

Constrained PRF for *NC*¹ in Traditional Group (a.k.a. Pairing-Free Group)

Nuttapong Attrapadung (AIST), Takahiro Matsuda (AIST), Ryo Nishimaki (NTT), Shota Yamada (AIST), Takashi Yamakawa (NTT)

> 2018.08.20 CRYPTO 2018

> > Copyright©2018 NTT corp. All Rights Reserved.

Pseudorandom Function (PRF)

- Innovative F&D by NTT
- PRF is a keyed function that is indistinguishable from a random function via oracle accesses.
- •There is a construction based on any OWF [GGM86].

 $PRF(K, x) \rightarrow y$

Correctness : If f(x) = 0 $PRF(K_f, x) = PRF(K, x)$

Security : If f(x) = 1PRF(K,x) is pseudorandom given K_f

Motivation 1: CPRF on Pairing-Free Group

• There are several known constructions of CPRFs.

Collusion-resistant setting: □Multilinear-map-based [BW13] □Obfuscation-based [BZ14]

Single-key setting: □Lattice-based [BV15]

* We omit CPRFs for specific functionalities like puncturing.

Construction on Pairing-free group?

• CPRF is said to be **private** if K_f does not reveal f.

Collusion-resistant setting: ■Multilinear-map-based [BLW17] ■Obfuscation-based [BLW17]

Single-key setting: □Lattice-based [BKM17,CC17,BTVW17]

- Result 1: CPRF for NC¹ on pairing-free group
 - Selectively single-key secure under L-DDHI assumption on \mathbb{QR}_q + DDH assumption
- Result 2: <u>Private CPRF for bit-fixing</u> on pairing-free group
 Selectively single-key secure under DDH assumption

Selective Single-key Security of CPRF

Adversary must follow the following rules:

1. $f(x^*) = 1$ 2. x^* is not queried as an evaluation query CPRF is selectively single-key secure if |Pr[coin'=coin]-1/2|=neg|.

Selectively single-key secure CPRF for *NC*¹ against adversaries that make **no evaluation queries**

Selectively secure single-key CPRF for *NC*¹ against adversaries that make **unbounded evaluation queries**

- Innovetive R&D by NTT
- •Let U be a universal circuit for a function class \mathcal{F} .
 - i.e. we have $U((f_1, ..., f_z), x) = f(x)$
- •Assume the degree of U as a multivariate polynomial is at most $D = poly(\lambda)$.
 - Such a universal circuit exists for NC¹ [CH85]
- Let G be a cyclic group of order p with a generator g.

$$K = ((b_1, \dots, b_z) \leftarrow \mathbb{Z}_p^z, \alpha \leftarrow \mathbb{Z}_p^*)$$
$$PRF(K, x) := g^{\frac{U((b_1, \dots, b_z), x)}{\alpha}}$$

Evaluation by Constrained Key

$$PRF(K, x) := g \frac{U((b_1, \dots, b_z), x)}{\alpha}$$

Constrain(*K*, *f*): For $i \in [z]$, compute $b'_i \coloneqq \frac{(b_i - f_i)}{\alpha} \mod p$ Output $K_f \coloneqq (f, b'_1, \dots, b'_Z, g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^{D-1}})$

CEval
$$(K_f \coloneqq (f, b'_1, ..., b'_Z, g, g^{\alpha}, g^{\alpha^2}, ..., g^{\alpha^{D-1}}), x)$$
:
By the definition of b'_i , we have $\mathbf{b}_i = \alpha \mathbf{b}'_i + f_i \mod p$
By using this equation, we can expand
 $U((b_1, ..., b_Z), x) = U((f_1, ..., f_Z), x) + \sum_{i \in [D]} c_i \alpha^i$
 $= f(x) = 0$
 $PRF(K, x) = g^{\sum_{i \in [D]} c_i \alpha^{i-1}}$

L-decisional Diffie-Hellman Inversion Assumption (L-DDHI Assumption)

Innovative R&D by NTT

11

L-DDHI Assumption
$$g \leftarrow G, \alpha \leftarrow \mathbb{Z}_p^*$$
Given $(g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^L})$ $\frac{1}{g^{\alpha}}$ $\boldsymbol{\sim}$ $R \leftarrow G$

Theorem: The scheme is selectively single-key secure against adversary that makes **no evaluation queries** under the (D-1)-DDHI assumption

Proof of Single-key No-evaluation Security

- We prove that given $K_f \coloneqq (f, b'_1, \dots, b'_Z, g, g^{\alpha}, g^{\alpha^2}, \dots, g^{\alpha^{D-1}})$, if f(x) = 1, then <u>**PRF**(K, x)</u> is pseudorandom</u>.
- Recall that we have $U((b_1, ..., b_z), x) = f(x) + \sum_{i \in [D]} c_i \alpha^i$

phoyative D&D by

Selectively secure single-key CPRF for *NC*¹ against adversaries that make **no evaluation queries**

Correlated-input secure hash

Selectively secure single-key CPRF for *NC*¹ against adversaries that make **unbounded evaluation queries**

- If the evaluation oracle is given, then there exists an attack.
- Suppose that an adversary is given K_f and PRF(K,x) for x s.t. f(x) = 1. $PRF(K,x) = g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot g^{\frac{1}{\alpha}}$

• For
$$x' \neq x$$
 s.t. $f(x') = 1$, we have
 $PRF(K, x') = g^{\sum_{i \in [D]} c'_i \alpha^{i-1}} \cdot g^{\frac{1}{\alpha}}$
 $= PRF(K, x) \cdot (g^{\sum_{i \in [D]} c_i \alpha^{i-1}})^{-1} \cdot g^{\sum_{i \in [D]} c'_i \alpha^{i-1}}$
 $PRF(K, x')$ is predictable
Computable from k

Toward Protecting the Attack

Innovative D&D by NTT

•The problem was that PRF(K, x) and PRF(K, x') have an <u>algebraic correlation</u>.

