

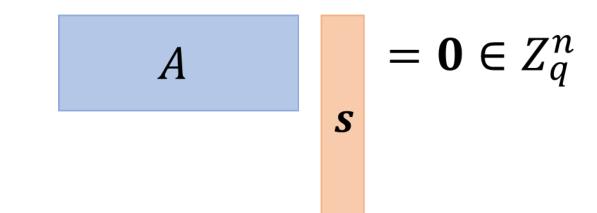
Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth and Vadim Lyubashevsky

## Lattice-Based

## Zero-Knowledge Arguments for Arithmetic Circuits

Short Integer Solution (SIS) Problem

- Input: Random matrix  $A \in \mathbb{Z}_q^{n \times m}$
- Goal: Find non-trivial  $s \in Z^m$  with  $As = 0 \mod q$  and  $||s||_{\infty} < \beta$

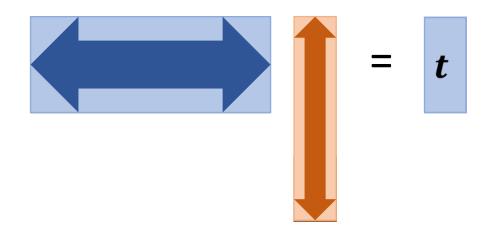


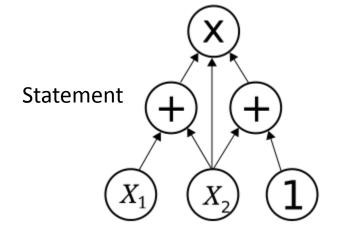
# Lattice-Based

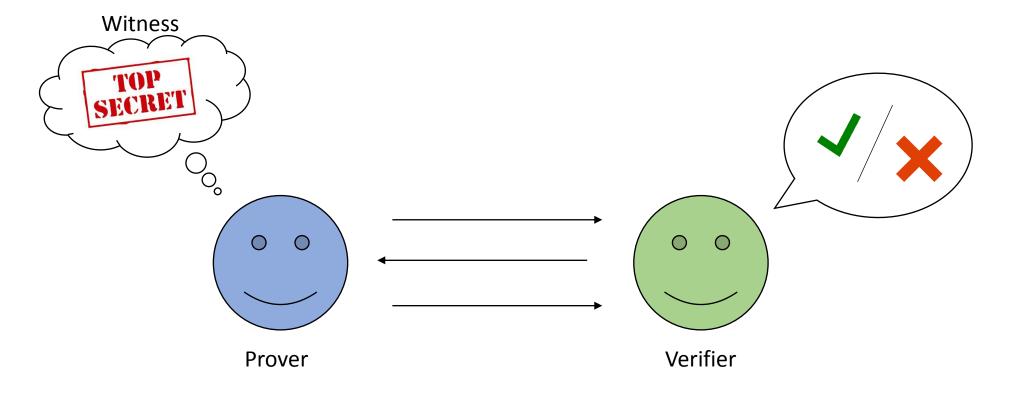
## Zero-Knowledge Arguments for Arithmetic Circuits

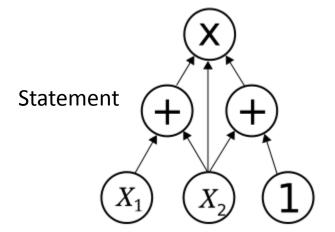
Commitment/hash from SIS:

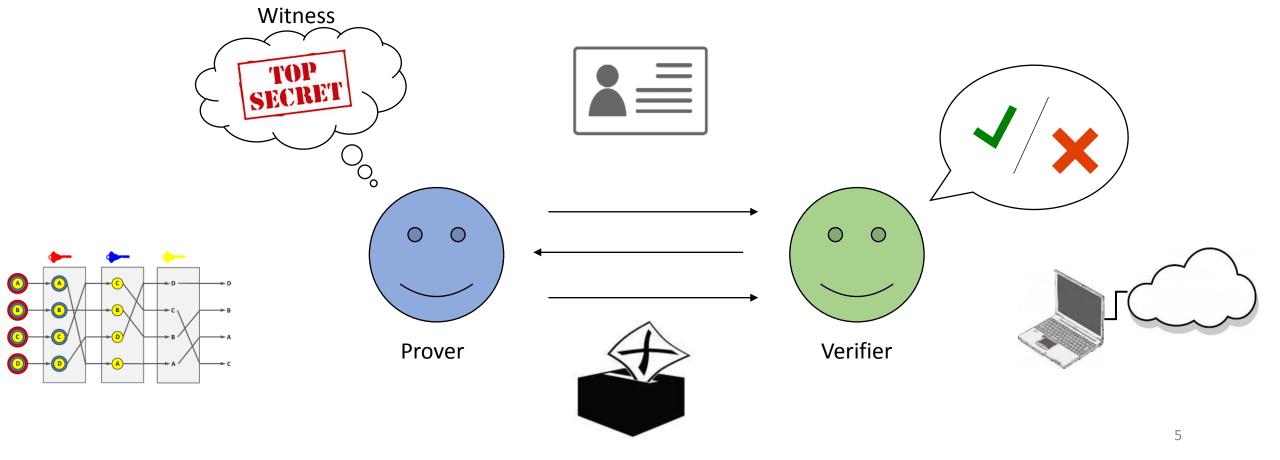
- Binding/collision resistant by SIS
- Hiding by Leftover Hash Lemma
- Homomorphic
- Compressing [A96]

