Adaptive Garbled RAM from
Laconic Oblivious Transfer

Sanjam Garg Rafail Ostrovsky Akshayaram Srinivasan
UC Berkeley UCLA UC Berkeley

Crypto 2018

Garbled RAM

Lu-Ostrovsky 13

P,x |P| = T.poly(A,10g|D|) Learns only

S | D
Selective X = |x|. poly(4,log|D|) (x)
Security

Long line of work [LO13, GHLOW14, GLOS15, GLO15, LO17]

Adaptive Garbled RAM

[Canetti-Chen-Holmgren-Raykoval6, Ananth-Chen-Chung-Lin-Lin16]

o

= | "™

=N

»
»

Can we construct Adaptive Garbled RAM from standard
assumptions?

Prior constructions were either in the random oracle model
[BHR12] or based on indistinguishability obfuscation [CCHR16,
ACCLL16]

Why is Adaptive GRAM important?

Motivated by the study of Adaptive Garbled Circuits
[BHR12,BGG+14,HJO+16,JW16,IKK+17,JSW17,GS18]

Applications: One-time programs[GKR08], Online-offline 2PC[LR14],
Verifiable Computation[GGP10], Adaptive Compact FE[AS16]

Adaptive GRAM + O (1) round Malicious MPC =>
O (1) round Malicious MPC for RAM program in the persistent
setting

Prior O(1) round protocols based on standard assumptions
[GGMP16,HY16,KY18] did not support persistence in the malicious
setting

Our Results

Adaptive GRAM from Laconic OT

Theorem: There exists a construction of Adaptive GRAM from
Laconic Oblivious Transfer.

Corollary [CDG+16,DG17,BLSV18,DGHM18]: There exists a
construction of Adaptive GRAM based on CDH/Factoring/LWE.

Rest of the talk

e Starting Point: Adaptive Garbled Circuits [Garg-S 18]
* Challenges in Extending to the RAM setting
* How to overcome the challenges?

Adaptive Garbled Circuits [Garg-S 18]

Alternate View of a Boolean Circuit

Garbling Step Circuits

Access the
database via
Laconic OT

Updatable Laconic Oblivious Transfer

[Cho-Dottling-Garg-Gupta-Miao-Polychroniadou 17]

Database D
Cr+— 2ad(h,i,m,, Hash h' < Write(h,i,b)
mD[i] = EvalReadD(CR)
h

Theorem[CDG+16,DG17,BLSV18,DGHM18]: Assuming
CDH/Factoring/LWE, there exists a construction of updatable laconic OT.

Using Laconic OT to access the database

Read

Write
h , 571 :: h S‘-C:Z

Challenges in the RAM setting

Access the

database via
Laconic OT

Challenge-1: How to
protect the database?

Challenge-2: How to
protect the access

nattrarn?

needed.

In the adaptive setting, more sophisticated tools are

In the selective setting [GHLOW14], transforming from unprotected memory
access to full security is done via a ORAM scheme and symmetric encryption.

Protecting the Database

Prior Approaches: Location based Encryption

Access the
database via
Laconic OT

[GS18]- Hybrid Argument

Real World:

Hyb 1: < K K

K

K

K

K

Circularity assumptions.

Puncturing affects efficiency.

e 1 F R R R R B

Our Approach: Timed Encryption

c « Enc(time, k,msg)

k[time'] « KeyCons(time', k)

msg < Dec(k[time'],c) if time' = time

(k|time'],c) =, (k[time'], Enc(time, k,0)) if time' < time

Theorem: There is a construction of timed Encryption from one-way
functions.

Using Timed Encryption

Enc(0,k, Enc(1,k,

Access the
database via
Laconic OT

SC, SC, SCy
k[1] k[2] k(3]

Revisiting the Hybrid Argument

Real World:

Hyb 1: k[1] k[2] k[3] k[4] k[5] k[6] k[7] k[8] -

e I I R R R R

Conclusion

* We give a construction of Adaptive Garbled RAM from
CDH/Factoring/LWE.

* We obtain the first O(1) round malicious MPC for RAM programs in
the persistent setting from standard assumptions.

* Open question: Can we remove public-key assumptions?

Thank you!
https://eprint.iacr.org/2018/549