- $PRF(K, x') = PRF(K, x) \cdot (Known Term)$
- We want to break the correlation.

Use correlated-input secure hash function!

Correlated-Input Secure Hash Function (CIH) [GOR11]

•A hash function CIH: $X \rightarrow \mathcal{R}$ is a correlated-input hash function (CIH) for a function class \mathcal{F} if the following two oracles are indistinguishable:

•We want to break algebraic correlations between group elements.

We need a CIH for group-compatible function class.

• CIH: $G \rightarrow \mathcal{R}$ is *G***-compatible** CIH if it is a CIH for the class of all **non-zero constant multiplication functions** on *G*.

From No-Evaluation to Unbounded-Evaluation Security

- •Let PRF_{NE} be our no-evaluation secure CPRF, and CIH be a *G*-compatible CIH.
- We define $PRF(K, x) \coloneqq CIH(PRF_{NE}(K, x))$.
- Constrained key of PRF is the same as that of PRF_{NE} .
- *PRF* is selectively single-key secure against adversaries that make **unbounded number of evaluation queries**.

Proof Sketch

• If
$$f(x) = 1$$

$$PRF(K, x) = CIH(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot g^{\frac{1}{\alpha}})$$

Proof Sketch

• If
$$f(x) = 1$$

 $PRF(K, x) = CIH(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot g^{\frac{1}{\alpha}})$
D-DDHI assumption
 $PRF(K, x) = CIH(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot R)$

Proof Sketch

• If
$$f(x) = 1$$

 $PRF(K, x) = CIH(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot g^{\frac{1}{\alpha}})$
D-DDHI assumption
 $PRF(K, x) = CIH(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot R)$
Security of CIH
 $PRF(K, x) = RF(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot R)$

 $RF(g^{\sum_{i \in [D]} c_i \alpha^{i-1}} \cdot R)$ is independent independently random for each x. Now, evaluation queries are meaningless. \rightarrow The security is reduced to the no-evaluation security of PRF_{NE} .

- •We obtain selectively single-key secure CPRF for NC¹ assuming
 - D-DDHI assumption holds on G
 - There exists a <u>G-compatible CIH</u>
- •What group G to use?
 - Unfortunately, there is **no known instantiation**!
- •We further modify the construction.

- Innovative F&D by NTT
- The only known construction of a group-compatible CIH is the one proposed by Bellare and Cash [BC10].
- Their CIH supports <u>component-wise multiplications over $(\mathbb{Z}_q^*)^m$ </u> under the DDH assumption on another group G'.
- First attempt: Set $\underline{G:=\mathbb{Z}_q^*}$ and define $PRF(K, x) \coloneqq CIH(PRF_{NE}(K_1, x), \dots, PRF_{NE}(K_m, x))$
- If (D-1)-DDHI assumption holds on \mathbb{Z}_q^* , then this construction works.
- However, the (D-1)-DDHI assumption does not hold on \mathbb{Z}_q^* !
 - Broken by computing Jacobi Symbol
- We set $\underline{G:=\mathbb{QR}_q}$, which is a quadratic residue subgroup of \mathbb{Z}_q^*
 - The attack by Jacobi Symbol does not work on $\mathbb{QR}_q.$

- Our actual construction is described below. $PRF(K,x) \coloneqq CIH(PRF_{NE}(K_1,x), ..., PRF_{NE}(K_m,x))$ where PRF_{NE} is instantiated on $G := \mathbb{QR}_q$, and CIH is Bellare-Cash CIH instantiated on G'.
- The above scheme is selectively single-key secure if
 - 1. The (D-1)-DDHI assumption holds on \mathbb{QR}_q .
 - 2. The **DDH assumption** holds on G'

Comparison among CPRFs

	Function class	Keys	Eval	Assumption
[BW13],[KPTZ13] [BGI14]	Puncturing	1	N/A	OWF
[BW13]	left/right	poly	poly	DBDH(RO)
[BW13]	P/poly	poly	poly	MDDH
[BZ14]	P/poly	poly	poly	iO
[BV15]	P/poly	1	poly	LWE+1D-SIS
[Bit17]	sub-match	1	0	DDH
[GHKW17]	sub-match	1	0	L-PDDH
[GHKW17]	sub-match	1	0	Φ-hiding
Ours		1	poly	DDH+L-DDHI

Comparison among Private CPRFs

	Function class	Keys	Eval	Assumption
[BLW17]	Puncturing	1	N/A	MLM
[BLW17]	Bit-fixing	poly	poly	MLM
[BLW17]	P/poly	poly	poly	iO
[BKM17]	Puncturing	1	N/A	LWE+1D-SIS
[CC17]		1	poly	LWE
[BTVW17]	P/poly	1	poly	LWE
[Ours]	Bit-fixing	1	poly	DDH

Summary

- •We gave new constructions of CPRFs on pairing-free groups
 - Single-key CPRF for NC^1 from DDH and L-DDHI on \mathbb{QR}_q
 - Single-key private CPRF for bit-fixing from DDH
- Open problems
 - Collusion resistant and/or adaptive construction.
 - Instantiate our first construction based on general groups (instead of on a specific group \mathbb{QR}_q).
 - (Private) CPRF for wider function class on pairing-free groups.