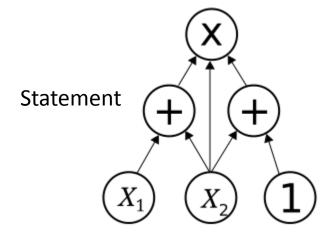


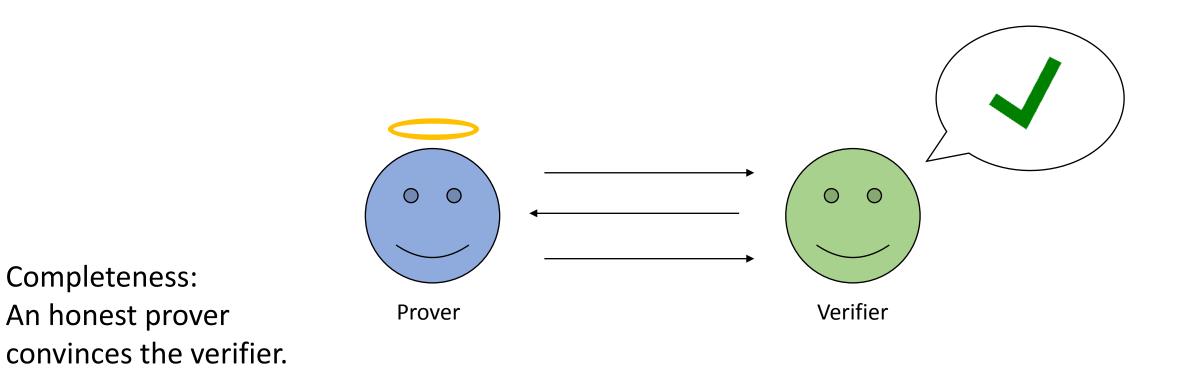


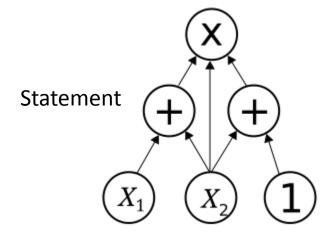




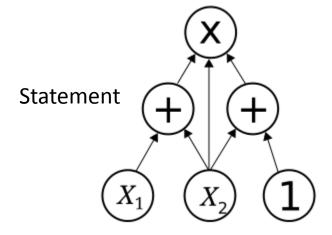






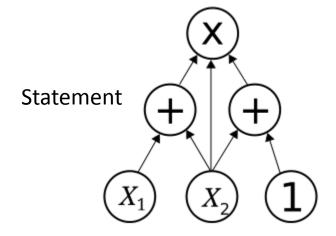


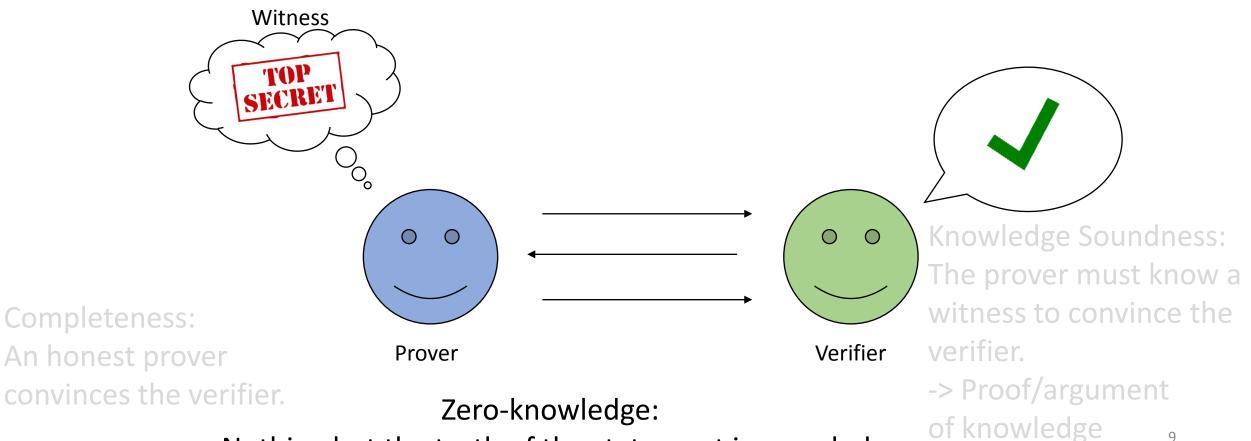




 $\tilde{O}$ Knowledge Soundness: 0 0  $\bigcirc$ The prover must know a witness to convince the Completeness: verifier. An honest prover Verifier Prover -> Proof/argument convinces the verifier. of knowledge

