Fast Large-Scale Honest Majority MPC for Malicious Adversaries

Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi *NTT, Japan*

Daniel Genkin

University of Michigan

Yehuda Lindell, Ariel Nof

Bar-Ilan University Israel

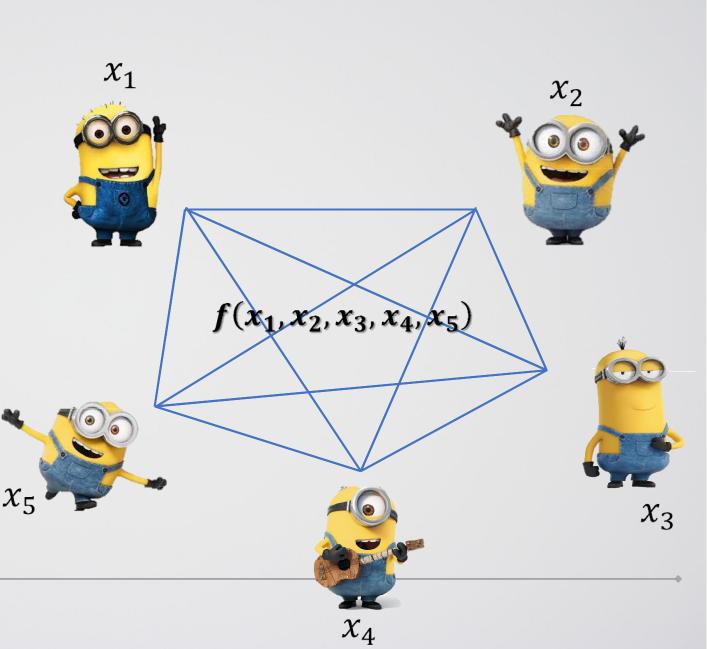
Crypto 2018

The Setting

- *n* parties wish to compute an arithmetic circuit over a field F
- Malicious adversary controlling t parties
- Honest majority (t < n/2)

Center for Research in Applied Cryptography and Cyber Security

Security with abort



The Starting Point

- 1. An observation made by Genkin et al. [GIPST15, GIP16]:
 - In secret-sharing based protocols, many semi-honest multiplication protocols are *secure up to additive attack* in the presence of malicious adversaries.
- 2. For the honest-majority setting, there exists highly efficient semi-honest multiplication protocols with **low and linear communication complexity.**

Our Main Results

- A information-theoretic protocol maliciously secured with abort at the cost of running semi-honest protocol δ times, where δ is such that $\left(\frac{|F|}{3}\right)^{\delta} \geq 2^{\sigma}$ (σ is the security parameter).
 - For "large" fields, the semi-honest protocol is run only twice!
- Two instantiations:
 - 3-party with replicated secret sharing: each party sends 2 field elements per multiplication gate (for large fields).
 - Multi-party with Shamir's secret sharing: each party sends 12 field elements per multiplication gate (for large fields).

