
Protecting TLS 1.3
from Legacy Vulnerabilities

from theoretical security to verified deployments

Karthik Bhargavan

http://prosecco.inria.fr
+

many co-authors at INRIA, Microsoft Research, …

http://prosecco.inria.fr/

PROTOCOL DEPLOYMENTSTANDARD

Abstract Protocol Model Published Protocol Standard Deployed Protocol Code

PROTOCOL DEPLOYMENTSTANDARD

Ready for deployment?

PROTOCOL DEPLOYMENTSTANDARD

What goes wrong in TLS Deployments?
• Incorrect Configuration: Lingering Legacy Crypto [e.g. RC4, PKCS#1v1.5]
• Insecure Composition:
• Buggy Implementations: State machine flaws, Side-channel attacks
• Often, a combination of all of the above is exploited in a downgrade attack

[e.g. POODLE, LOGJAM, FREAK, SLOTH, DROWN]

PROTOCOL DEPLOYMENTSTANDARD

We need to verify that TLS 1.3 deployments preserve our theorems
• Downgrade Resilience for TLS 1.3

• Symbolic Analysis of full TLS 1.3 composed with TLS 1.2

• Verified implementations of TLS 1.3 and TLS 1.2

Diffie-Hellman key exchange

Classic man-in-the-middle attack

Active Network Attacker
or Malicious Peer

Authenticated Diffie-Hellman (SIGMA)

PKI

SIGNATURE + MAC like in TLS 1.3
prevents most MitM attacks

Core Cryptographic Constructions

Diffie-Hellman Key Exchange
• Assumption: GapDH/ODH/…
Hash Function
• Assumption: Collision resistance/...
Digital Signature Scheme
• Assumption: UF-CMA/…
Message Authentication Code
• Assumption: PRF/…

Configuration: Supported Crypto Algorithms

Diffie-Hellman Group
• EC-256, DH-2048, DH-512

Hash Function
• SHA-256, SHA-1, MD5

Digital Signature Scheme
• RSA-PSS, ECDSA, RSA-PKCS#1

Message Authentication Code
• HMAC-SHA256, Truncated HMAC

Negotiation: Choosing a Diffie-Hellman Group

Why a 512-bit group?
backwards compatibility,

export regulations,…

Group
Negotiation

Logjam: DH group downgrade attack

The Logjam Attack [CCS’15]:
Downgrade + Break DH-512

Remove Strong Groups

Client/Server
Impersonation

Downgrade Protections in TLS 1.2

In TLS 1.2, both client and server MAC the full
transcript to prevent tampering:

mac(k, [G2048,G512] | G512 | m1 | m2)

But it’s too late, we already used G512 to compute k
k = kdf(gxy mod p512)

so, the attacker can compute k and forge the MAC

The TLS 1.2 downgrade protection mechanism
itself depends on downgradeable parameters!
• No easy fix except disabling all weak Diffie-Hellman groups

Downgrade Protections in TLS 1.3

Sign the full handshake transcript
• sign(k, hash([G2048,G512] | G512 | m1 | m2))
• Prevents Logjam in TLS 1.3

• Does this prevent other downgrade attacks?

SIGMA with Generic Negotiation

Version/Group/
Cipher Parameters

Signed Transcript

Downgrade Protections in TLS 1.3

Sign the full handshake transcript
• sign(skB, hash(m1 | m2))

How weak can this hash function be?
• do we really need collision resistance?
• do we only need 2nd preimage resistance?
• E.g. is it still safe to use MD5, SHA-1 in TLS 1.3 signatures?

SLOTH: Transcript Collision Attacks
[Bhargavan, Leurent, NDSS’16]

Server
Impersonation

Client
Impersonation

Parameter
Downgrade

Signature/Hash Function Downgrade in TLS 1.3

TLS 1.3 signs the full transcript to prevent tampering
• sign(skB, hash(m1 | m2))
• This prevents many downgrade attacks including Logjam

TLS 1.3 cannot prevent signature/hash function downgrades
• We need to eliminate all weak signature schemes from TLS 1.3
• We need to eliminate all weak hash functions from TLS 1.3
• We still need to protect against TLS 1.3 → TLS 1.2 downgrades
• Otherwise, an attacker hop down to TLS 1.2 and bypass TLS 1.3

Proving Downgrade Resilience
for TLS 1.3

[Bhargavan, Brzuska, Fournet, Green,
Kohlweiss, Zanella-Béguelin, IEEE S&P 2016]

Agile Key Exchange Protocols

• We consider two party AKE protocols (I R)
• Key exchange inputs:
– configI & configR: supported versions, ciphers, etc.
– credsI & credsR: long-term private keys

• Key exchange outputs:
– uid: unique session identifier
– k: session key
– mode: negotiated version, cipher, etc.