8

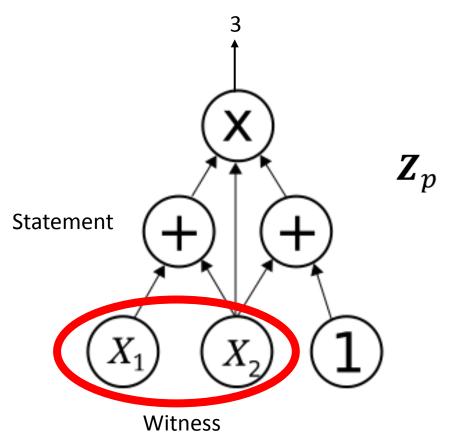


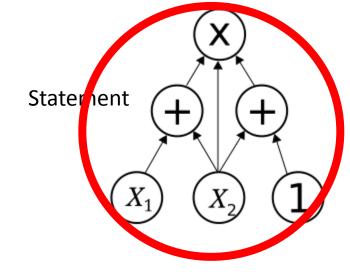


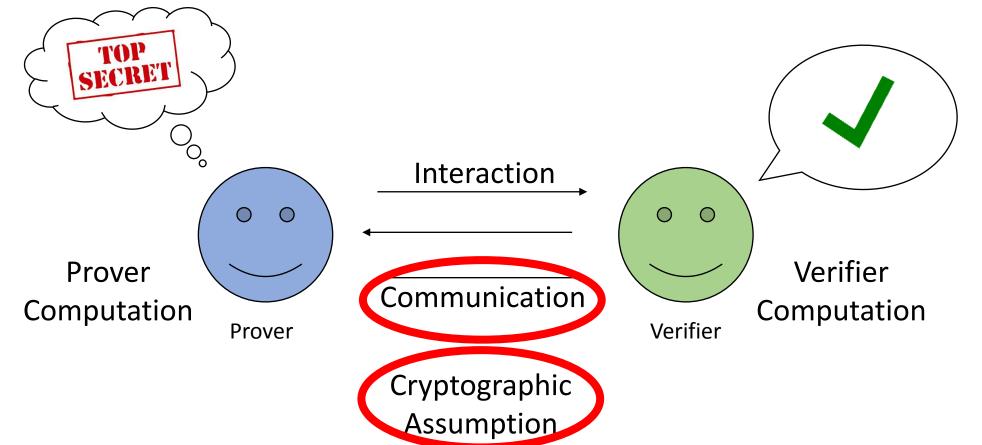
Nothing but the truth of the statement is revealed.

Why arithmetic circuits?

- C to circuit compilers
- Models cryptographic computations
- Witness existence? NP-Complete

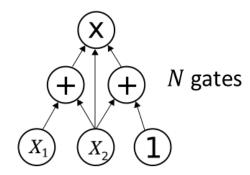




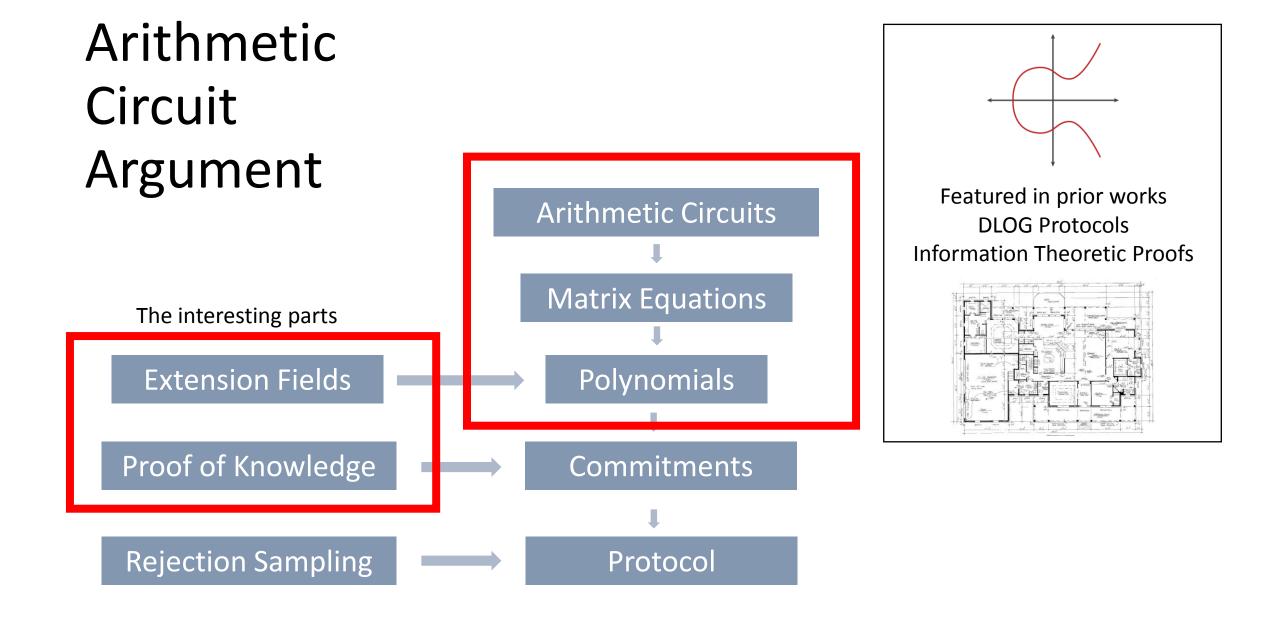


### **Results Table**

|           | Expected<br># Moves | Communication                           | Prover<br>Complexity                   | Verifier<br>Complexity                 |
|-----------|---------------------|-----------------------------------------|----------------------------------------|----------------------------------------|
| [DL12]    | 0(1)                | $O(N\lambda)$                           | $O(N \operatorname{polylog}(\lambda))$ | $O(N \operatorname{polylog}(\lambda))$ |
| [BKLP15]  | 0(1)                | $O(N\lambda)$                           | $O(N \operatorname{polylog}(\lambda))$ | $O(N \operatorname{polylog}(\lambda))$ |
| This Work | 0(1)                | $O\left(\sqrt{N\lambda\log^3 N}\right)$ | $O(N \log N (\log^2 \lambda))$         | $O(N\log^3\lambda)$                    |