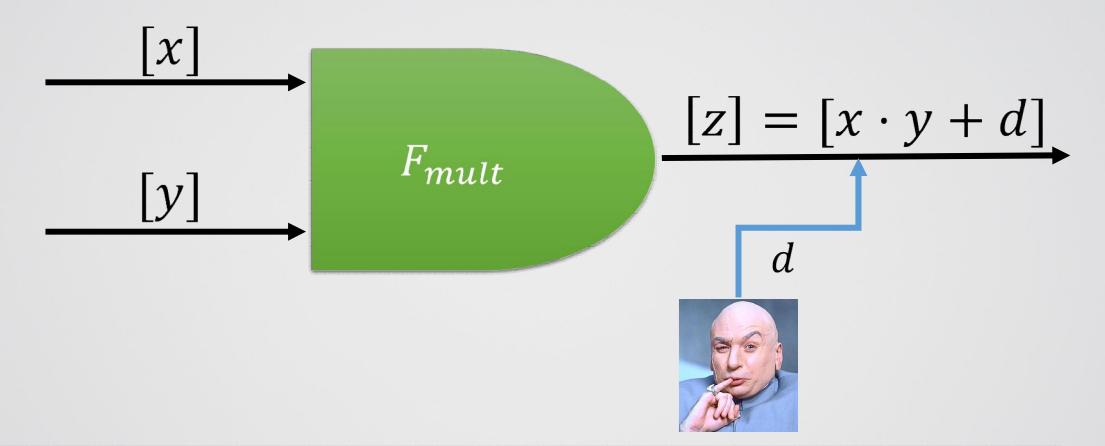
Honest Majority MPC

- Orders of magnitudes faster than dishonest majority MPC
- t < n/3:
 - full security with perfect security and linear complexity can be achieved (HB[08])
 - Concrete efficiency: VIFF[08]
- t < n/2:
 - Full security results
 - Computational Model linear communication complexity using PKC (HN[06])
 - Information-theoretic best known result: $O(n \log(n))$ (BFO[12])
 - Security with abort
 - Linear complexity and information-theoretic GIP[15] (no concrete cost)
 - Concrete efficiency:
 - Multi-party: we improve upon the previous best known result (LN[17]) by approximately twice for a small number of parties and by up to 10 times for a large number of parties.

Some Notation

- [x] a sharing of x.
 - We assume linearity of the secret sharing scheme.
- F_{mult} a multiplication protocol secure up to additive attack.
- F_{rand} a sub-protocol to generate random sharings.

Achieving Malicious Security

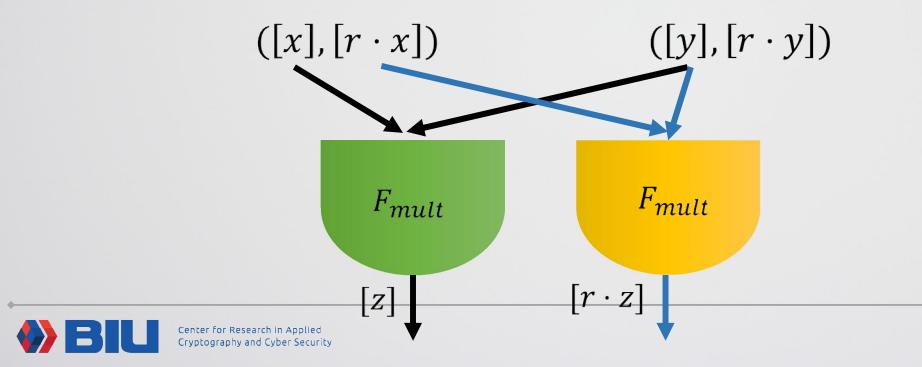


How can the honest parties detect (and abort) when $d \neq 0$?

Center for Research in Applied Cryptography and Cyber Security

Cheating Detection - The Main Idea

- Generate a random sharing [r].
- For each wire of the circuit, hold the pair $([x], [r \cdot x])$:
 - Use F_{mult} to randomize the input wires of the circuit
 - For each multiplication gate:

