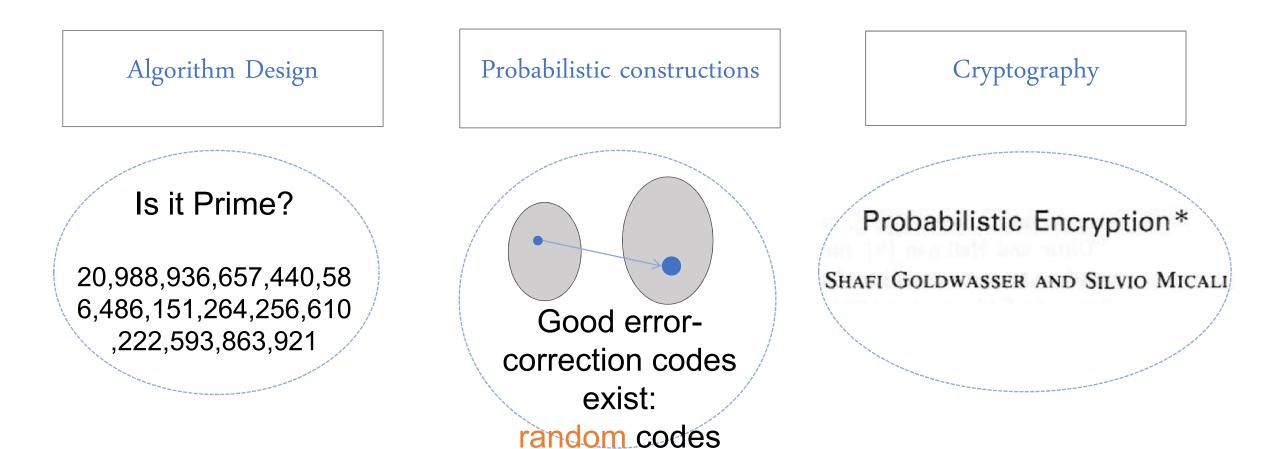


Pseudorandom Quantum States

Fang Song

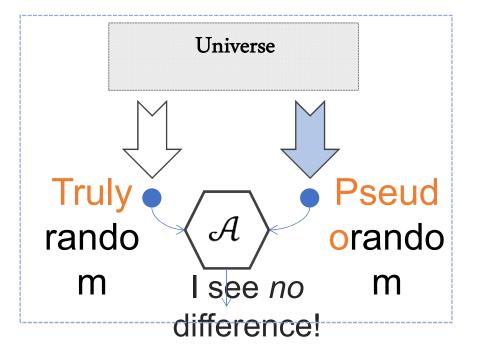
Portland State U \rightarrow Texas A&M U

	Zhengfeng Ji	Yi-Kai Liu
Joint work	U of Technology, Sydney	NIST &
with		U of Maryland



EX. Sampling a random Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ costs 2^n random coins!

Pseudo-randomness is (as or more) useful



Efficient sampling algorithm
Samples "look" random,
... in the eyes of any efficient observer A

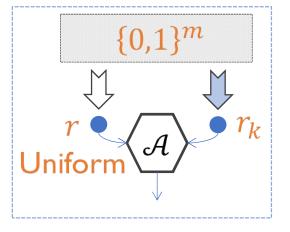
(computationally indistinguishable)

Important pseudorandom objects

Pseudorandom string generator

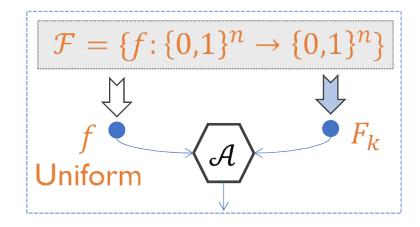
(PRG)

Pseudorandom function family (PRF)



- $\{r_k\} \subseteq \{0,1\}^m$
- $k \leftarrow \{0,1\}^n, m \gg n$: seed
- $\exists G \text{ efficient: } r_k = G(k)$

