Two-Round Secure Multiparty Computation Minimizing Public Key Operations

Sanjam Garg

Peihan Miao

Akshayaram Srinivasan

What did we achieve?

Two-Round Secure Multiparty Computation Minimizing Public Key Operations

Sanjam Garg

Peihan Miao

Akshayaram Srinivasan

Secure Multiparty Computation (MPC)

What does Two-Round mean?

The MPC protocol has two rounds.

Two-Round MPC

Two-Round MPC

 x_3

Why is round complexity important?

Why is round complexity important?

Why not one round? Because it's impossible! [HLP'11]

Two-Round MPC?

- [Yao'86, GMW'87]: any function, round = depth of C
- [BMR'90]: constant rounds
- 2 rounds from various assumptions
 - Indistinguishability Obfuscation (iO) [GGHR'14]
 - Witness Encryption [GLS'15]
 - Learning With Errors (LWE) [MW'16, BP'16, PS'16]
 - Bilinear Maps [GS'17]
 - 2-Round Oblivious Transfer (OT) [BL'18, GS'18]
- 2-round MPC \Leftrightarrow 2-round OT

Can we implement it? Yes, but it's too slow...

Why? Too many public key operations...

Why is it bad?

Because public key operation is VERY slow!

- Symmetric key operations (AES) ~100M/sec
- Public (asymmetric) key operations ~10K/sec

Our Main Result

- 2-round MPC from 2-round OT (minimal assumption)
- State of the art: $poly(n, \lambda, |C|)$ OTs (public key operations)
- We improve it to: $poly(n, \lambda)$ OTs (public key operations) + $poly(n, \lambda, |C|)$ symmetric key operations
 - Semi-honest from 2-round semi-honest OT
 - Malicious from 2-round malicious OT in the CRS model

How did we achieve it?

2-round MPC with $poly(n, \lambda, |C|)$ OTs

Combine?

How to reduce OTs (public key operations)?

- OT extension!
 - poly $(n, \lambda, |C|)$ OTs
 - Minimize public key operations

2-round OT extension?

Yes! [Beaver'96]

2-round MPC with $poly(n, \lambda, |C|)$ OTs

Combine?

No!

Why?

How to reduce OTs (public key operations)? OT extension!

- poly $(n, \lambda, |C|)$ OTs
- Minimize public key operations

2-round OT extension? Yes! [Beaver'96]

2-round MPC with $poly(n, \lambda, |C|)$ OTs Combine? No! Why?

2-round OT extension?

2-round MPC with $poly(n, \lambda, |C|)$ OTs

Combine?

No!

Why?

How to solve it?

2-round OT extension?

2-round MPC with $poly(n, \lambda, |C|)$ OTs \checkmark poly $(n, \lambda, |C|)$ OTs Combine? Weakened special properties needed from OTs No! Why? How to solve it? 2-round OT extension? \square poly $(n, \lambda, |C|)$ OTs Weakened special properties needed from OTs

Technical Overview (semi-honest)

- Building blocks
 - Yao's garbled circuit (symmetric key)
 - two-round OT (public key)
- Two-Round MPC [BL'18, GS'18]
 - What are the special properties needed from OT?
 - Why are they needed?
- Two-Round OT Extension [Beaver'96]
 - Why not satisfying the special properties needed from OT?
- How to solve the problems?

Technical Overview (semi-honest)

- Building blocks
 - Yao's garbled circuit (symmetric key)
 - two-round OT (public key)
- Two-Round MPC [BL'18, GS'18]
 - What are the special properties needed from OT?
 - Why are they needed?
- Two-Round OT Extension [Beaver'96]
 - Why not satisfying the special properties needed from OT?
- How to solve the problems?

Yao's garbled circuit [Yao'86]

Oblivious Transfer (OT) [Rab'81, EGL'85, BCR'86, Kil'88]

Two-Round OT [AIR'01, NP'01, HK'12]

Technical Overview (semi-honest)

Building blocks

- Yao's garbled circuit (symmetric key)
- two-round OT (public key)
- Two-Round MPC [BL'18, GS'18]
 - What are the special properties needed from OT?
 - Why are they needed?
- Two-Round OT Extension [Beaver'96]
 Why not satisfying the special properties needed from OT?
- How to solve the problems?

Why?

٠

Technical Overview (semi-honest)

Building blocks

- Yao's garbled circuit (symmetric key)
- two-round OT (public key)
- Two-Round MPC [BL'18, GS'18]
 - What are the special properties needed from OT?
 - Why are they needed?
- Two-Round OT Extension [Beaver'96]
 - Why not satisfying the special properties needed from OT?
- How to solve the problems?

OT Extension [Beaver'96]

Two-Round OT Extension [Beaver'96]

Two-Round OT Extension [Beaver'96]

Two-Round OT Extension [Beaver'96]

First Attempt: Modify Two-Round OT Extension

Second Attempt: Weaken Special Properties

Weakened property: Decryption secrets can be computed and fed into the garbled circuits after Round-2.

Summary

- What did we achieve?
 - 2-round MPC from 2-round OT using $poly(n, \lambda)$ OTs (public key operations) + $poly(n, \lambda, |C|)$ symmetric key operations
- Combine 2-round MPC with 2-round OT extension
 - Mismatch in the special properties!
 - Weaken special properties and modify protocols
- More challenges and new tools in malicious setting
 - Somewhere Adaptive Garbled Circuit
 - Special Purpose Zero-Knowledge Proof

Future Work

•How to make it more practical?

- Making black-box use of crypto operations?
- Impossible for 2 rounds! [GMMM'18] talk tomorrow morning :)
- Black-box but 3 rounds?
 - Combining with black-box OT extension [IKNP'03]
- Concrete optimization for implementation

Thanks!