Agile AKE Security Goals
• Partnering

at most one honest partner exists with same uid
• Agreement

if my negotiated mode uses only strong algorithms,
then my partner and I agree on k and mode

• Confidentiality
if my negotiated mode uses only strong algorithms,
the key k is only known to me and my partner

• Authenticity
if my intended peer is authenticated and honest,
and my negotiated mode uses only strong algorithms,
then at least one partner with same uid exists

Agile Agreement vs. Downgrade Attacks
• Agreement

if my negotiated mode uses only strong algorithms,
then my partner and I agree on k and mode

• Agreement does not guarantee that the protocol
will negotiate a strong mode
– It does not forbid Logjam-like attacks
– Only protects against downgrades if all algorithms in

the intersection of configI & configR are strong
– What if configI,configR both include a weak algorithm ?

A New Security Goal: Downgrade Resilience

• Ideal Negotiation: Nego(configI, configR)
Informally, the mode that would have been
negotiated in the absence of an attacker

• Downgrade Resilience
The protocol should negotiate the ideal mode
even in the presence of the attacker

mode = Nego(configI, configR)

TLS 1.3 Negotiation Sub-Protocol

1: Group Negotiation with Retry

Server can ask client to retry with another group
• What if attacker sends a bogus Retry?
• Fix: The transcript hashes both hellos and retry

to prevent tampering of Retry messages.

2: Full Transcript Signatures

Client and Server both sign full transcript

• Only RSA-PSS/ECDSA/EdDSA signatures allowed

• Only SHA-256 or newer hash algorithms allowed

• Prevents many downgrade attacks e.g. Logjam

3: Preventing Version Downgrade

TLS 1.3 clients and servers will likely also support TLS 1.2
• What if the attacker downgrades all connections to TLS 1.2?

• Fix: the TLS 1.3 server includes a fixed 64-bit pattern in the
server nonce when negotiating a lower protocol version
– Server nonce is signed in all signature ciphersuites in TLS 1.0-1.3
– Protects downgrades to TLS 1.0-1.2 signature ciphersuites
– Does not prevent downgrade to RSA encryption ciphersuites

TLS 1.3 Negotiation is Downgrade Resilient
We can prove downgrade resilience for the
negotiation sub-protocol of TLS 1.3+1.2, if
only signature ciphersuites with
collision-resistant hash functions
are enabled in TLS 1.2.
• Does not account for all of TLS 1.3
• Painful to extend manual crypto

proof to full protocol

Symbolically Analyzing
full TLS 1.3 + TLS 1.2

(to detect downgrade attacks)
[Bhargavan, Blanchet, Kobeissi, IEEE S&P 2017]

TLS 1.3 1-RTT handshake
• 12 messages in 3 flights,

16 derived keys,
then data exchange

+ 0-RTT + TLS 1.2

• Protocol model: 500 lines
• Threat model: 400 lines
• Security goals: 200 lines

Classic Needham-Schroeder/Dolev-Yao network adversary
• Can read/write any message on public channels
• Can participate in some sessions as client or server
• Can compromise some long-term keys
• Cannot break strong crypto algorithms or guess encryption keys

We extend the model to allow attackers to break weak crypto
• Each primitive is parameterized by an algorithm
• Given a strong algorithm, the primitive behaves ideally
• Given a weak algorithm, the primitive completely breaks
• Conservative model, may not always map to real exploits

We state security queries for data sent between honest peers
• Secrecy: messages between honest peers are unknown to an adversary
• Authenticity: messages between honest peers cannot be tampered
• No Replay: messages between honest peers cannot be replayed
• Forward Secrecy: secrecy holds even if the peers’ long-term keys are

leaked after the session is complete

Secrecy query for msg(conn,S) sent from client C to server S

query not attacker(msg

• QUERY: Is msg(conn,S) secret?

query not attacker(msg

• FALSE: ProVerif finds a counterexample if S’s private key is compromised

• QUERY: Is msg(conn,S) secret
as long as S is uncompromised?