Applications Stream ciphers, Block ciphers, Message authentication,

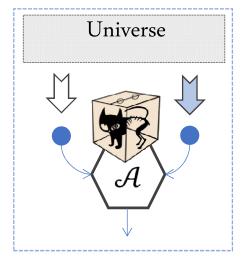


• $\{F_k\} \subseteq \mathcal{F}$

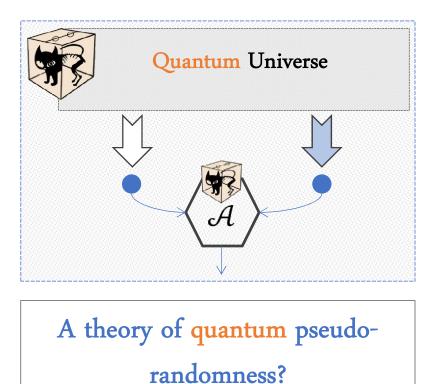
•
$$k \leftarrow \{0,1\}^n$$
: key

• Can compute $F_k(x)$ efficiently

What about a quantum world?



Theorem: quantumsecure PRGs & PRFs exist, under reasonable assumptions.



	Defining Pseudorandom Quantum States (PRS)	 Analogous to pseudorandom string generator
2	Efficient construction of PRS	 Black-box construction from any quantum-secure PRF
3	Properties and applications	 Equivalent formulations Cryptographic no-cloning of PRS Private-key quantum money from any
	Initial exploration of pseudorandor operators	PRS m unitary Analogous to pseudorandom functions

Understanding the quantum objects

Quantum states

• Quantum bit (qubit) $|\psi\rangle$: unit vector in complex plane \mathbb{C}^2 (continuous!)

• *n*-qubits $|\psi\rangle$: unit vector in $(\mathbb{C}^2)^{\otimes n} = \mathbb{C}^{2^n}$

Haar-random states $|\psi\rangle \leftarrow \mu$

- Testing physics theories: thermalization ...
- Needs exp(n) bits to describe & sample (a fine discretization)

Contrast with PRG

- Bit $b \in \{0,1\}$
- *n*-bit string $s \in \{0,1\}^n$
- Uniform distr. on $\{0,1\}^m$

Defining pseudorandom quantum states

• Consider a family of *n*-qubit states $\{|\psi_k\rangle\}, k \in \mathcal{K} \subseteq \{0,1\}^n$

Def. 0. $\{|\psi_k\rangle\}$ is pseudorandom, if

- 1. Efficient generation of $|\psi_k\rangle$
- 2. Indistinguishable from Haar-random: \forall poly-time \mathcal{A} ,

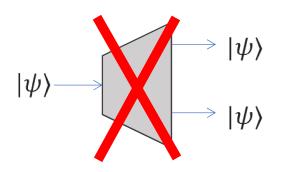
 $\Pr_{k \leftarrow \mathcal{K}} [\mathcal{A}(|\psi_k\rangle) = 1] - \Pr_{\psi \leftarrow \mu} [\mathcal{A}(|\psi\rangle) = 1] \le negl(n)$

An issue with quantum no-cloning

- Classically: one-copy = multi-copy
- Quantum: # of copy matters a lot!

EX. Random basis states $\{|k\rangle\}$ 1 copy: indistinguishable from Haar-random

 \geq 2 copies: trivially distinguishable



Quantum states

 $|\psi_k\rangle$

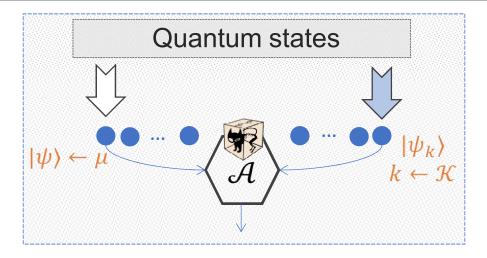
 $x \leftarrow \mathcal{K}$

A right def. of pseudorandom quantum states

Def. 1. { $|\psi_k\rangle$ } is pseudorandom, if

- 1. Efficient generation of $|\psi_k\rangle$
- 2. Indist. from Haar-random with multi-copy:

$$\begin{array}{l} \forall \mathsf{poly-time} \ \mathcal{A}, \forall \mathsf{poly} \ q(\cdot) \\ \Pr_{\boldsymbol{k} \leftarrow \mathcal{K}} \left[\mathcal{A}(|\psi_k\rangle^{\otimes q(n)}) = 1 \right] \ - \Pr_{\boldsymbol{\psi} \leftarrow \boldsymbol{\mu}} \left[\mathcal{A}(|\psi\rangle^{\otimes q(n)}) = 1 \right] \leq negl(n) \end{array}$$

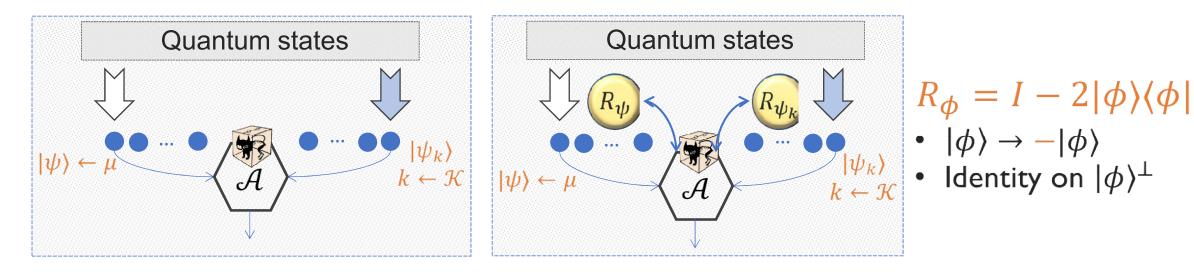


1	Defining Pseudorandom Quantum States (PRS)	
2	Efficient construction of PRS	
3	Properties and applications	 Equivalent formulations Cryptographic no-cloning of PRS → Private-key quantum money from any
	Initial exploration of pseudorandor operators	PRS m unitary

An equivalent definition

Def. 1. (Multi-copy) PRS

Def. 1'. PRS w. reflection oracle



Theorem A. Def. 1. \equiv Def. 1'.

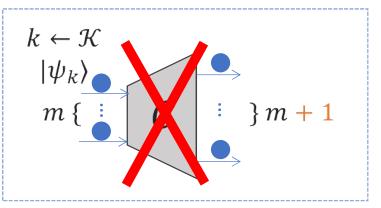
Proof Idea. Use multiple copies of $|\phi\rangle$ to simulate R_{ϕ} .