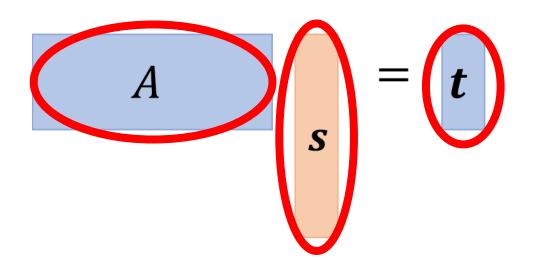


Security parameter  $\lambda$ 



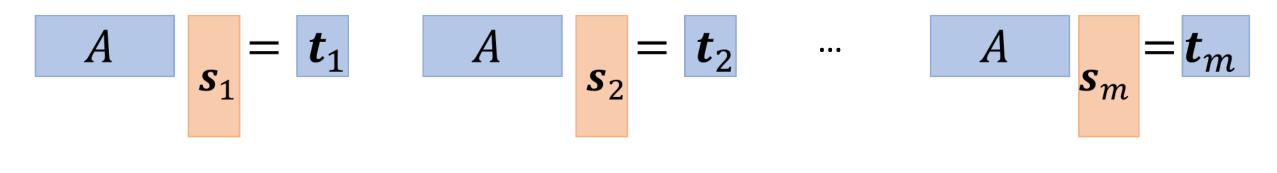
## Proof of Knowledge

Statement

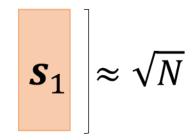


Witness

### Proof of Knowledge

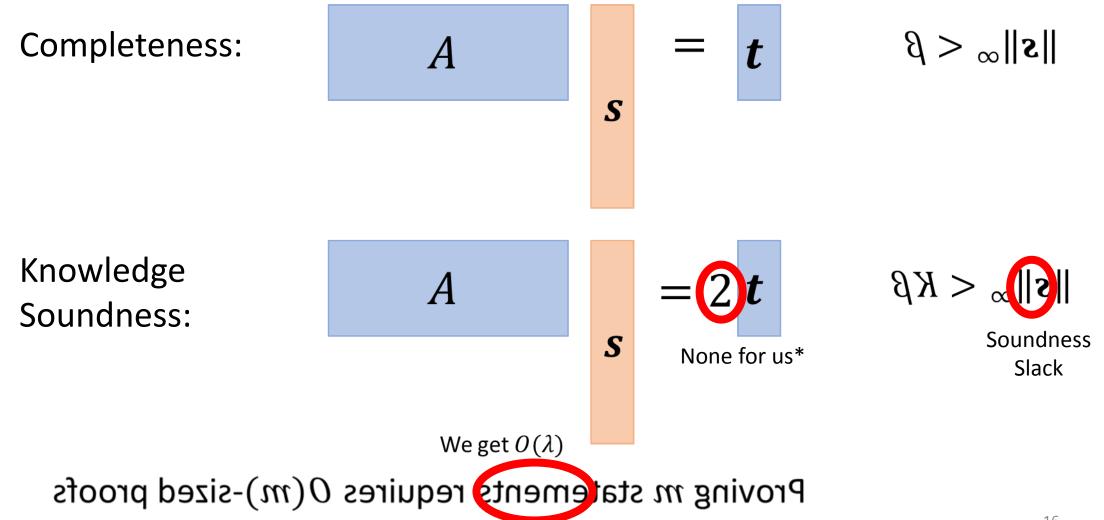


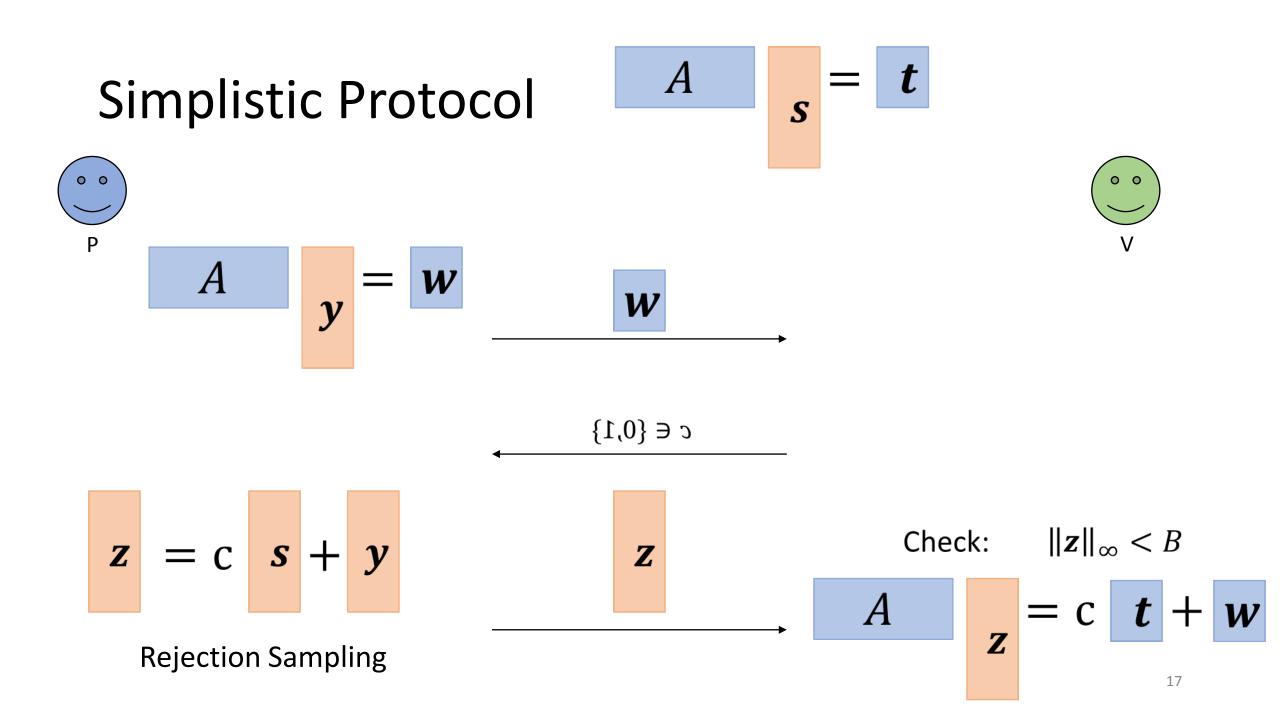
> $\lambda$  preimages  $\approx P \sqrt{\delta r}$  works:  $O(\lambda^2)$ 



