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Oblivious RAM 

• Introduced by Goldreich and Ostrovsky in 
1996 

• “Encrypts” the memory access pattern of a 
random-access algorithm 

 



Oblivious RAM, Model (1/2) 

• Server  
– A large, passive store of data, a random-access memory 

• Client  
– Runs a program which simulates a large memory (an array with 

random access)  
– Has a small persistent memory  
– Outsources the rest of the data to the server 

• Eavesdropper  
– Sees access pattern to the server 
– Does not see the actual data 

• Security 
– For any two sequences of access to the array of the same 

length, the access pattern seen by Eavesdropper are 
indistinguishable  



Oblivious RAM, Model (2/2) 



Bandwidth Overhead 

• ORAMs have several obvious application: SGX, 
MPC, Cloud… In all of them the bandwidth 
overhead is important 

• If after N accesses the ORAM makes M probes, 
then 
   Overhead = M w / N r 



Upper Bounds 

• Goldreich, Ostrovsky, 1996: poly(log(N)) 

• A lot of research on more efficient ORAMs   

• PathORAM, 2013 
 [Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13] 

– Bandwidth overhead = log(N) 
• When w = log(N) and r = w2 

• PanORAMa, 2018  
 [Patel, Persiano, Raykova, Yeo, FOCS’18] 

– Bandwidth overhead = log(N) log(log(N)) 
 



Lower Bounds: log(N) 

• Goldreich, Ostrovsky, 1996: log(N) 

• Model for lower bound: 
– Only balls-in-bins algorithms 

• The algorithm cannot look at the data being stored 

• Cannot use for instance error-correcting codes 

– Adversary has unbounded computing time 
• Cannot use computational cryptography 

– Holds even for off-line ORAMs 
• The ORAM is given the entire sequence of array 

accesses ahead of simulation time 



30 years break: log(N) 

• Goldreich, Ostrovsky, 1996: log(N) 

• Model for lower bound: 
– Only balls-in-bins algorithms 

• The algorithm cannot look at the data being stored 

• Cannot use for instance error-correcting codes 

– Adversary has unbounded computing time 
• Cannot use computational cryptography 

– Holds even for off-line ORAMs 
• The ORAM is given the entire sequence of array 

accesses ahead of simulation time 



2016: log(N)??? 

• Goldreich, Ostrovsky, 1996: log(N) 

• Model for lower bound: 
– Only balls-in-bins algorithms 

• The algorithm cannot look at the data being stored 

• Cannot use for instance error-correcting codes 

– Adversary has unbounded computing time 
• Cannot use computational cryptography 

– Holds even for off-line ORAMs 
• The ORAM is given the entire sequence of array 

accesses ahead of simulation time 



Today: 

Yes, There is an Oblivious RAM Lower Bound! 

• Our model: 

– The ORAM algorithm can be arbitrary 

• Balls-in-bins algorithms 

– The adversary must be efficient 

• Adversary has unbounded computing time 

– Holds only for on-line ORAMs 

• The ORAM is given the array accesses to process one at 
a time 

• Anyway what is needed in all applications 



Oblivious RAM, Model 
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Proof 

• Simple case:  

– No client memory 

– Perfect correctness 

– Perfect obliviousness 

– r = w 



w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8) 

How many times must the read-
sequence probe a cell which 

was last time probed during the 
write-sequence? 

8 



w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 

How many times must the read-
sequence probe a cell which 

was last time probed during the 
write-sequence? 

? 



Oblivious RAM, Model (2/2) 
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w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 

How many times must the read-
sequence probe a cell which 

was last time probed during the 
write-sequence? 

8 



w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8) 

How many times must the first 
read-sequence probe a cell 
which was last time probed 

during the first write-sequence? 

How many times must the 
second read-sequence probe a 
cell which was last time probed 

during the second write-
sequence? 

4 4 



4 4 

The probes counted in 
different circles are distinct!  

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 

8 



w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8) 

How many times must the first 
read-sequence probe a cell 
which was last time probed 

during the first write-sequence? 

2 2 2 2 



8 

4 4 

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) R(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 

2 2 2 2 

1 1 1 1 1 1 1 1 



Theorem 

• Easy case:  
– No client memory 

– Perfect correctness 

– Perfect obliviousness 

– r = w 

• Theorem 
– Any ORAM simulating N accesses makes on at 

least on average M = (N/2) log(N) probes 

– Overhead = log(N) 



Theorem 

• Easy case:  
– No client memory 

– Perfect correctness 

– Perfect obliviousness 

– r = w 

• Theorem 
– Any ORAM simulating N accesses makes at least 

on average M = (N/2) log(N) (r/w) probes 

– Overhead = M w / N r = log(N) 



Theorem 

• Harder case:  

– Client memory: m words 

– Perfect correctness 

– Perfect obliviousness 



8-2 

4-2 4-2 

w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) w(0,0) R(0) r(0) r(0) r(0) r(0) r(0) r(0) r(0) 

2-2 2-2 2-2 2-2 

1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 

Prune 
log(m)+1 

layers 

Each weight at least 
half of before:  
N/4 per row  

Total weight:  
(N/4) (log(N) – log(m) -1) 

Client memory: m = 2 



Theorem 

• Harder case:  

– Client memory: m words 

– Perfect correctness 

– Perfect obliviousness 

• Theorem 

– Any ORAM simulating N accesses makes on 
average (N/4) (log(N) – log(m) – 1) probes 

– Overhead = log(N/m)   



Theorem 

• Even harder case:  

– Client memory: m words 

– Correctness: c > 0 on each read 

• Word size w = log(N)  

– Obliviousness: o > 0 



w(1,r1) w(2,r2) w(3,r3) w(4,r4) w(5,r5) w(6,r6) w(7,r7) w(8,r8) r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(8) 

How many times must the read-
sequence probe a cell which 

was last time probed during the 
write-sequence? 

c N 



Obliviousness + Markov 
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Client memory 



Theorem 

• Even harder case:  

– Client memory: m words 

– Correctness: c > 0 on each read 

• Word size w = log(N)  

– Obliviousness: o > 0 

• Theorem 

– Any ORAM simulating N accesses has overhead at 
least log(N/m). 



Future Work (1/2) 

• There are other cell-probe lower-bound 
techniques out there 

• There are more oblivious data structures out 
there 

• Go prove some lower bounds 



Future Work (2/2) 

• PathORAM, 2013 
   [Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13] 

– Bandwidth overhead = log(N) 
• When w = log(N) and r = w2 

– Bandwidth overhead = log2(N) 
• When w = r = log(N) 

•  PanORAMa, 2018  
   [Patel, Persiano, Raykova, Yeo, FOCS’18] 

– Bandwidth overhead = log(N) log(log(N)) 

• Today: 
– Overhead must be at least log(N) 

• Close that gap! 
 
 

 



Conclusion 

Yes, There is an Oblivious RAM Lower Bound! 