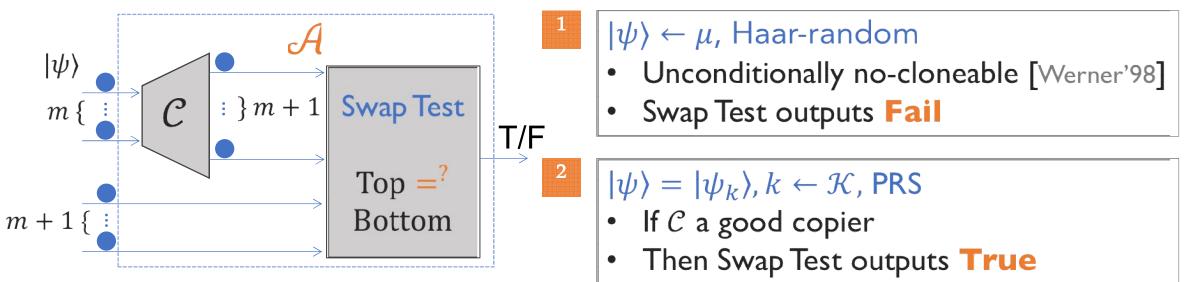
PRS is hard to clone, efficiently

Theorem B. For any efficient C,

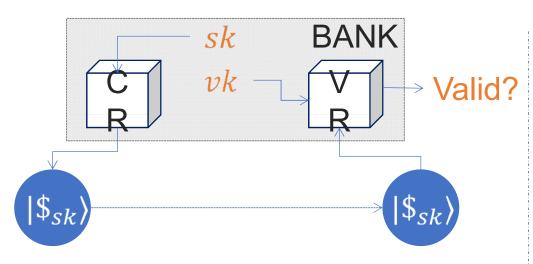
$$\mathbb{E}_k \langle (|\psi_k\rangle)^{\otimes m}, \mathcal{C}(|\psi_k\rangle^{\otimes m}) \rangle \leq negl(n)$$

Proof Idea. A good copier gives a good distinguisher





Quantum money from any PRS



Private-key vs. Public-key

sk = vk, only $sk \neq vk$, anyone bank can verify w. vk can verify

- Security: no-counterfeiter (VR) available for free)
 - Classically impossible

Theorem: any PRS yields a private-key money scheme

Proof. Given PRS
$$\{|\psi_k\rangle\}$$
, let $|\$_{sk}\rangle \coloneqq |\psi_k\rangle$
Theorem A
 $\downarrow \psi_k\rangle$ hard to clone
 $\psi_k\rangle$ hard to clone
given VR oracle

• Wisner'69 – present

Theorem B

- 1st provable-secure scheme: AC'STOC12 (from a specific algebraic assumption)
- Our scheme: generic, based on PRF (better confidence & efficiency)

Defining Pseudorandom Quantum States (PRS)	
Efficient construction of PRS	 Black-box construction from any quantum-secure PRF
Properties and applications	

Random phase states are pseudorandom

• $N = 2^n, \omega_N = e^{2\pi i/N}$

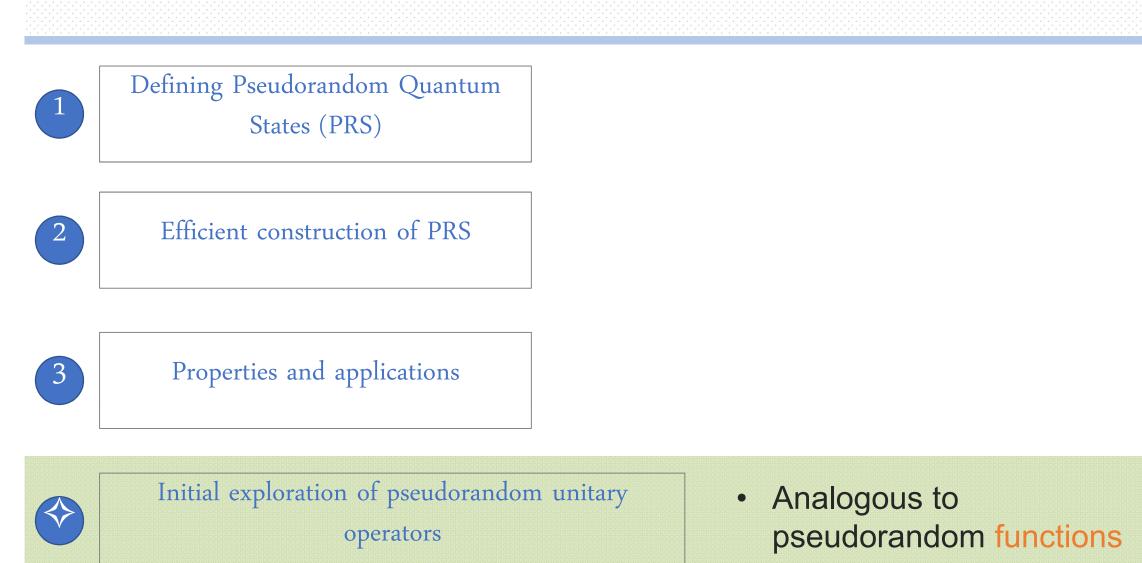
$$|\psi_k\rangle \coloneqq \sum_{x \in [N]} \omega_N^{F_k(x)} |x\rangle$$

 $F_k: \{0,1\}^n \to \{0,1\}^n$
quantum-secure PRF

Theorem. $\{|\psi_k\rangle\}$ is a PRS.

