Laconic Zero Knowledge to Public Key Cryptography

Akshay Degwekar (MIT)

Joint work with Itay Berman (MIT), Ron Rothblum (MIT → Technion) and Prashant Nalini Vasudevan (MIT → Berkeley).

Public Key Encryption (PKE)

[Diffie-Hellman76, Rivest-Shamir-Adelman78, Goldwasser-Micali82]

What structure+hardness implies public-key crypto?

Possible answers:

NP-hardness

- K No Crypto Known
- Some impossibility results [Brassard79, Feigenbaum-Fortnow93, Bogdanov-Trevisan03, Goldreich-Goldwasser98, AkaviaGoldreichGoldwasserMoshkovitz06]

One-Way Functions

Some barriers [Impagliazzo-Rudich89, Brakerski-Katz-Segev-Yerukhimovich11, Dachman-Soled16, Garg-Hajiabadi-Mahmoody-Mohammed18]

SZK-hardness (SZK = Statistical Zero Knowledge)

Implies OWFs [Ostrovsky91]

Many problems in SZK imply PKE

Statistical Zero Knowledge (SZK) [Goldwasser-Micali-Rackoff85]

Completeness: $x \in L \implies V$ accepts

Soundness:

 $x \notin L \implies V$ rejects w.h.p

Proof : All powerful P^{*} Argument : Efficient P^{*}

Honest-Verifier Statistical Zero Knowledge:

[Goldwasser-Micali-Rackoff85]

Simulator: Exists S, for $x \in L$ $P \rightleftharpoons V(x) \approx_{S} S(x)$

PKE from SZK-Hardness?

Seems Challenging: Discrete Log, Graph Iso have SZK proofs but no PKE known.

Need more Structure?

Our Results: These Properties are Sufficient!

ZK PROOF SYSTEM

Honest Verifier SZK Argument

- Efficient-Prover

- Laconic $O(\log^{1/3} n)$

Instantiations

Perspective: Relaxing the Assumption

Summary

Techniques

Warmup: 2-Msg, Deterministic Prover*

To Simplify: Constant Soundness error *s* Perfect Completeness, Perfect Zero Knowledge.

 $(a', b') \leftarrow \operatorname{Sim}(x)$

* a.k.a Hash Proof System [Cramer-Shoup02]

Correctness:

Deterministic prover \Rightarrow Every verifier challenge has unique prover response

> Perfect ZK \Rightarrow Sim's output b' is same as Prover's output b

Claim: Weak Security:

 \mathcal{R} cannot predict b' with prob > s

Break average-case hardness

Adv = Cheating Prover

$$x \in L$$
 \longrightarrow $\Pr(D(x) = 1) \ge \Pr(\text{Eve predicts } b') > s$
 $x \notin L$ soundness $\Pr(D(x) = 1) < s$

Contradiction. D breaks average-case hardness.

Amplify from weak PKE to PKE using HolensteinRenner05

We saw: PKE from deterministic, 2-msg SZK Proof System.

Challenges:

Randomized Prover

Multi-round Proof System

Stateful Prover

Lesser Challenges: Relaxing perfect ZK, perfect completeness

Coping with Randomized Provers

Challenges: Many rounds [Ostrovsky 91] Terminate at random round.

Stateful Prover

Laconic. Rejection Sampling

Amplification Theorem

Technically difficult half

Uses connections between Pseudorandomness & Unpredictability

Ingredients from: OWFs => PRG (HILL99, VadhanZheng12)

Conclusion and Open Problems

Big Open Q: Design new PKE schemes

Thank You!

Trapdoor Pseudoentropy Generator

 $pk, sk \leftarrow Gen$ $pm, sm \leftarrow Encode(pk)$ $sm' \leftarrow Decode(sk, pm)$

Public Key Encryption

 $pk, sk \leftarrow Gen$

 $ct, b \leftarrow \mathbf{Encrypt}(pk)$

 $b = \mathbf{Decrypt}(sk, ct)$

pm does not fix sm

Decode samples

Security: Gap between Decode & adversary

Formalized using pseudoentropy [HILL99]

ct fixes bit b

Decrypt outputs *b*

Security: *b* is completely hidden