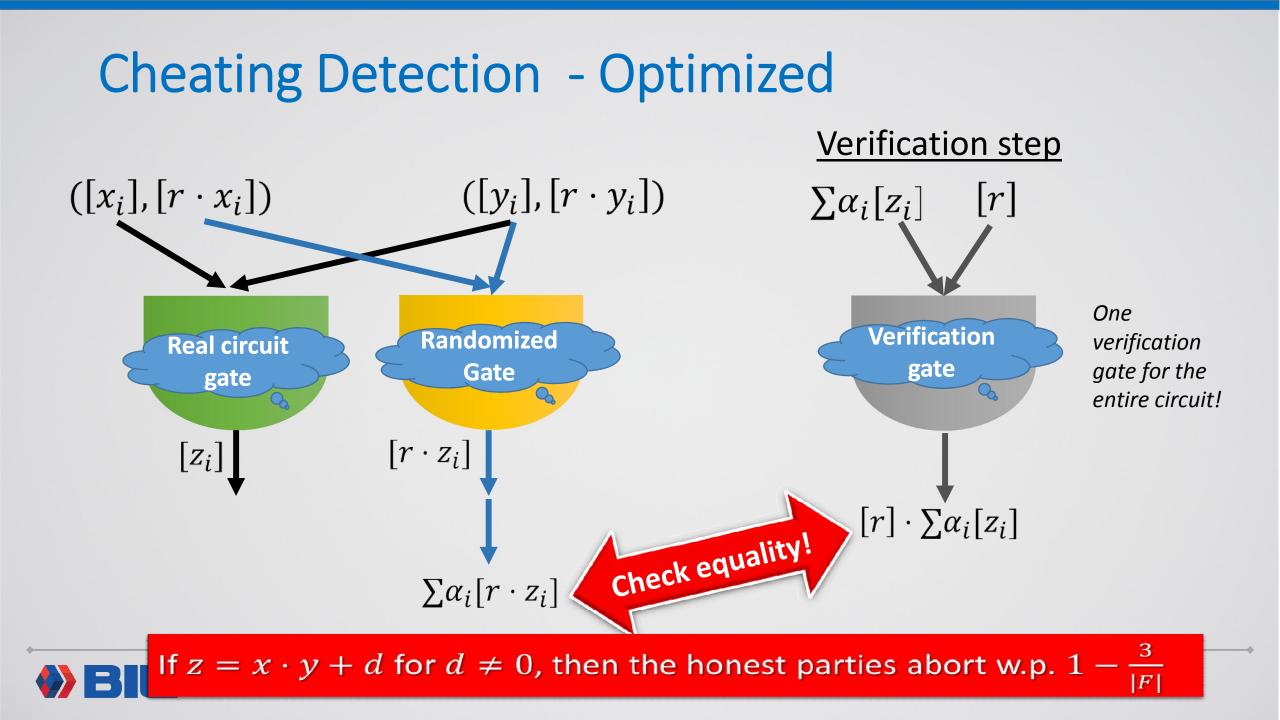


Cheating Detection - The Main Idea

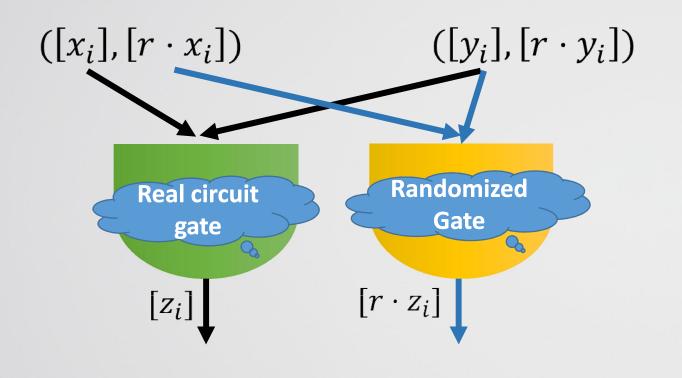
 $([y], [r \cdot y])$ $([x], [r \cdot x])$ |r|ZVerification Randomized **Real circuit** gate Gate gate $[r \cdot z]$ [Z]**Check equality!** $[r \cdot z]$

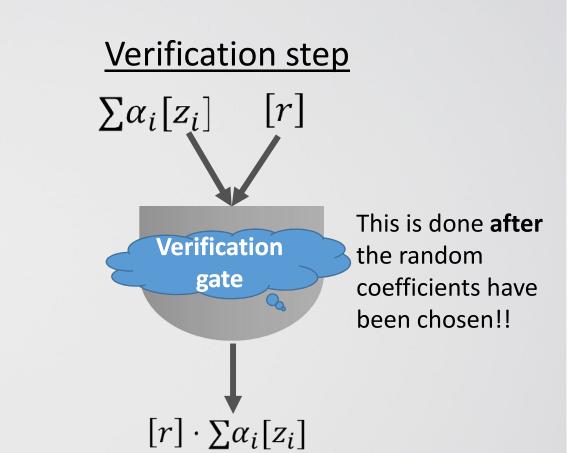
Verification step

Since r is unknown, then if cheating took place, then the probability that the equality holds is negligible



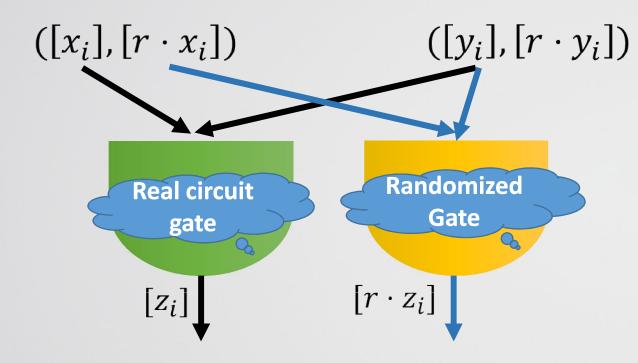
A security problem!