->Prover knows N small hashed integers

# **Typical Proofs of Knowledge**





### **Our Protocol**

$$z = \sum s_1 s_1 + c s_2 + c_2 + s_n \in \{0, 1\} y$$
  
$$z' = s_2 + c_2 + s_n c_n + y$$

Extraction with probability  $\approx pr - 1/2$  for prover with success probability pr

### **Our Protocol**

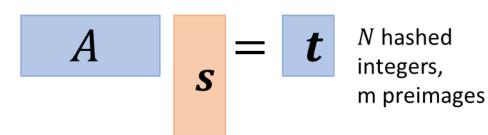
$$\boldsymbol{z} = \sum \boldsymbol{s_i} \boldsymbol{c_i^T} + \boldsymbol{y} \boldsymbol{c_{ii}^T} \in \{0,1\}^{O(\lambda)}$$

Extraction with probability  $\approx pr - 1/2^{\lambda}$  for  $\lambda$  parallel repetitions

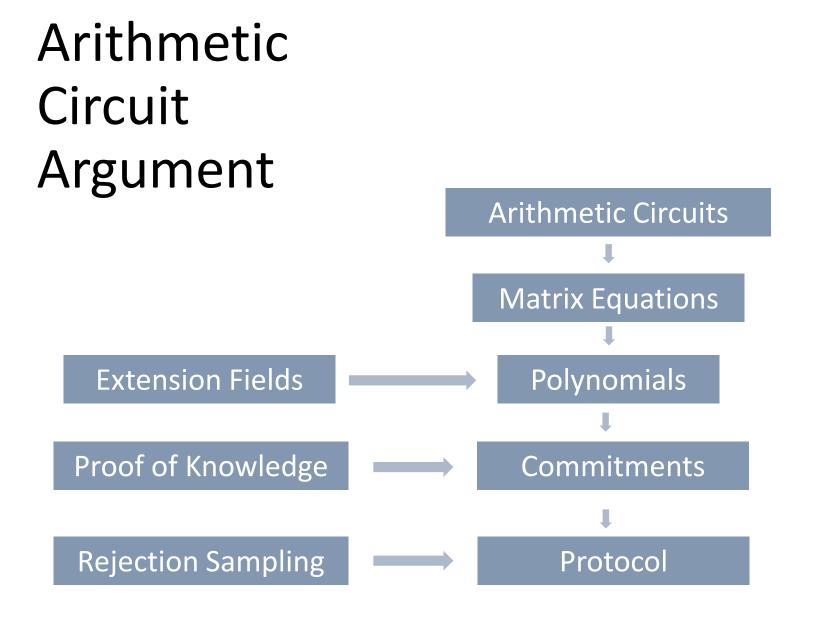
- Communication scales like log(m), not m
- Minimum (commitment size) + (proof size) is  $O(\sqrt{N})$  for circuit protocol

