortunately, this doesn’t work...
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Oops...

• The real problem is multiple data centers

• This is a distributed state problem

– It’s broken in QUIC (both versions) and Snap Start too

• Resolution: mostly don’t try

– Only use 0-RTT client data for “safe” requests (GETs)

– Encourage people to use anti-replay techniques

– But too big a win not to do

– Discourage libraries from enabling by default

– Difficult application integration issue
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0

|

v

PSK -> HKDF-Extract = Early Secret

|

+-----> Derive-Secret(., "ext binder" | "res binder", "")

| = binder_key

|

+-----> Derive-Secret(., "c e traffic", ClientHello)

| = client_early_traffic_secret

|

+-----> Derive-Secret(., "e exp master", ClientHello)

| = early_exporter_master_secret

v

Derive-Secret(., "derived", "")

|

v

(EC)DHE -> HKDF-Extract = Handshake Secret

|

+-----> Derive-Secret(., "c hs traffic",

| ClientHello...ServerHello)

| = client_handshake_traffic_secret

|

+-----> Derive-Secret(., "s hs traffic",

| ClientHello...ServerHello)
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| = server_handshake_traffic_secret

v

Derive-Secret(., "derived", "")

|

v

0 -> HKDF-Extract = Master Secret

|

+-----> Derive-Secret(., "c ap traffic",

| ClientHello...server Finished)

| = client_application_traffic_secret_0

|

+-----> Derive-Secret(., "s ap traffic",

| ClientHello...server Finished)

| = server_application_traffic_secret_0

|

+-----> Derive-Secret(., "exp master",

| ClientHello...server Finished)

| = exporter_master_secret

|

+-----> Derive-Secret(., "res master",

ClientHello...client Finished)

= resumption_master_secret
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Packet Format

PayloadLengthVersionType

TLS 1.2 Packet Layout

PayloadLengthVersion
(Fixed)23

TLS 1.3 Packet Layout

Type Pad
(0s)
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Traffic Analysis Defenses

• TLS 1.2 is very susceptible to traffic analysis

– Content “type” in the clear

– Packet length has minimal padding

∗ 0-255 bytes in block cipher modes

∗ No padding in stream and AEAD modes

• TLS 1.3 changes

– Content type is encrypted

– Arbitrary amounts of padding allowed

– ... but it’s the application’s job to set padding policy
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The role of analysis

• Find problems early

• Get confidence in the security of the various designs

• Shape the protocol so that analysis is easier
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Example: PSK and Client Authentication

• What happens when you combine PSK and client auth?

• This is something you want to work but we hadn’t put in the spec

– Idea is to add client authentication to “resumed” sessions

– In TLS 1.2, this is done with renegotiation

• Näıve design: just send Certificate, CertificateVerify, Finished

– In draft-10, client didn’t sign over server Finished

– ... no binding to previous handshakes → Attack![CHvdMS]

• Resolution: sign over server Finished

• Supported by analysis [Kra16, CHSvdM16]

• Lesson: Get analysis for everything
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Example: Key Separation

• TLS 1.2 uses the same key for Finished and for application data

– This causes huge problems for a compositional analysis of the

handshake and the record layer [KPW13]

– Number one request from cryptographers to fix...

• TLS 1.3 uses separate keys for handshake and application layer

traffic

– Also allows us to derive the application keys from more of the

handshake

• But not complete separation

– NewSessionTicket is encrypted with traffic keys

– ... key separation here was too hard to make work

• Lesson: Protocol engineering involves compromise
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The Great Middlebox Mess

• Some middleboxes break when you negotiate TLS 1.3

• Error rates (Firefox Beta versus Cloudflare)

– 2.2% for TLS 1.2

– 3.9% for TLS 1.3

• What’s happening?

– They’re trying to look at handshake details

– Even when they don’t know the version

• This means you need fallback to deploy TLS 1.3

• ... which also breaks anti-downgrade

• Only found this out right when everything else was done

– Only see it when you try to deploy
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The fix: TLS 1.3 looks like TLS 1.2 Resumption

ClientHello + session id //

ServerHello + session id echo, [ChangeCipherSpecs]

CertificateRequest, Certificate, CertificateVerify, Finished
oo

Application dataoo

[ChangeCipherSpecs]

Certificate, CertificateVerify, Finished
//

oo Application data //

• CCS is just a dummy and doesn’t affect the state machine

– Recipient ignores it

• Middlebox expects everything after CCS to be encrypted

– And doesn’t try to look inside

• This gives comparable error rates between 1.2 and 1.3 → No fallback

• Lesson: sometimes protocol engineering requires big compromises∗

∗And delays
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Static RSA, Passive Inspection, and You

• A lot of enterprises do TLS passive inspection

– Inspection box attached to a span port

– You give the RSA private key to the inspection box

– Decrypt the EPMS and hence the whole connection?∗

• TLS 1.3 breaks this (no static RSA)

• Lot of requests from enterprises to do something

– But we didn’t.

– (they don’t really need our help)

• Lesson: sometimes protocol engineering requires not

compromising

∗Don’t forget to disable (EC)DHE cipher suites
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Where are we now

• RFC Published August 10

• Browsers: Firefox, Chrome, Safari (off by default)

• Server operators: Akamai, Cloudflare. Facebook, Google

• Libraries: OpenSSL, BoringSSL, NSS, Fizz, PicoTLS, ...

• 5+% of Firefox connections

• > 50% of Facebook connections!
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Lessons?

• First major security protocol to be co-designed by standards,

implementation, and academic communities

• Successes

– Got a protocol we can mostly analyze

– Design largely informed by specific analysis

– Lots of results already published

• Points of friction

– Time scale of analysis versus design

– “Semantic gap” between the communities

– Engineering compromises

• Challenges for the future

– How do we incrementally improve TLS (ESNI, subcerts, etc.)?

– Applying this to a new protocol (MLS/instant messaging).
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Thank you
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