ON DISTRIBUTIONAL COLLISION RESISTANT HASHING

Eylon Yogev

Technion

Joint Work with Ilan Komargodski (Cornell Tech)

ASK LESS OF A HASH FUNCTION AND IT IS LESS LIKELY TO DISAPPOINT!

Bellare-Rogaway '97

What is the "right" notion of hardness of finding collisions in a cryptographic hash function?

Depends on the application!

- Universal One-Way Hash Functions (UOWHF)
- Multiple Collision Resistant Hashing (MCRH)
- Collision Resistant Hashing (CRH)

Storing passwords

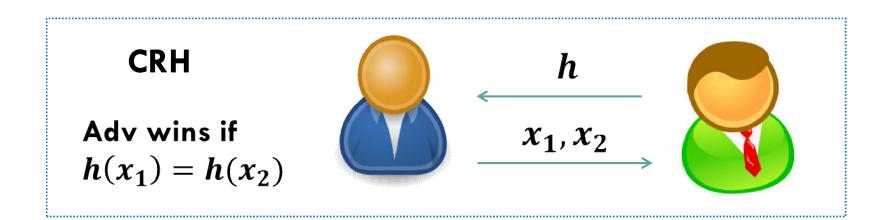
Delegation of computation

Signatures

POW/ Blockchains

COLLISION RESISTANT HASHING (CRH)

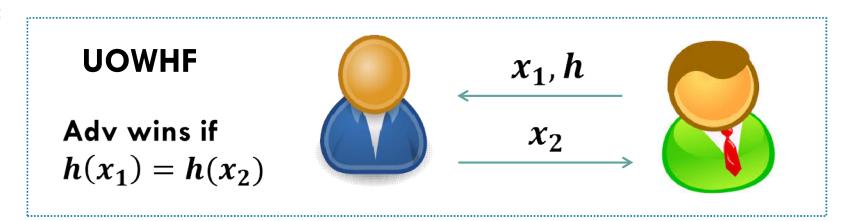
- 1. Efficient: easy to sample $h \in H$ and compute h(x)
- 2. Compressing: $h: \{0,1\}^{2n} \to \{0,1\}^n$
- 3. Security:



UNIVERSAL ONE-WAY HASH FUNCTION (UOWHF)

[Naor-Yung89]

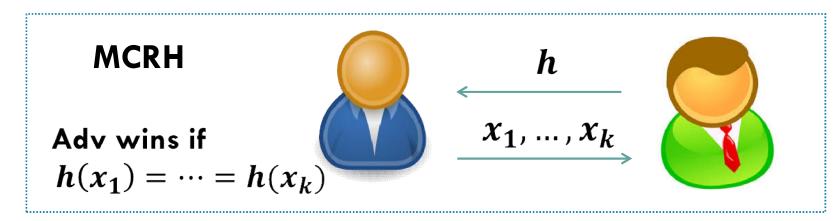
- 1. Efficient: easy to sample $h \in H$ and compute h(x)
- 2. Compressing: $h: \{0,1\}^{2n} \to \{0,1\}^n$
- 3. Security:



MULTI COLLISION RESISTANT HASH (MCRH)

[Komargodski-Naor-Y17]

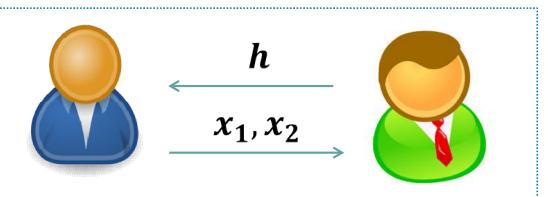
- 1. Efficient: easy to sample $h \in H$ and compute h(x)
- 2. Compressing: $h: \{0,1\}^{2n} \to \{0,1\}^n$
- 3. Security:



LWE, DL, Factoring...

CRH

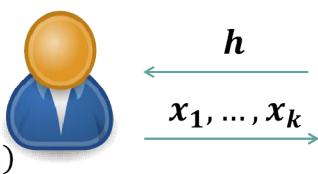
Adv wins if $h(x_1) = h(x_2)$



EA*,Ramsey

[KNY17], [BDRV18], [BKP18], [KNY18] **MCRH**

Adv wins if $h(x_1) = \cdots = h(x_k)$



Any One-way function [Naor-Yung89],

[Rompel90], [Katz-Koo05]