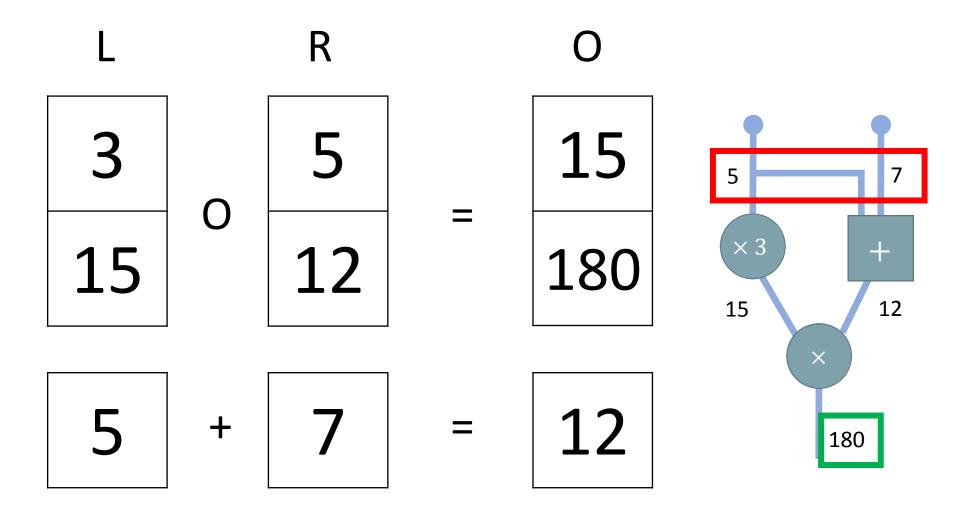
# Proof-of-Knowledge Performance

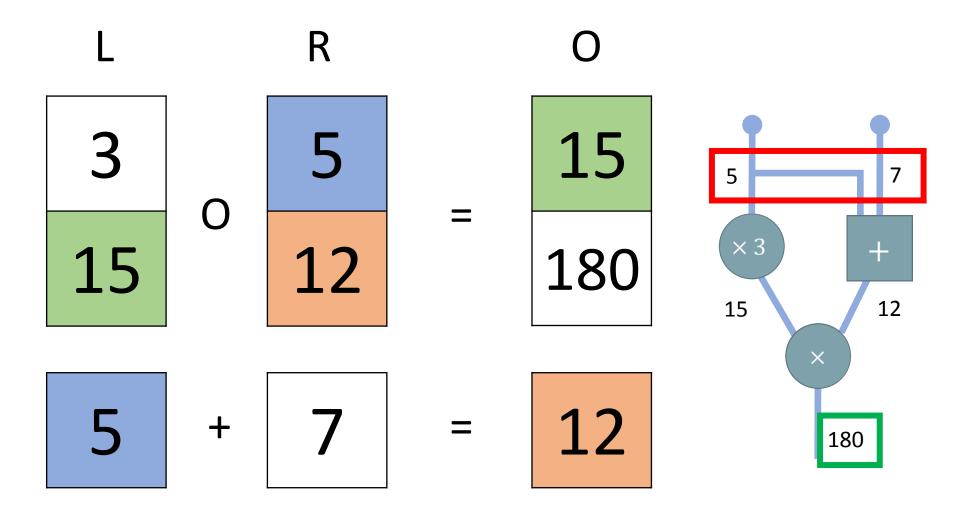
|           | Expected<br># Moves | Communication                           | Prover<br>Complexity | Verifier<br>Complexity     |
|-----------|---------------------|-----------------------------------------|----------------------|----------------------------|
| [BDLN16]  | 0(1)                | O(m)                                    | O(m)                 | O(m)                       |
| [CDXY17]  | 0(1)                | O(m)                                    | O(m)                 | O(m)                       |
| This Work | 0(1)                | $O(\lambda \log(m\lambda))$             | O(m)                 | O(m)                       |
| This Work | 0(1)                | $O\left(\sqrt{N\lambda\log^3 N}\right)$ | $O(N\log^3\lambda)$  | $O(\sqrt{N\log^3\lambda})$ |