Center for Research in Applied Cryptography and Cyber Security

Cheating Detection - Optimized and Secure

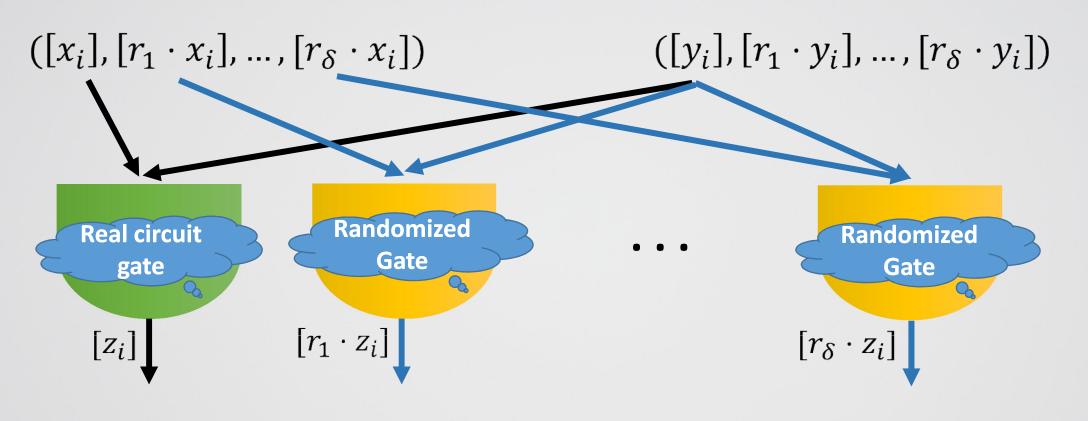


Verification stepLocal
operation1. Open [r]2. Compute $r \cdot \sum \alpha_i [z_i]$

3. Check that:

 $\sum \alpha_i [r \cdot z_i] = r \cdot \sum \alpha_i [z_i]$

What about Small fields?



Small Fields – Verification

Verification step

- 1. Open [r]
- 2. Compute $r \cdot \sum \alpha_i[z_i]$
- 3. Check that:
- (*) $\sum \alpha_i [r \cdot z_i] = r \cdot \sum \alpha_i [z_i]$

- All α_i s and r are publicly known!!
- The values on the wires are known to the **distinguisher** but **not to the simulator**!
- The distinguisher knows whether the equality (*) holds, but the simulator does not!

Not

negligible!

 $Pr[(*)holds when the adversary cheats] \leq \frac{3}{|F|}$

Small Fields – New Verification

Verification step

- 1. Call F_{rand} to receive $\{[\alpha_i]\}$
- 2. Open [r]
- 3. Compute $r \cdot \sum [\alpha_i] \cdot [z_i]$
- 4. Check that:

 $\sum [\alpha_i] \cdot [r \cdot z_i] = r \cdot \sum [\alpha_i] \cdot [z_i]$

Need to call F_{mult} for each gate two more times!!

Computing Sum of Products Efficiently

 $[\alpha_i]_{t} \cdot [z_i]_{t}$

 $\alpha_i \cdot z_i$

. . .

 $\left[\alpha_{1}\right]_{t} \cdot \left[z_{1}\right]_{t}$

- 1. The parties locally multiply their shares $\left[\alpha_1 \cdot z_1\right]_{2t}$
- 2. Interactive protocol 2. for degree reduction

 $\left[\alpha_1 \cdot z_1\right]_{\mathsf{t}}$

 $[\alpha_2]_{\dagger} \cdot [z_2]_{\dagger}$

- 1. The parties locally multiply their shares $\left[\alpha_2 \cdot z_2\right]_{2t}$
 - Interactive protocol for degree reduction

 $\left[\alpha_2 \cdot z_2\right]_{t}$

Example: Shamir's secret sharing

- $\left[\alpha_{m}\right]_{t} \cdot \left[z_{m}\right]_{t}$
- 1. The parties locally multiply their shares
 - $\left[\alpha_m \cdot z_m\right]_{2t}$
- 2. Interactive protocol for degree reduction