UOWHF

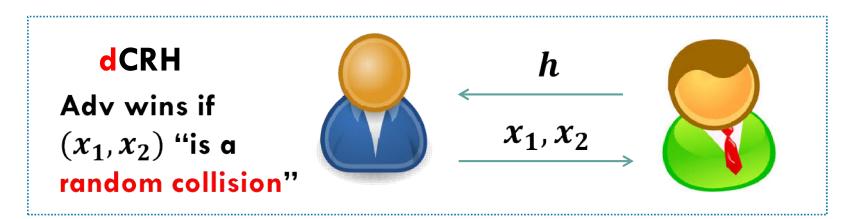
Adv wins if $h(x_1) = h(x_2)$

$$x_1, h$$
 x_2

DISTRIBUTIONAL CRH

[Dubrov-Ishai06]

- 1. Efficient: easy to sample $h \in H$ and compute h(x)
- 2. Compressing: $h: \{0,1\}^{2n} \to \{0,1\}^n$
- 3. Security:



DISTRIBUTIONAL CRH

[Dubrov-Ishai06]

COL_h :

- 1. Sample a random $x_1 \in \{0,1\}^{2n}$
- 2. Sample a random pre-image $x_2 \in h^{-1}(x_1)$
- 3. Output (x_1, x_2)

Negligible function

$$\Pr_{h}[\Delta(A(h), COL_{h}) \leq \epsilon] \leq 1 - \epsilon$$

H is a dCRH if:

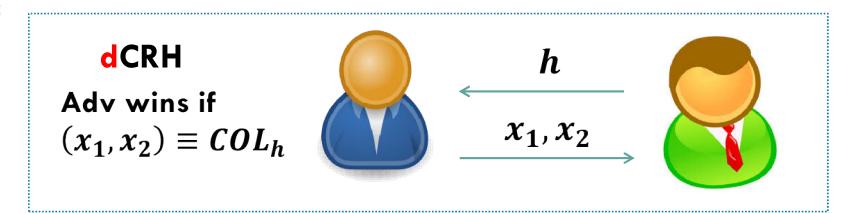
Statistical Distance

$$\Delta(X,Y) = \frac{1}{2} \sum_{x \in \Omega} |\Pr[X = x] - \Pr[Y = x]|$$

DISTRIBUTIONAL CRH

[Dubrov-Ishai06]

- 1. Efficient: easy to sample $h \in H$ and compute h(x)
- 2. Compressing: $h: \{0,1\}^{2n} \to \{0,1\}^n$
- 3. Security:



FUN FACTS ABOUT DCRH

- 1. Introduced by Dubrov-Ishai06 in the context of randomness complexity in efficient sampling (win-win result)
- 2. A weak primitive: An adversary that commits to h(x) might still be able to find all x': h(x') = h(x) only with a skewed distribution!
- Are analogous to distributional one-way functions; the adversary must find a random inverse.
 Impagliazzo-Luby89: distributional OWF ↔ OWF
- Black-box separated from one-way permutations (even with iO)

OUR RESULTS

We give 2 constructions of dCRH from different assumptions

One is black-box - one is not

One is efficient — one is not

One is explicit – one is not

$MCRH \Rightarrow DCRH$

Theorem: A non-black-box construction of a dCRH from any k-MCRH (for any constant k)

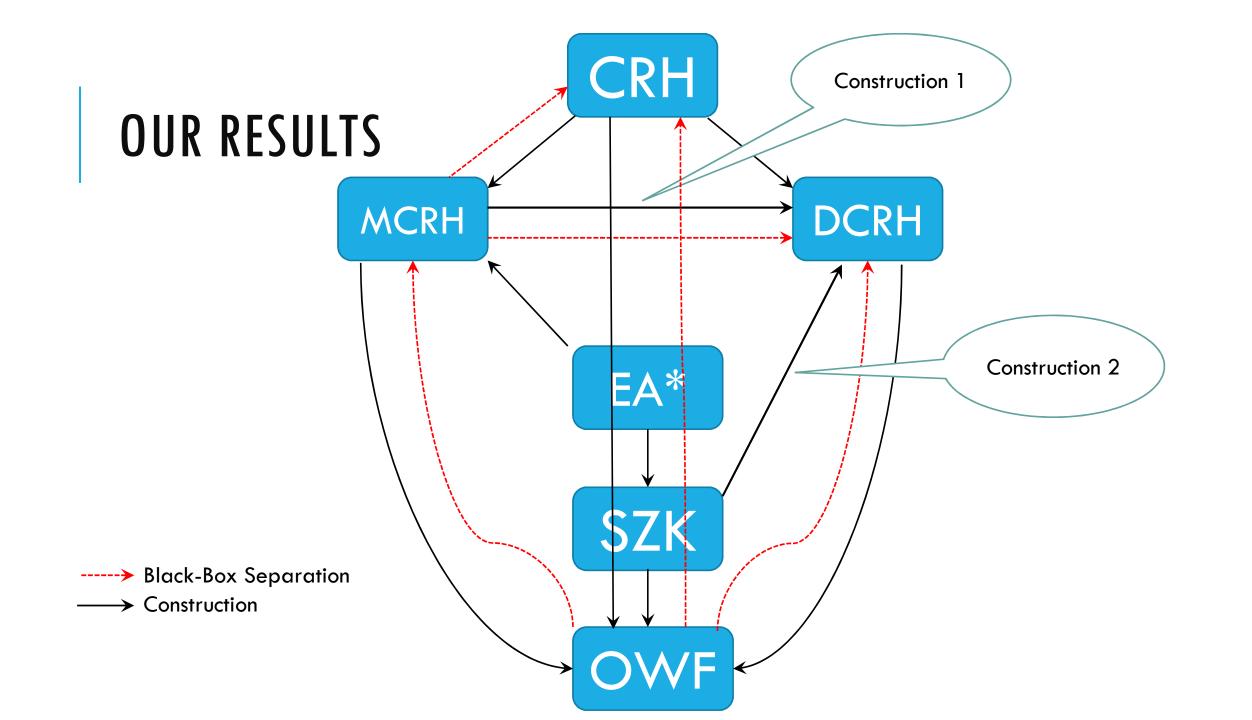
- 1. Proof is non-constructive: uses an adversary in a non-black-box way
- Yields an infinitely-often dCRH (should merely serve as evidence of a construction)
- 3. Partially resolves an open question of [Berman-Degwekar-Rothblum-Vasudevan18]

