On the Exact Round Complexity of Secure Three-Party Computation

Arpita Patra, **Divya Ravi** Indian Institute of Science

CRYPTO 2018

Our Objective

What is the *exact round complexity* of *3-party* protocols with *honest majority* under the following security notions?

- Guaranteed output delivery (god)
- **G** Fairness (fn)
- Security with unanimous abort (ua)
- □ Security with selective abort (sa)

Goal: Complete the picture for

- point-to-point channels
- above + broadcast

Lower bounds extend for generic honest majority

MPC

Setup:

- n parties P_1, \dots, P_n ; t are corrupted by a centralized adv
- P_i has **private** input x_i
- A common n-input function $f(x_1, x_2, ..., x_n)$

Goals:

- Correctness: Compute f(x₁,x₂,..x_n)
- Privacy: Nothing more than function output should be revealed

MPC: protocol that emulates TTP

Security Notions: Degree of Robustness

- Guaranteed output delivery (god) - Strongest

Adversary cannot prevent honest parties from getting output

- Fairness (fn)

If adversary gets output, all get the output

- Security with unanimous abort (ua)

Either all or none of the honest parties get output (may be unfair)

- Security with selective abort (sa) - weakest

Adversary selectively deprives some honest parties of the output

3PC with One Corruption: Why?

- Popular setting for MPC in practice: First Large-Scale Deployment of Danish Sugar Beet Auction, ShareMind, Secure ML
- **Strong security goals:** god and fairness only achievable in honest majority setting [Cleve86]
- Leveraging one corruption to circumvent lower bounds:
 - + 2-round 4PC of [IKKP15] circumvents the lower-bound 3 rounds for fair MPC with t > 1 [GIKR02]!
 + VSS with one corruption is possible in one round!
- Weak assumptions: possible from OWF/P shunning PK primitives such as OT altogether
- Lightweight constructions and better round guarantee:
 - + No cut-and-choose + 2 vs 4 in plain model with point-to-point channels

[Cleve86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract). In ACM STOC, 1986. [IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure computation with minimal interaction, revisited. CRYPTO, 2015.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty computation. In CRYPTO, 2002.

The Exact Round Complexity of 3PC

- Broadcast

+ Broadcast

		Lower	Upper	I	Lower	Upper	
selective abort (sa)	2	[HLP11]	[IKKP15]	2	[HLP11]	[IKKP15]	
unanimous abort (ua)	3	Our Work	Our Work	2	[HLP11]	Our Work	
fairness (fn)	3	• Our Work	I Our Work […]	·····3·····	Our Work"	Our Work	
Guaranteed (god)	Impossible	[CHOR16]		3	Our Work	Our Work	
 L1: 3 rounds are necessary for ua in [- broadcast] Implies optimality of 3PC with sa in terms of security U1: 3 rounds are sufficient for fn in [- broadcast] 				 L2: 3-rounds are necessary for fn in [+ broadc Broadcast does not improve round complexity Complements a result that fairness requires 3 rounds for t>1 and any n; 			
ower bounds can be extended for any n, t with 3t > n > 2t				U2 : 2-rounds are sufficient for ua in [+ broadca - Broadcast improves round complexity			
pper bounds rely on (injective) OWF (garbled circuits)						:	alta fa basa

U3: 3-rounds are sufficient for **god** in [+ broadcast]

Lower Bounds (3 rounds necessary for ua [-broadcast] and for fn [+broadcast])

Upper Bounds: Overview and Challenges

3–round Fair protocol [-Broadcast]

- No broadcast : Conflict and confusion
- Novel mechanism : Reward honesty with **certificate** (Dual purpose)

1) used to unlock output 2) acts as proof

New primitive : Authenticated conditional disclosure of secret (Authenticated- CDS) •

via privacy-free garbled circuits

2–round unanimous abort [+Broadcast]

R2 private communication: Soft spot

R1 private (detect early and report in R2)

Two-part release mechanism for encoded **inputs** of the parties R2 broadcast (publicly detectable)

Common

inso

3–round Guaranteed Output Delivery [+Broadcast]

Strong identifiability : either get output / identify corrupt by second round

Upper Bounds : Common Challenge

- Input Consistency
 - Intra-input consistency (Variant of "proof-of-cheating")
 - Inter-input consistency (new trick with no additional overhead)

Thank You