
Yes, There is an Oblivious RAM
Lower Bound!

Kasper Green Larsen

Jesper Buus Nielsen

Oblivious RAM

• Introduced by Goldreich and Ostrovsky in
1996

• “Encrypts” the memory access pattern of a
random-access algorithm

Oblivious RAM, Model (1/2)

• Server
– A large, passive store of data, a random-access memory

• Client
– Runs a program which simulates a large memory (an array with

random access)
– Has a small persistent memory
– Outsources the rest of the data to the server

• Eavesdropper
– Sees access pattern to the server
– Does not see the actual data

• Security
– For any two sequences of access to the array of the same

length, the access pattern seen by Eavesdropper are
indistinguishable

Oblivious RAM, Model (2/2)

Bandwidth Overhead

• ORAMs have several obvious application: SGX,
MPC, Cloud… In all of them the bandwidth
overhead is important

• If after N accesses the ORAM makes M probes,
then
 Overhead = M w / N r

Upper Bounds

• Goldreich, Ostrovsky, 1996: poly(log(N))

• A lot of research on more efficient ORAMs

• PathORAM, 2013
 [Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13]

– Bandwidth overhead = log(N)
• When w = log(N) and r = w2

• PanORAMa, 2018
 [Patel, Persiano, Raykova, Yeo, FOCS’18]

– Bandwidth overhead = log(N) log(log(N))

Lower Bounds: log(N)

• Goldreich, Ostrovsky, 1996: log(N)

• Model for lower bound:
– Only balls-in-bins algorithms

• The algorithm cannot look at the data being stored

• Cannot use for instance error-correcting codes

– Adversary has unbounded computing time
• Cannot use computational cryptography

– Holds even for off-line ORAMs
• The ORAM is given the entire sequence of array

accesses ahead of simulation time

30 years break: log(N)

• Goldreich, Ostrovsky, 1996: log(N)

• Model for lower bound:
– Only balls-in-bins algorithms

• The algorithm cannot look at the data being stored

• Cannot use for instance error-correcting codes

– Adversary has unbounded computing time
• Cannot use computational cryptography

– Holds even for off-line ORAMs
• The ORAM is given the entire sequence of array

accesses ahead of simulation time

2016: log(N)???

• Goldreich, Ostrovsky, 1996: log(N)

• Model for lower bound:
– Only balls-in-bins algorithms

• The algorithm cannot look at the data being stored

• Cannot use for instance error-correcting codes

– Adversary has unbounded computing time
• Cannot use computational cryptography

– Holds even for off-line ORAMs
• The ORAM is given the entire sequence of array

accesses ahead of simulation time

Today:

Yes, There is an Oblivious RAM Lower Bound!

• Our model:

– The ORAM algorithm can be arbitrary

• Balls-in-bins algorithms

– The adversary must be efficient

• Adversary has unbounded computing time

– Holds only for on-line ORAMs

• The ORAM is given the array accesses to process one at
a time

• Anyway what is needed in all applications

Oblivious RAM, Model

A
rr

ay

M
e

m
o

ry

Client memory

Proof

• Simple case:

– No client memory

– Perfect correctness

– Perfect obliviousness

– r = w

w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8)

How many times must the read-
sequence probe a cell which

was last time probed during the
write-sequence?

8

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0)

How many times must the read-
sequence probe a cell which

was last time probed during the
write-sequence?

?

Oblivious RAM, Model (2/2)

A
rr

ay

M
e

m
o

ry

8?

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0)

How many times must the read-
sequence probe a cell which

was last time probed during the
write-sequence?

8

w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8)

How many times must the first
read-sequence probe a cell
which was last time probed

during the first write-sequence?

How many times must the
second read-sequence probe a
cell which was last time probed

during the second write-
sequence?

4 4

4 4

The probes counted in
different circles are distinct!

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0)

8

w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8)

How many times must the first
read-sequence probe a cell
which was last time probed

during the first write-sequence?

2 2 2 2

8

4 4

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) R(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0)

2 2 2 2

1 1 1 1 1 1 1 1

Theorem

• Easy case:
– No client memory

– Perfect correctness

– Perfect obliviousness

– r = w

• Theorem
– Any ORAM simulating N accesses makes on at

least on average M = (N/2) log(N) probes

– Overhead = log(N)

Theorem

• Easy case:
– No client memory

– Perfect correctness

– Perfect obliviousness

– r = w

• Theorem
– Any ORAM simulating N accesses makes at least

on average M = (N/2) log(N) (r/w) probes

– Overhead = M w / N r = log(N)

Theorem

• Harder case:

– Client memory: m words

– Perfect correctness

– Perfect obliviousness

8-2

4-2 4-2

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) R(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0)

2-2 2-2 2-2 2-2

1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2

Prune
log(m)+1

layers

Each weight at least
half of before:
N/4 per row

Total weight:
(N/4) (log(N) – log(m) -1)

Client memory: m = 2

Theorem

• Harder case:

– Client memory: m words

– Perfect correctness

– Perfect obliviousness

• Theorem

– Any ORAM simulating N accesses makes on
average (N/4) (log(N) – log(m) – 1) probes

– Overhead = log(N/m)

Theorem

• Even harder case:

– Client memory: m words

– Correctness: c > 0 on each read

• Word size w = log(N)

– Obliviousness: o > 0

w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8)

How many times must the read-
sequence probe a cell which

was last time probed during the
write-sequence?

c N

Obliviousness + Markov

A
rr

ay

M
e

m
o

ry

c N?

Client memory

Theorem

• Even harder case:

– Client memory: m words

– Correctness: c > 0 on each read

• Word size w = log(N)

– Obliviousness: o > 0

• Theorem

– Any ORAM simulating N accesses has overhead at
least log(N/m).

Future Work (1/2)

• There are other cell-probe lower-bound
techniques out there

• There are more oblivious data structures out
there

• Go prove some lower bounds

Future Work (2/2)

• PathORAM, 2013
 [Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13]

– Bandwidth overhead = log(N)
• When w = log(N) and r = w2

– Bandwidth overhead = log2(N)
• When w = r = log(N)

• PanORAMa, 2018
 [Patel, Persiano, Raykova, Yeo, FOCS’18]

– Bandwidth overhead = log(N) log(log(N))

• Today:
– Overhead must be at least log(N)

• Close that gap!

Conclusion

Yes, There is an Oblivious RAM Lower Bound!