$SZK \Rightarrow DCRH$

Theorem: A construction of a dCRH from average-case hardness of SZk

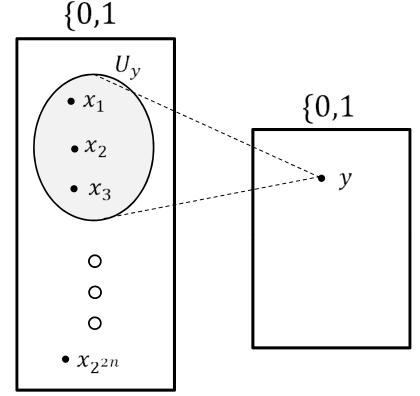
- Previously SZK was not known to imply any form of hashing (except UOWHFs)
- 2. Since we know that:

```
iO + OWP ⇒ CRH [Asharov-Segev16]
we get the corollary: iO + OWP ⇒ SZK
(previously shown by [Bitansky-Degwekar-Vaikuntanathan17])
```



PROOF 3-MCRH \Longrightarrow DCRH

- 1. Let $H = \{h: \{0,1\}^{2n} \to \{0,1\}^n\}$ be an 3-MCRH
- Assume that dCRH do not exist.
- There is an adversary A that can find a random collision in H
- 4. Fact: w.h.p. $h^{-1}(x)$ is exponentially large (over a random x)



- 1. Define H' which depends on H and on the adversary A
- 2. $h' \in H'$ uses the input x as random coins to run A
- 3. Let $A^1(h;r) = x_1$ where $(x_1, x_2) \leftarrow A(h;r)$
- 4. Define:

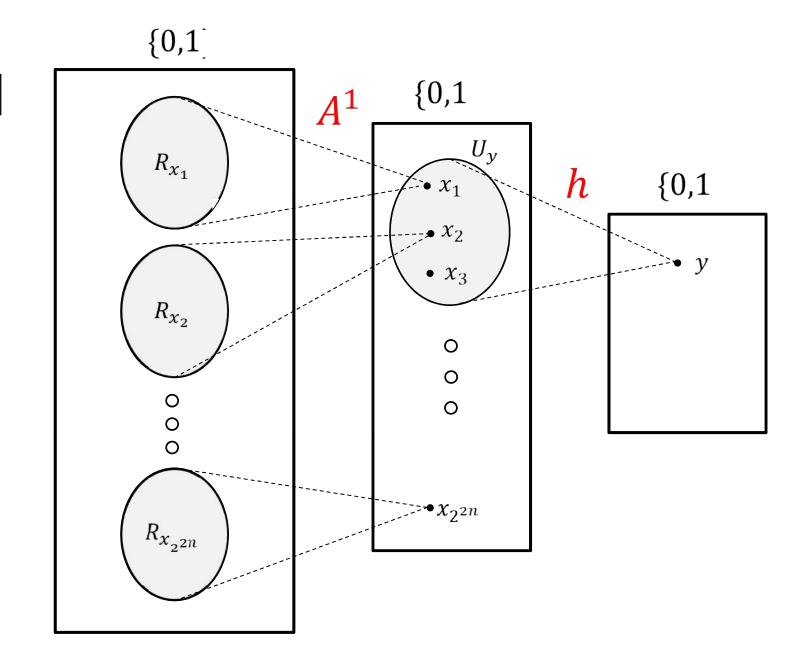
$$h'(r) = h(A^1(h;r))$$

CONSTRUCTION

h'(r):

$$1. (x_1, x_2) \leftarrow A(h; r)$$

- 2. $y \leftarrow h(x_1)$
- 3. Output *y*



- Since H' is not a dCRH $\rightarrow \exists A'$ that breaks H'
- We use A' and A to break H as a 3-MCRH

