Yes, There is an Oblivious RAM
Lower Bound!

Kasper Green Larsen
Jesper Buus Nielsen

. DIGIT DEPARTMENT OF COMPUTER SCIENCE
¢ DIGITALISATION BIG DATA AND DATA ANALYTICS AARHUS UNIVERSITY

Oblivious RAM

* Introduced by Goldreich and Ostrovsky in
1996

* “Encrypts” the memory access pattern of a
random-access algorithm

Oblivious RAM, Model (1/2)

Server
— A large, passive store of data, a random-access memory
Client

— Runs a program which simulates a large memory (an array with
random access)

— Has a small persistent memory

— Qutsources the rest of the data to the server
Eavesdropper

— Sees access pattern to the server

— Does not see the actual data
Security

— For any two sequences of access to the array of the same
length, the access pattern seen by Eavesdropper are
indistinguishable

Oblivious RAM, Model (2/2)

cell

r
——
write
operation
entry
read
operation

m

e

client memory

Server memory

Bandwidth Overhead

* ORAMSs have several obvious application: SGX,
MPC, Cloud... In all of them the bandwidth
overhead is important

 |f after N accesses the ORAM makes M probes,
then

Overhead=Mw /N r

entry cell

Upper Bounds

Goldreich, Ostrovsky, 1996: poly(log(N))
A lot of research on more efficient ORAMSs
PathORAM, 2013

[Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13]
— Bandwidth overhead = log(N)

* When w = log(N) and r = w?

PanORAMa, 2018

[Patel, Persiano, Raykova, Yeo, FOCS’18]

— Bandwidth overhead = log(N) log(log(N))

Lower Bounds: log(N)

* Goldreich, Ostrovsky, 1996: log(N)

e Model for lower bound:

— Only balls-in-bins algorithms
* The algorithm cannot look at the data being stored
e Cannot use for instance error-correcting codes

— Adversary has unbounded computing time
* Cannot use computational cryptography

— Holds even for off-line ORAMSs

* The ORAM is given the entire sequence of array
accesses ahead of simulation time

30 years break: log(N)

* Goldreich, Ostrovsky, 1996: log(N)

e Model for lower bound:

— Only balls-in-bins algorithms
* The algorithm cannot look at the data being stored
e Cannot use for instance error-correcting codes

— Adversary has unbounded computing time
* Cannot use computational cryptography

— Holds even for off-line ORAMSs

* The ORAM is given the entire sequence of array
accesses ahead of simulation time

2016: log(N)???

Is There

Elette H

THEOREM 1.1 (INFORMAL). Suppose there exists a Boolean
circuit family for sorting n words of size w-bits with size

ocHel o(nw logn). Then there exists an offline ORAM compiler

eboyle@alu

for O(1) CPU registers, with bandwidth overhead o(logn).

[

ABSTRACT

An Oblivious RAM (ORAM), introduced by Goldreid
Ostrovsky (JACM 1996), is a (probabilistic) RAM that
its access pattern, i.e. for every input the observed loc
accessed are similarly distributed. Great progress hag
made in recent years in minimizing the overhead of (J

constructions, with the goal of obtaining the smallest
1. | a1l

e Cannot use ¢

— Holds even foroff-line S

Online lower bound? A good starting point toward prov-
ing general ORAM lower bounds (without balls and bins
restrictions) is within an even stronger online model, where
the simulation must successfully answer each data access re-
quest before learning the next. This more stringent variant
is, in fact, the notion satisfied by essentially all known pos-
itive results in ORAM. We propose a definition of online
ORAM in Section 2.2 (Definition 2.10).

* The ORAM is given the entire sequence of array
accesses ahead of simulation time

Today:
Yes, There is an Oblivious RAM Lower Bound!

e Qur model:

— The ORAM algorithm can be arbitrary

Balle in bine aleorit]
— The adversary must be efficient

d | I o L
— Holds only for on-line ORAMs

* The ORAM is given the array accesses to process one at
a time

 Anyway what is needed in all applications

array

Oblivious RAM, Model

r
——
write
operation
>
©
—
<L entry
read
operation

cell

m

client memory

Client memory

Alowd Nl

Server memory

* Simple case:

— No client memory

Proof

— Perfect correctness

— Perfect obliviousness

—r=w

array

write
operation

read
operation

entry

cell

Server memory

How many times must the read-
sequence probe a cell which
was last time probed during the

W/rita_coni IQHPQ?