 $\left[\alpha_m \cdot z_m\right]_{\star}$

Computing Sum of Products Efficiently

Example: Shamir's secret sharing

 $\left[\alpha_{1}\right]_{t} \cdot \left[z_{1}\right]_{t}$

1. The parties locally multiply their shares

 $\left[\alpha_1 \cdot z_1\right]_{2^{\dagger}}$

Center for Research in Applied Cryptography and Cyber Security $\left[\alpha_{2}\right]_{t} \cdot \left[z_{2}\right]_{t}$

1. The parties locally multiply their shares

 $\left[\alpha_2 \cdot z_2\right]_{2t}$

 $\left[\alpha_{m}\right]_{t} \cdot \left[z_{m}\right]_{t}$

1. The parties locally multiply their shares

 $\left[\alpha_m \cdot z_m\right]_{2t}$

 $\sum \alpha_i \cdot z_i$

2. Interactive protocol for degree reduction

Small Fields – New Verification

Verification step

No need to open r!

- 1. Call F_{rand} to receive $\{[\alpha_i]\}$
- 2. Open [r]
- 3. Compute $r \cdot \sum [\alpha_i] \cdot [z_i]$
- 4. Check that:

Compute this step at the cost of two multiplications for the entire circuit!

$$\sum [\alpha_i] \cdot [r \cdot z_i] = r \cdot \sum [\alpha_i] \cdot [z_i]$$

Summary

A protocol for large fields

The amortized cost for multiplication gate: **2 calls to F_{mult}**

A protocol for small fields

The amortized cost for multiplication gate: $(1 + \delta)$ calls to F_{mult} + δ calls to F_{rand}

Experimental Results

- Two instantiations:
 - Replicated secret sharing (3 parties)
 - Shamir's secret sharing (n parties)

			Open
Replicated	1	0	2
Shamir	6	2	n-1
Shahim	0	Z	11-1

of elements sent per party

Experimental Results

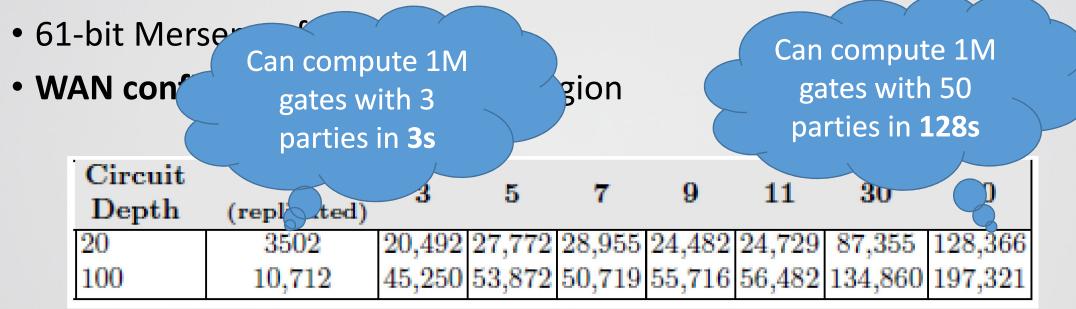
1,000,000 multiplication gate circuit with different dent

 61-bi' Can compute 1M LAL gates with 3 parties in 319ms 									Can compute 1M gates with 110 parties in 8.2s		
Circuit Depth	(repliced)		5	7	9	11	30	50	70	90	210
20	319	826	844	1,058	1,311	1,377	2,769	4,053	5,295	6,586	8,281
100	323	842	989	1,154	1,410	1,477	3,760	6,052	8,106	11,457	15,431
1,000	424	1,340	1,704	1,851	2,243	2,887	12,144	26,310	33,294	48,927	79,728
10,000	1,631	6,883	$7,\!424$	8,504	12,238	16,394	61,856	132,160	296,047	411,195	$544,\!525$

Execution time in milliseconds

Experimental Results

• 1,000,000 multiplication gate circuit with different depths



Execution time in milliseconds

THANK YOU!

https://eprint.iacr.org/2018/570

Center for Research in Applied Cryptography and Cyber Security