Break(h):

- 1. Define $h': h'(r) = h(A^1(h;r))$ 2. $(r_1, r_2) \leftarrow A'(h')$
- 3. $(x_1, x_2) \leftarrow A(h; r_1)$ 4. $(x_3, x_4) \leftarrow A(h; r_2)$ 5. Output (x_1, x_2, x_3)

Claim 1:
$$h(x_1) = h(x_2) = h(x_3)$$

Proof: r_1 is uniform \rightarrow

 $A(h; r_1)$ succeeds w.h.p.

 (r_1, r_2) are a collision \rightarrow $h(A^1(h; r_1)) = h(A^1(h; r_2)) \rightarrow$ $h(x_1) = h(x_3)$

Break(h):

- 1. Define $h': h'(r) = h(A^1(h; r))$
- 2. $(r_1, r_2) \leftarrow A'(h')$
- 3. $(x_1, x_2) \leftarrow A(h; r_1)$
- 4. $(x_3, x_4) \leftarrow A(h; r_2)$
- 5. Output (x_1, x_2, x_3)

Claim 2: x_1, x_2, x_3 are distinct

Proof: r_1 is uniform \rightarrow

$$x_2 \in_R h^{-1}(x_1) \to$$

w.h.p. $x_2 \neq x_1$

Why would x_3 be distinct?

Break(h):

- 1. Define $h': h'(r) = h(A^{1}(h; r))$ 2. $(r_{1}, r_{2}) \leftarrow A'(h')$ 3. $(x_{1}, x_{2}) \leftarrow A(h; r_{1})$ 4. $(x_{3}, x_{4}) \leftarrow A(h; r_{2})$ 5. Output (x_{1}, x_{2}, x_{3})

Why would x_3 be distinct?

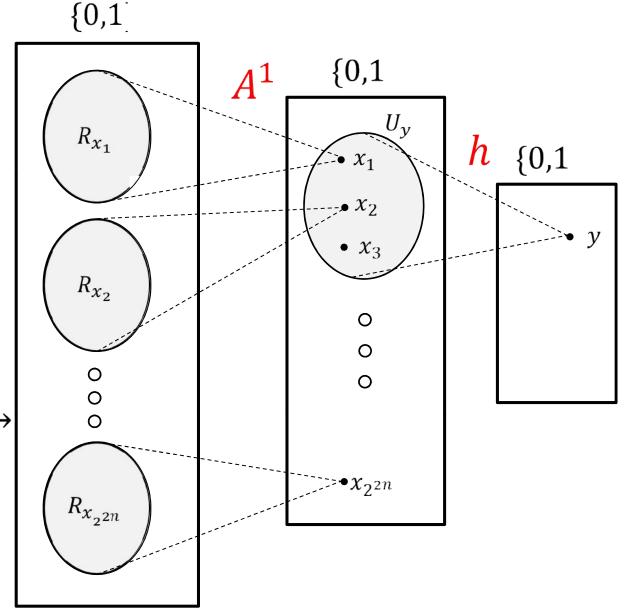
$$\Pr[x_3 = x_1] = \Pr[r_2 \in R_{x_1}].$$

Since A is an dCRH adversary \rightarrow

$$\left|R_{x_1}\right| \approx \left|R_{x_2}\right|.$$

 r_2 is random s.t. $h'(r_1) = h'(r_2) \rightarrow$

$$\Pr[r_2 \in R_{x_1}] \approx \Pr[r_2 \in R_{x_i}]$$



GOING BEYOND 3-MCRH

Can we hope to find more than a 3-way collision?

Recall that it might hold that $h(x_4) \neq h(x_3)$.

A finds a random collision $\rightarrow \operatorname{Break}(h)$ finds a 3-way collision

GOING BEYOND 3-MCRH

Can we hope to find more than a 3-way collision?

Recall that it might hold that $h(x_4) \neq h(x_3)$.

A finds a random collision \rightarrow Break(h) finds a random 3-collision

GOING BEYOND 3-MCRH

Can we hope to find more than a 3-way collision?

Recall that it might hold that $h(x_4) \neq h(x_3)$.

A finds a random collision \rightarrow Break(h) finds a random 3-collision

Break(h) finds a random 3-collision \rightarrow Break'(h) finds a random 4-collision

Break(h) finds a random k-collision \rightarrow Break'(h) finds a random (k+1)-collision

Works for any constant k.

