Limits on the Power of Garbling Techniques for Public-Key Encryption

Sanjam Garg (UC Berkeley) Mohammad Hajiabadi (UC Berkeley, Univ. of Virginia) Mohammad Mahmoody (Univ. of Virginia)

Ameer Mohammed (Univ. of Virginia \rightarrow Kuwait University)

Long-Standing Open Problem

? One-Way Functions \Rightarrow Public-Key Encryption

Not in a <u>black-box</u> way [IR89]

What about **<u>non-black-box</u>** methods?

Black-Box Constructions [IR89, RTV04, BBF13]

A black-box construction of *Q* from *P*:

Security: Adv_Q breaking $Q \Longrightarrow Adv_P$ breaking P

Common Non-Black-Box Techniques

- "Low-Tech" (OWF-realizable):
 - Garbling [Yao86]
 - Zero-knowledge proofs [GMR85]
 - Witness Indistinguishability/Hiding [FFS87, FS90]
- "High-Tech" (based on stronger assumptions):
 - Fully Homomorphic Encryption [Gentry09]
 - Functional Encryption [O'Neill11, BSW11]
 - Witness Encryption [GGSW13]
 - Indistinguishability Obfuscation [BGI+02, GGHRSW13]

Garbling Scheme

Decomposable/projective [BHR12]

$$(C, \text{seed}) \longrightarrow \text{Garb} \longrightarrow \tilde{C}, \{w_i^0, w_i^1\}_{i \in \mathbb{N}}$$
$$\tilde{C}, (w_1^{x_1}, \dots, w_n^{x_n}) \longrightarrow \text{Eval} \longrightarrow C(x_1, \dots, x_n)$$

Security: Sim
$$\left(1^{|C|}, 1^{|x|}, C(x)\right) \equiv_{c} \left(\tilde{C}, \left\{w_{i}^{x_{i}}\right\}_{i \in n}\right)$$

Our Main Question

$$OWF + Garbling \xrightarrow{?} PKE$$

• OWF \Rightarrow Garbling [Yao86]

• CDH + Garbling \Rightarrow IBE [DG17] circumventing CDH \Rightarrow IBE [PRV12] Non-BB BB

Our Main Result (Informal)

Same model as:

[Brakerski-Katz-Segev-Yerukhimovich'11] and [Asharov-Segev'15]

Outline

- Problem and Motivation
- Separation Model
- Ideas behind the proof

Black-box Separations: Most Separations in Crypto

Constructions We Want to Rule Out

How Does Garbling Make Constructions Non-BB?

Treating OWF + Garbling as a Black-Box

Treating OWF + Garbling as a Black-Box

Main Theorem (Formal)

There exists no **black-box** construction of PKE from (OWF, Garbling^{OWF})

Big Picture of our Approach

Previous Separation Results That Use This Model

vs. this work: Imperfectly complete PKE

Constructions Captured in This Model

- Garbling circuits with OWF gates
 - [Beaver96, LO13, GLOS15]

Constructions **NOT** Captured by This Model

- Garbling circuits with Garb/Eval gates
 - Falls under the monolithic framework of [Garg-Mahmoody-M17]

Outline

- Problem and Motivation
- Separation Model
- Ideas behind the proof

How to Prove Black-Box Separations

The OWF + Garbling^{OWF} Oracle O (first attempt)

The oracle *O* consists of:

1. To realize OWF: Random oracle $f: \{0,1\}^n \xrightarrow{\$} \{0,1\}^n$

Oracle *O*

2. To realize Garbling^{OWF}: "Ideal" Garbling Scheme for circuits with f-gates

 $(Garb^f, Eval^f)$

Where Garb(seed,
$$C^f$$
) $\xrightarrow{\$} (\tilde{C}, \{w_i^0, w_i^1\}_{i \in n})$
And Eval^f $(\tilde{C}, (w_1^{\chi_1}, \dots, w_n^{\chi_n}))$ outputs $C(x)$

Problem: *0* is too strong! We can realize VBB obf. using it

The OWF + Garbling^{OWF} Oracle O (right version)

• Any PKE can be broken with only poly-queries to O

- Any PKE can be broken with only poly-queries to O
- Similar to techniques used in [GMR01,HR04]

Our Approach (closer look)

Solution: Gen runs Enc(pk, .) "many times" then adds answers of Eval queries to $Hint_{Enc}$

Solution: Enc runs $Dec(\widehat{sk}, .)$ "many times" then adds answers of Eval queries to $Hint_{Dec}$

Summary

- Main Result
 - OWF + garbling <u>for circuits with OWF gates</u> are insufficient for constructing PKE in a black-box way.
- Extensions in this work (not discussed in this talk):
 - OWF + garbling mechanisms for circuits with OWF gates are insufficient for constructing *constant-round* key-agreement protocols.
 - OWF + NIWI/NIZK for statements with OWF gates are insufficient for constructing PKE with *without assuming perfect correctness* (extending [BKSY11])

Open Problems

- Extension to ruling out PKE from if we allow garbling of the *garbling scheme itself*.
- Extension to ruling out key exchange with *polynomial* number of rounds from OWF + garbling.

Related results

• [BKSY11]: OWF + NIZK/NIWI ⇒ (perfectly-complete) key agreement

• [AS15]: secret-key FE \Rightarrow key agreement

Garbling Scheme for oracle-aided circuits

$$(C^{o}, \text{seed}) \longrightarrow GC \longrightarrow \tilde{C}, \{w_{i}^{0}, w_{i}^{1}\}_{i \in r}$$
$$\tilde{C}, (w_{1}^{x_{1}}, \dots, w_{n}^{x_{n}}) \longrightarrow Eval \longrightarrow C^{o}(x_{1}, \dots, x_{r})$$

Security:
$$\exists$$
 PPT Sim : Sim $\left(1^{|C|}, 1^{|x|}, C^{\mathbf{0}}(x)\right) \equiv_{c} \left(\tilde{C}, \left\{w_{i}^{0}, w_{i}^{1}\right\}_{i \in n}\right)$

- Key property of GC used: $|\tilde{C}| \gg |C|$
 - So hard to find any \tilde{C} without calling GC

- Key property of GC used: $|\tilde{C}| \gg |C|$
 - So hard to find any \tilde{C} without calling GC

Problem for 2: Enc does not know \tilde{C} **Idea**: Let Gen help Enc

Can be emulated without asking O'

Gen queries

$$GC(C_1) = \tilde{C}_1$$
$$GC(C_2) = \tilde{C}_2$$
$$GC(C_3) = \tilde{C}_3$$

Enc(*pk*, *x*) queries $GC(C_4) = \tilde{C}_4$ $GC(C_5) = \tilde{C}_5$ $Eval(\tilde{C}_4, .)$ $Eval(\tilde{C}_1, .)$

Hint: Contains "heavy learnable" Eval queries of E

• Key property of GC used: $|\tilde{C}| \gg |C|$

Problem for 2/3: Dec does not know \tilde{C} **Idea**: Let Gen and Enc help Dec

Add Hint to sk

Enc

does not

The Idealized Oracle

O OWF + Garbling^{OWF}

- We want oracle O to realize OWF + Garbling of C^{OWF}
- How to realize a OWF?
 - Standard way: Use a random oracle f
- How to realize garbling of circuits with OWF gates?
 - This models non-black-box use of OWF
 - Solution: Use a garbling oracle (Garb^f, Eval^f) that garbles circuit C^{f}

Oracle O'

Oracle O'

Oracle O'

Challenge: Dec does not know C₁

Solution: Gen adds $(Garb(C_1), \tilde{C}_1)$ to *sk*