Pseudorandom

- 1. Switch F_k to truly random $f: |\tilde{\psi}_k\rangle \coloneqq \sum_{x \in [N]} \omega_N^{f(x)} |x\rangle$
- 2. Small expected distance between $|\tilde{\psi}_k\rangle$ and $|\psi\rangle \leftarrow \mu$
- Efficient generation: Quantum Fourier Transform



Pseudorandom Unitary Operators

Unitary operator U

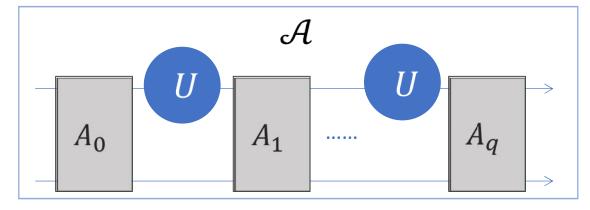
- $UU^* = I$: reversible, length-preserving
- Ex. rotation, phase change, ...

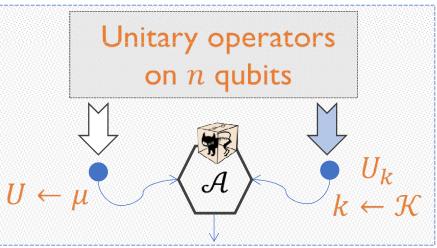
Haar-random unitary $U \leftarrow \mu$

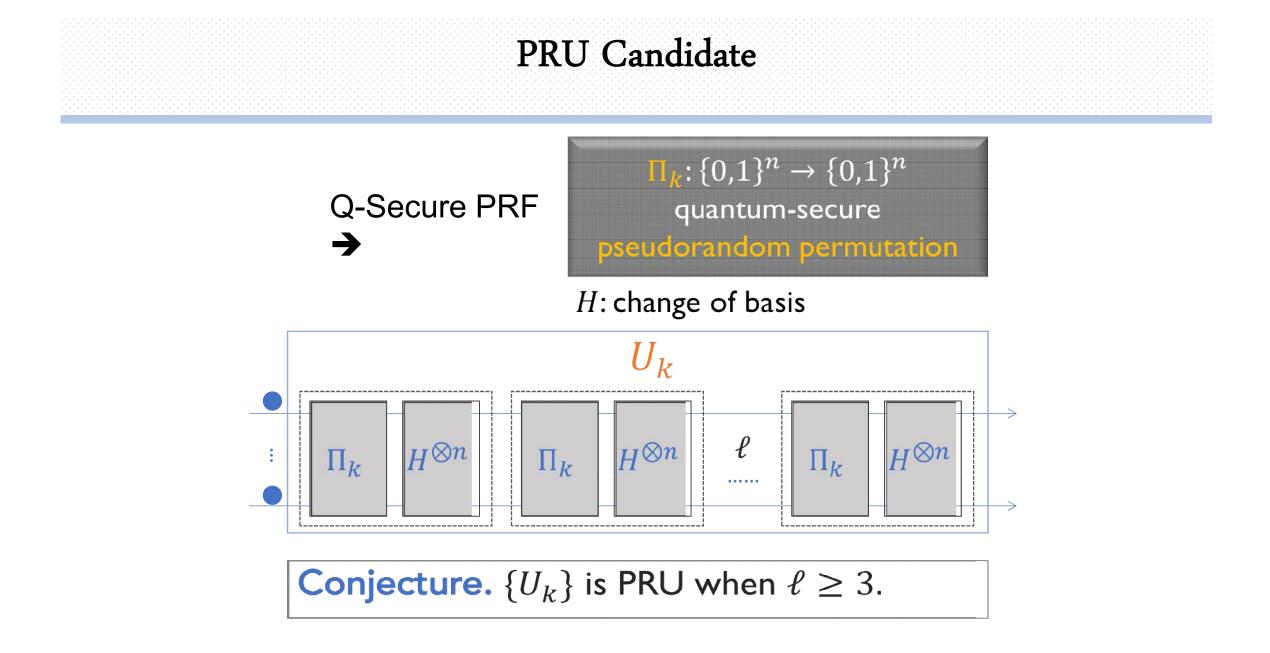
- Apps in algorithms, crypto ...
- Needs exp(n) bits to describe & sample (a fine discretization)