query attacker(msg
event(

• FALSE: ProVerif finds a counterexample if the AE algorithm is weak

• QUERY: Is msg(conn,S) secret
as long as S is uncompromised
and only strong AE algorithms are used?

query attacker(msg
event(

• FALSE: ProVerif finds a counterexample if the DH group is weak

• Strongest secrecy query that can be proved in our model

query attacker(msg
event(CompromisedKey

WeakAE
WeakDH
WeakRSADecryption

WeakHash

• TRUE: ProVerif finds no counterexample

Messages on a TLS 1.3 connection between honest peers are secret:
1. If the connection does not use a weak AE algorithm,
2. the connection does not use a weak DH group,
3. the server never uses a weak hash algorithm for signing, and
4. the server never participates in TLS 1.2 RSA key exchange

Analysis confirms preconditions for downgrade resilience in TLS 1.3
• Identifies weak algorithms in TLS 1.2 that can harm TLS 1.3 security

We also model and verify TLS 1.3 in CryptoVerif
• Handshake with PSK and/or (EC)DHE, optional client authentication
• Record protocol with key update, 0-RTT, 0.5-RTT, 1-RTT application data
• We do not model: negotiation, legacy versions, post-handshake auth
• Full model: ~5000 lines (including ~2500 lines of assumptions)

CryptoVerif proofs are semi-automated and require user guidance
• The proof is a sequence of game transformations
• Each step depends on a precise crypto assumption on some primitive

Verification strategy closely follows paper crypto proofs
• Sometimes, the tool’s limitations require different assumptions

Project Everest:
Verifying a full

TLS 1.3 + TLS 1.2
Implementation

[Delignat-Lavaud+, IEEE S&P 2017]

Application
Data Protocol

Key Schedule

DHGroup

DH

KEF

KDF/
MAC

RSA

Cert

Sig

SessionDB

Connection

TCP

Alert
Datastream

state
machine

TLSInfo

Constants

Handshake/CCS Protocol

AppData

F* Bytes

Untyped API

Adversary modelsRPC

Tests and
Deployments

TLS API

Alert
Protocol

Nonce

TLS FFI

RSAKey

LibCurl

Extensions

RangeError

AEAD

Stream
Encryption

TLS record
protectionTLS

LHAE

MAC

Encode

AES128
AES256

Poly1305

Cipher

IND-PRFAES CBC

IND-CPA

MEE

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

IND-CMA

Record Layer
Protection

Symmetric Cryptography
Buffers Integers Bit vectors

Base

Messages

Nego

Sequences State Model

Public-Key
Cryptography

EC25519 RSA Missing
algorithms
and models

HKDF

Crypto assumption

Partially verified (WIP)

Verified by typing

kreMLin

source code, specs, security definitions,
crypto games & constructions, proofs…

interop with rest of
TLS/HTTPS ecosystem

verify all properties
(using automated provers)
then erase all proofs

extract low-level code,
with good performance &
(some) side-channel protection

production code

C/C++

AEAD

Stream
Encryption

TLS record
protection

AES128
AES256

Poly1305

Cipher

IND-PRF

Chacha20 GHASH

1-Time MAC

IND-1CMA

AEAD.Encoding

AEAD.Invariant

Record Layer
Protection

Symmetric Cryptography

Crypto library verified in F* and compiled to C
• Verified memory safety, functional correctness,

and secret independence (timing side-channel resistance)
• Performance comparable with hand-coded C libraries
• Currently used in Firefox for Curve25519/Chacha20/Poly1305

Crypto algorithms used in TLS 1.3

HACL*: A Verified Crypto Library for TLS

PROTOCOL DEPLOYMENTSTANDARD

Many new issues when deploying a protocol like TLS 1.3
• Downgrade attacks, Implementation bugs, …
• Fixes proposed by academics are now built into TLS 1.3

Formal verification tools can help gain confidence in
both protocol design and implementation
• Download and use: Tamarin, ProVerif, CryptoVerif, EasyCrypt, F*

Questions?

• ProVerif: http://proverif.inria.fr
• Tamarin: https://tamarin-prover.github.io/
• Cryptoverif: http://cryptoverif.inria.fr
• EasyCrypt: https://www.easycrypt.info
• F*: http://www.fstar-lang.org/
• Project Everest: https://project-everest.github.io/

http://proverif.inria.fr/
https://tamarin-prover.github.io/
http://cryptoverif.inria.fr/
https://www.easycrypt.info/
http://www.fstar-lang.org/
https://project-everest.github.io/