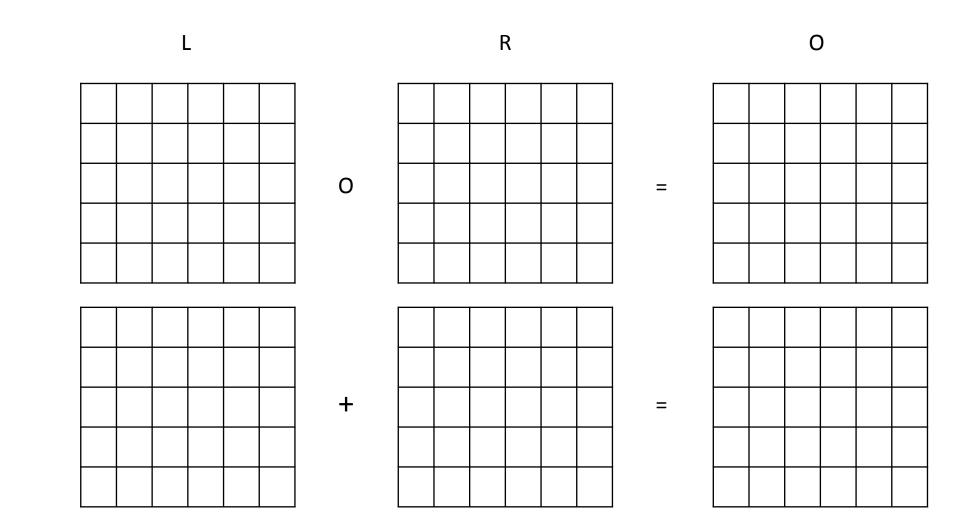


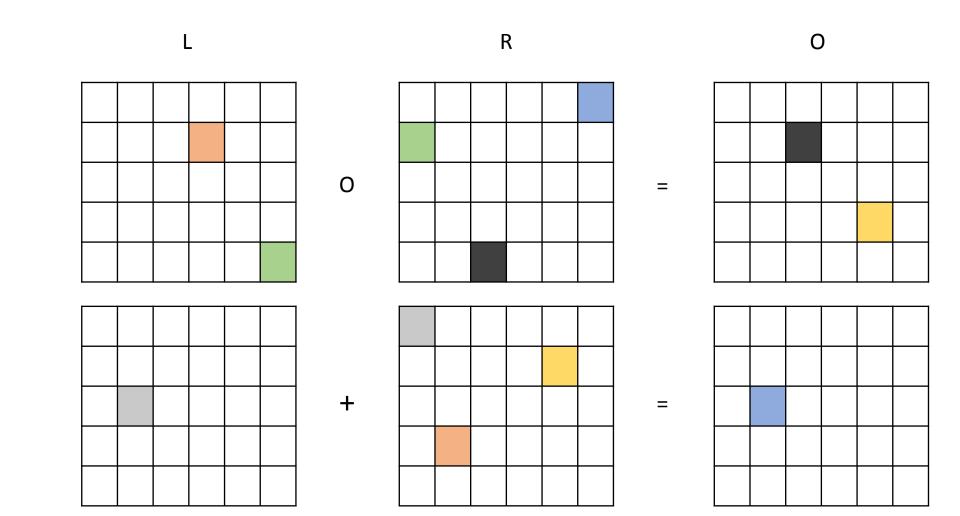
Security parameter  $\lambda$ 



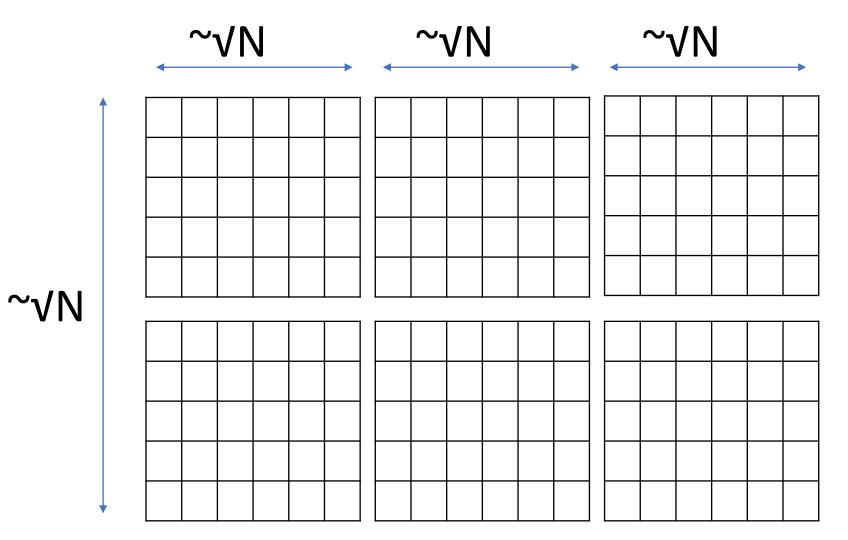








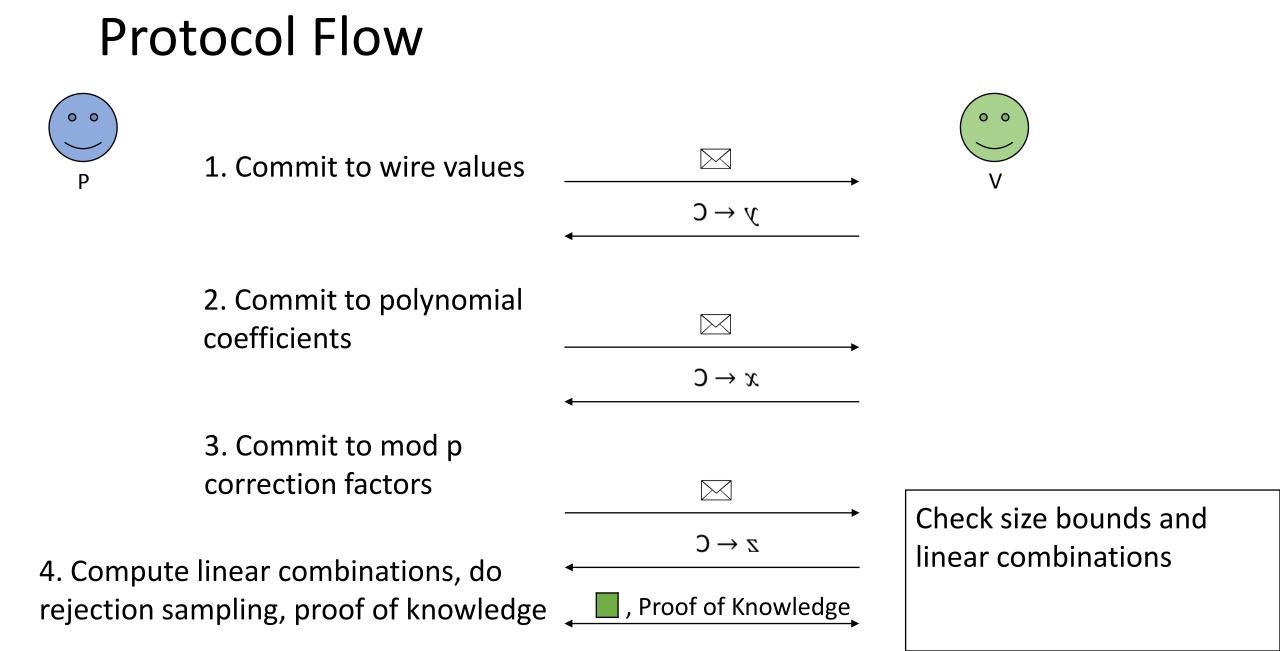
#### **Matrix Dimensions**

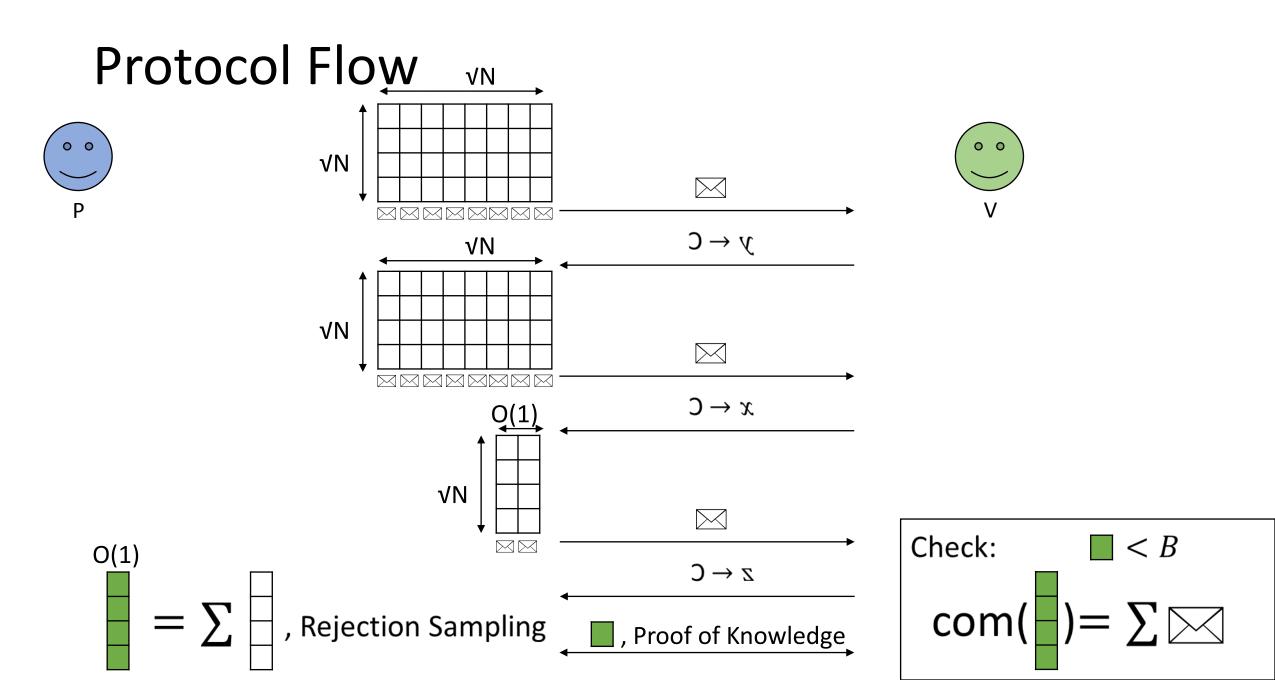


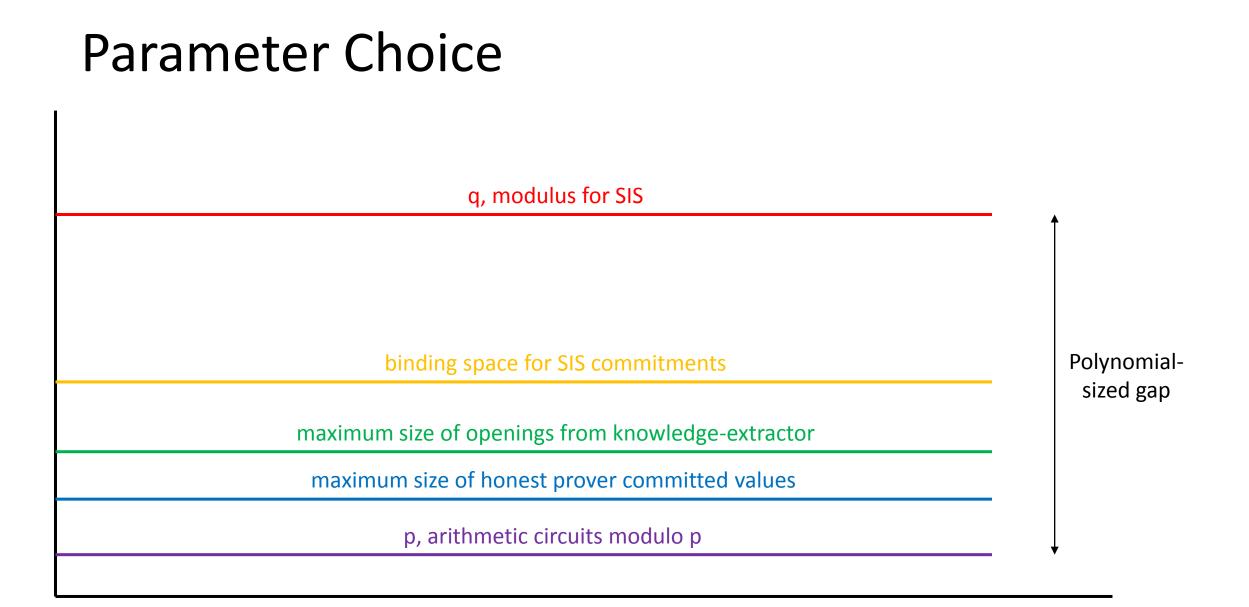
# Paradigm from Previous Arguments

- Commit to vectors ([G09], [S09], [BCGGHJ17])
- Random challenge x
- Prover opens linear combinations
- Verifier conducts polynomial identity test
- AC-SAT in coefficients

| 3 <i>x</i>               | 2 | 6 | 6 | 2 | 0 | 1 | 9 | 2 | 7 | 4 |
|--------------------------|---|---|---|---|---|---|---|---|---|---|
| $+4x^{2}$                | 5 | 3 | 7 | 2 | 8 | 3 | 6 | 1 | 6 | 9 |
| +8 <i>x</i> <sup>3</sup> | 5 | 7 | 6 | 7 | 1 | 4 | 2 | 6 | 8 | 3 |
| +7 <i>x</i> <sup>4</sup> | 6 | 3 | 7 | 2 | 7 | 5 | 3 | 2 | 4 | 7 |







### Additional Issues

- DLOG:  $p \approx 2^{\lambda}$
- SIS: modulus usually  $poly(\lambda)$

• Use field extension techniques in  $GF(p^k)$  building on [CDK14]

• Embed useful conditions into extension field operations

Schwarz-Zippel Lemma:

$$\Pr[f(r_1, r_2, \dots, r_n) = 0] \le \frac{\alpha}{p^k}$$

Negligible!



А

Future Work: Can we match the  $O(\log N)$ proof sizes of DLOG protocols?

# Thanks!

| Expected<br># Moves | Communication                           | <b>Prover Complexity</b>       | Verifier Complexity |
|---------------------|-----------------------------------------|--------------------------------|---------------------|
| 0(1)                | $O\left(\sqrt{N\lambda\log^3 N}\right)$ | $O(N \log N (\log^2 \lambda))$ | $O(N\log^3\lambda)$ |

- General Statements
- Sub-linear proofs
- Relies on SIS

N gates +╋  $X_1$  $X_{\gamma}$ 

Security parameter  $\lambda$