Def. $\{U_k\}$ is pseudorandom, if

1. Efficient circuit computing U_k

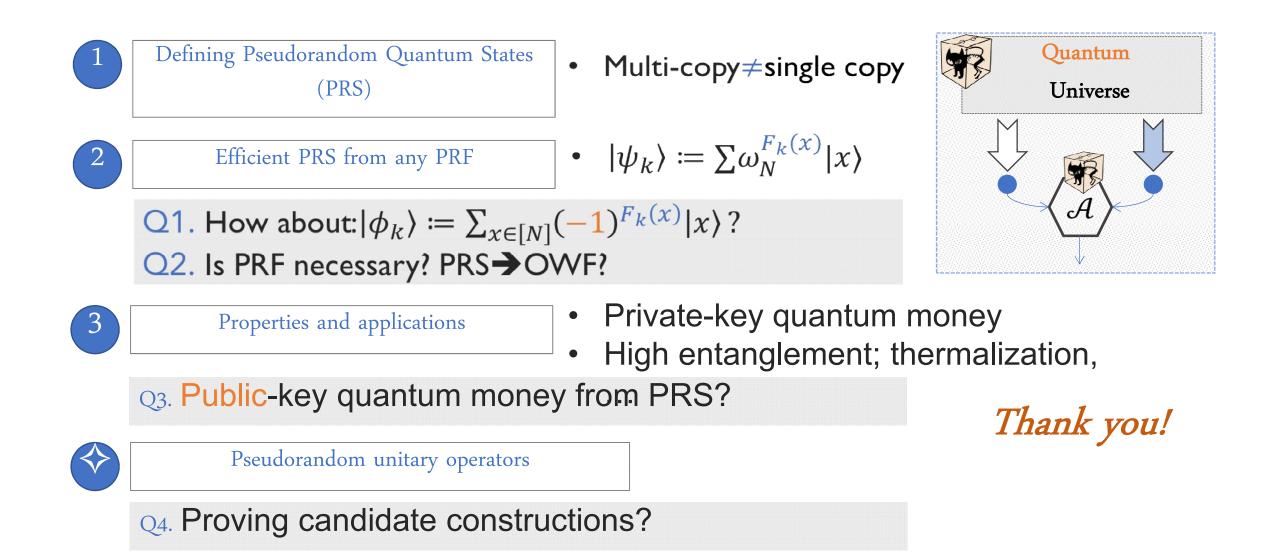






Related work: statistical pseudorandom

Truly random \mathcal{A}	Pseudo random	True Randomness	Statistical Pseudorandomness (<i>t</i> -wise independence)	Computational Pseudorandomness
		Unbounded \mathcal{A}	Unbounded $\mathcal{A} \leq t$ obs	Poly-time $\mathcal{A} \leq poly$ observations
x_i	$f(x_i)$	Uniform Random	<i>t</i> -wise indep. Hash (<i>t</i> pre-determined)	PRF (∀poly-many queries)
• …		Func. Haar-R State	State <i>t</i> -design	PRS
		Haar-R Unitary	Unitary <i>t</i> -design	PRU
		Ormary	A lot work & apps (quantum auth./enc.)	Plug-n-play?



A unified theory of quantum pseudo-randomness?