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The Setting

* n parties wish to compute an

arithmetic circuit over a field F

* Malicious adversary controlling

t parties
* Honest majority (t < n/2)

* Security with abort




The Starting Point

1. An observation made by Genkin et al. [Gl

* In secret-sharing based protocols, many semi-
protocols are secure up to additive attack in t
malicious adversaries.

PST15, GIP16]:

honest multiplication

ne presence of

2. For the honest-majority setting, there exists highly efficient
semi-honest multiplication protocols with low and linear

communication complexity.




Our Main Results

* A information-theoretic protocol maliciously secured with abort at the

cost of running semi-honest protocol 6 times, where 0 is such that

|F|

o)
(?) > 20 (o is the security parameter).

* For “large” fields, the semi-honest protocol is run only twice!

* Two Iinstantiations:

» 3-party with replicated secret sharing: each party sends 2 field elements per
multiplication gate (for large fields).

* Multi-party with Shamir’s secret sharing: each party sends 12 field elements
per multiplication gate (for large fields).
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Honest Majority MPC

* Orders of magnitudes faster than dishonest majority MPC

t<n/3:
 full security with perfect security and linear complexity can be achieved (HB[08])
e Concrete efficiency: VIFF[08]

ct<n/2:
* Full security results

* Computational Model — linear communication complexity using PKC (HN[06])
* Information-theoretic— best known result: O (nlog(n)) (BFO[12])

* Security with abort
* Linear complexity and information-theoretic— GIP[15] (no concrete cost)

* Concrete efficiency:

* Multi-party: we improve upon the previous best known result (LN[17]) by approximately twice
for a small number of parties and by up to 10 times for a large number of parties.
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Some Notation

* [x] —a sharing of x.

* We assume linearity of the secret sharing scheme.

* Fue - @ multiplication protocol secure up to additive attack.

* Fqna - @ sub-protocol to generate random sharings.
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Achieving Malicious Security




Cheating Detection - The Main Idea

* Generate a random sharing [r].

 For each wire of the circuit, hold the pair ([x], [r - x]):
* Use F,,,,,;+ to randomize the input wires of the circuit
* For each multiplication gate:

(Ix], [r - x]) (vl [r-yD

N

F mult




Cheating Detection - The Main Idea

Verification step

([x], [r - x]) (vl Ir - yD [7]

Verification
gate

Real circuit
gate

Since 7 is unknown, then if cheating took place, then the probability that
the equality holds is negligible



Cheating Detection - Optimized
Verification step

(ly; 1 [r - y: D) Ya;[z;] ]

One
Verification verification

gate for the
entire circuit!

3

If z=x-y + d ford # 0, then the honest parties abort w.p. 1 — 7l



A security problem!

Verification step

([xi]: [ - xi]) (il Ir - v:D Ya;lz;] 7]

Randomized
,’ Gate

Y
[T'Zi]l

= This is done after
Verification thaardo

Real circuit
gate

gate " coefficients have
been chosen!!
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Cheating Detection - Optimized and Secure

([x; ], [r - x; D) (vl [r - yil) Verification step
Local
operation
1. Open |r] /
Real circuit 2. Computer - Ya;[z]

gate
3. Check that:

Ya;lr - z;] = r - Yoz




What about Small fields?

(Ix; ], Iy - x: on) [1s - x:]) (lyil, Iy - yils oo [rs - vi])

Real circuit Randomized A Randomized
gate Gate ~ Gate .
71 ’Zi]l [7s - Zi]l
Verification step ° o Verification step
3 3 [3\ .
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Small Fields — Verification

Verification step * All a;s and r are publicly known!!

* The values on the wires are
known to the distinguisher but

2. Compute r- Ya;[z] not to the simulator!

* The distinguisher knows whether
the equality (*) holds, but the

*) Ya;[r -zl =7 Ya;[z] simulator does not!

Not
Pr[(*)holds when the adversary cheats] negligible!

1. Open |r]

3. Check that:




Small Fields — New Verification

Verification step

1. Call F, 4,4 to receive {[;]}

2. Open [r] Need to call F,,,,,;; for each

3. Computer - ¥[a;] - [z] gate two more times!!
4. Check that: | |
Ylai] - lr -zl =7 Yla;] - [z]

'/~
L




Example:

Computing Sum of Products Efficiently * Shamir's secret

i=1

[a1]t' [Zl]t [az]t' [Zz]t
1. The parties locally 1. The parties locally
multiply their shares multiply their shares
laq - z4],, [y - 2, ] 5t
2. Interactive protocol 2. Interactive protocol
for degree reduction for degree reduction
laq - z4], lay - 7;] .

sharing

[am]t ' [Zm]t

1. The parties locally
multiply their shares

[am i Zm] >t

2. Interactive protocol
for degree reduction

[am § Zm]t

}




Shamir’s secret

sharing

lai],- [z4], [, ], [22], [am] - [zm],
1. The parties locally 1. The parties locally 1. The parties locally
multiply their shares multiply their shares multiply their shares
| lay - 4] 1t [ - ;] It [ - Zm] 2t |

‘m |

E a; - Zj

-1=1 il
2. Interactive protocol for degree reduction
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Small Fields — New Verification

Verification step

No need to openr!
1. Call F,.4 4 to receive {[a;]}

Compute this step at the

3. Computer- Y[a;] - [z] cost of two multiplications
for the entire circuit!
4. Check that:
"0

Yl lr-z]l =1 -Y[a;] - [z] N




Summary

A protocol for large fields

The amortized cost for
multiplication gate:
2 calls to F,,, 1t

A protocol for small fields

The amortized cost for
multiplication gate:
(1 + 6) calls to F,,y1t +
o calls to F 4
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Experimental Results

* Two instantiations:
* Replicated secret sharing (3 parties)
e Shamir’s secret sharing (n parties)

Replicated 1 0 2

Shamir 6 2 n-1

# of elements sent per party
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Experimental Results

e 1,000,000 multiplication gate circuit with differen
Can compute 1M

* 61-biff o compute 1M gates with 110

* LA gates with 3 S region parties in 8.2s
parties in 319ms

Circuit

Depth | 5 T 0 11 30 50 70

20 319 826 | 844 |11,068) 1,311 [ 1,377 (2,769 | 4,063 | 5,295

100 323 842 | 989 |1,154| 1,410 | 1,477 | 3,760 | 6,062 | 8,106

1.000 424 1,34011,704 (1,851 2,243 | 2,887 (12,144 26,310 | 33,294

10,000 1,631 6,883 (7,424 (8,604 (12,235|16,394|61,856(|132,160|296,047)411,195]|544.525

Execution time in milliseconds
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Experimental Results

* 1,000,000 multiplication gate circuit with different depths

* 61-bit Merse
Can compute 1M Can compute 1M

* WAN con/ L Jion gates with 50
parties in 128s

partiesin 3s
Circuit |
Depth ' - ?
20 20,492 (27, 28.955|24 482(24 729 87,355 (128,366
100 10,712  |45,250(53,872(50,719(55,716|56 482|134,860|197.321

Execution time in milliseconds
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THANK YOU!

https://eprint.iacr.org/2018/570
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