LOGARITHMIC LOWER BOUNDS IN THE CELL-PROBE MODEL*

MIHAI PATRASCUT AND ERIK D. DEMAINE?

Abstract. We develop a new technique for proving cell-probe lower bounds on dynamic data
structures. This technique enables us to prove an amortized randomized 2(lgn) lower bound per
operation for several data structural problems on n elements, including partial sums, dynamic con-
nectivity among disjoint paths (or a forest or a graph), and several other dynamic graph problems
(by simple reductions). Such a lower bound breaks a long-standing barrier of Q(lgn/lglgn) for any
dynamic language membership problem. It also establishes the optimality of several existing data
structures, such as Sleator and Tarjan’s dynamic trees. We also prove the first (log 5 n) lower bound
in the external-memory model without assumptions on the data structure (such as the comparison
model). Our lower bounds also give a query-update trade-off curve matched, e.g., by several data

w(1,r,)|w(2,r,)|w(3,rs) structures for dynamic connectivity in graphs. We also prove matching upper and lower bounds for
71 72 73 partial sums when parameterized by the word size and the maximum additive change in an update.

How many times must the read-
sequence probe a cell which
was last time probed during the
write-sequence?

) D 2 T 2 N NI

Oblivious RAM, Model (2/2)

array

——
write
operation
>
©
—
<L entry
read
operation

m

client memory

access patterm

——

cell

Alowd Nl

Server memory

How many times must the read-
sequence probe a cell which
was last time probed during the
write-sequence?

) D 2 T 2 N NI

How many times must the
second read-sequence probe a
cell which was last time probed

during the second write-
sequence?

How many times mus
read-sequence prok
which was last time

during the first write-s

e e e e e K

The probes counted in
different circles are distinct!

10100100060 00 oo Leoa 10| & |10 o |0 0 | 0 0

How many times must the first

read-sequence probe a cell
which was last time probed
during the first write-sequence?

A N) K e R

Theorem

* Easy case:
— No client memory
— Perfect correctness
— Perfect obliviousness
—r=w

* Theorem

— Any ORAM simulating N accesses makes on at
least on average M = (N/2) log(N) probes

— Overhead = log(N))

write
—_>
operation
60@
&
| e 1 ‘Q | — 1

——

Theorem

* Easy case:
— No client memory
— Perfect correctness
— Perfect obliviousness
—F=w

* Theorem

— Any ORAM simulating N accesses makes at least
on average M = (N/2) log(N) (r/w) probes

— Overhead=Mw /N r=log(N) v

r

write .
operation

Theorem

* Harder case:
— Client memory: m words
— Perfect correctness
— Perfect obliviousness

Client memory: m=2

Each weight at least
half of before: 1-2
N/4 per row

Total weight:
(N/4) (log(N) —log(m) -1)

)) I A

Theorem

* Harder case:
— Client memory: m words
— Perfect correctness
— Perfect obliviousness

e Theorem

— Any ORAM simulating N accesses makes on
average (N/4) (log(N) — log(m) — 1) probes

— Overhead = log(N/m)

Theorem

e Even harder case:

— Client memory: m words

— Correctness: ¢ > 0 on each read
* Word size w = log(N)

— Obliviousness: 0 > 0

How many times must the read-
sequence probe a cell which
was last time probed during the
write-sequence?

2 e I N e K

Obliviousness + Markov

w
—T
r
——
(
write
operation
]
z 3
: E
| S <
<L entry
array server memory
read
operation
\
m
-~ 7

client memory

Client memory

Theorem

e Even harder case:

— Client memory: m words

— Correctness: ¢ > 0 on each read
* Word size w = log(N)

— Obliviousness: 0 > 0
* Theorem

— Any ORAM simulating N accesses has overhead at
least log(N/m).

Future Work (1/2)

* There are other cell-probe lower-bound
techniques out there

* There are more oblivious data structures out
there

* Go prove some lower bounds

Future Work (2/2)

PathORAM, 2013
[Stefanov, van Dijk, Shi, Fletcher, Ren, Yu, Devadas, CCS’13]
— Bandwidth overhead = log(N)
* Whenw =/og(N) and r = w?
— Bandwidth overhead = log?(N)
e Whenw =r=1Iog(N)
PanORAMa, 2018
[Patel, Persiano, Raykova, Yeo, FOCS’18]

— Bandwidth overhead = log(N) log(log(N))

Today:
— Overhead must be at least log(N)
Close that gap! A

<

Conclusion

Yes, There is an Oblivious RAM Lower Bound!

