

Fast Correlation Attack Revisited

Cryptanalysis on Full Grain-128a, Grain-128, and Grain-v1

Yosuke Todo¹, Takanori Isobe², Willi Meier³, Kazumaro Aoki¹, Bin Zhang⁴

1: NTT Secure Platform Laboratories

2: University of Hyogo

3: FHNW

4: Chinese Academy of Science

Fast correlation attack

- One of the most traditional attacks.
 - The initial idea was proposed in 80's.
 - Correlation attack [Siegenthaler, 1985]
 - Fast correlation attack [Meier and Staffelbach, 1989]
- We revisit the fast correlation attack.
 - New property, wrong-key hypothesis, and attack framework
 - Attack against full **Grain-v1** and **Grain-128a**.
 - Grain-v1 : with about $2^{76.4}$ time complexity.
 - Grain-128a : with about 2^{115} time complexity.

Preliminaries

LFSR-based stream ciphers

- The key stream sequence is generated by the XOR between the output sequence of the LFSR and error.
 - Error is very important because the internal state can be recovered efficiently if $e_t=0$ for all time.

More practical LFSR-based stream ciphers.

The error sequence is nonlinearly generated from another internal state.

Correlation attack

- Assume $(Pr[e_t=0]-Pr[e_t=1])=c$.
- Guess initial state st_0 and compute $a_t = \langle st_0, \Lambda_t \rangle$.
- If we guess correct st_0 , $a_t \oplus z_t$ coincides with e_t .

$$\sum_{t=0}^{N-1} (-1)^{a_t \oplus z_t} \sim \begin{cases} \mathcal{N}(Nc, N) & \text{for correct guess.} \\ \mathcal{N}(0, N) & \text{for incorrect guess.} \end{cases}$$

Correlation attack

- Usually, e_t is not biased in the modern stream cipher.
- However, $\bigoplus_{i \in \mathbb{T}_z} z_{t+i}$ may have biased relation with the initial state by optimally choosing \mathbb{T} .
 - Known results.
 - Grain v0 [Berbain et al, FSE2006]
 - Sosemanuk and SNOW2.0 [Lee et al, AC08]
 - SNOW2.0 [Zhang et al, CRYPTO15]
 - For example, Berbain et al uses $\mathbb{T}_z = \{0.80\}$ to attack Grain v0.

How to recover the secret initial state?

Procedure of FCA

- 1. Generating parity check equations.
- 2. Reduce the size of secret bits involved to parity check equations.
- 3. Recover involved secret bits by using parity check equations.
 - FWHT is applied to accelerate this part.

e.g., Case of
$$\mathbb{T}_z = \{0.80\}$$

 $h^{(t)}$ $s^{(t)}$ zero mask $s^{(t+1)}$ non zero mask $s^{(t+80)}$ inon zero mask Λ_{80} zero mask

High-biased linear trail.

$$\bigoplus_{i \in \mathbb{T}_z} \langle s^{(t+i)}, \Lambda_i \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

e.g., Case of
$$\mathbb{T}_z = \{0.80\}$$

High-biased linear trail.

$$\bigoplus_{i \in \mathbb{T}_z} \langle s^{(t+i)}, \Lambda_i \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

• From linearity $s^{(t+i)} = s^{(t)}G^i$, $\langle s^{(t)}, \Gamma \rangle = \bigoplus_{i \in \mathbb{T}} \langle s^{(t+i)}, \Lambda_i \rangle$

• When the set \mathbb{T}_Z is used,

$$\bigoplus_{i \in \mathbb{T}_z} \langle s^{(t+i)}, \Lambda_i \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

- From linearity $s^{(t+i)} = s^{(t)}G^i$, $\langle s^{(t)}, \Gamma \rangle = \bigoplus_{i \in \mathbb{T}} \langle s^{(t+i)}, \Lambda_i \rangle$
- From $s^{(t)} = s^{(0)}G^t$, $\langle s^{(t)}, \Gamma \rangle = \langle s^{(0)}, G^t \Gamma \rangle$

Linear approximations

$$\langle s^{(0)}, G^t \Gamma \rangle \approx \bigoplus_{i \in \mathbb{T}_Z} z_{t+i}$$

2. Reduce involved secret-key bits

Original linear approximations

$$\langle s^{(0)}, G^t \Gamma \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

New linear approximations

$$\langle s^{(0)}, G^t \Gamma \oplus G^{t'} \Gamma \rangle \approx \bigoplus_{i \in \mathbb{T}_z} (z_{t+i} \oplus z_{t'+i})$$

We don't need to guess last ℓ bits of $s^{(0)}$.

3. Recover $s^{(0)}$

• Recover $s^{(0)}$ such that

$$\sum_{(t,t')\in S} \left(\langle s^{(0)}, G^t \Gamma \oplus G^{t'} \Gamma \rangle + \bigoplus_{i\in \mathbb{T}_z} \left(z_{t+i} \oplus z_{t'+i} \right) \right)$$

is farthest from |S|/2.

- The trivial procedure requires $|S|2^{n-\ell}$.
- FWHT can evaluate it with $|S| + (n \ell)2^{n-\ell}$.
- After recovery of partial $s^{(0)}$,
 - Recover full $s^{(0)}$, and then $b^{(0)}$.

Drawback

- The correlation drops because of the birthday problem.
 - Let c be the original correlation.
 - The correlation of the new one is c^2 .

- The rough estimation of required data is $O(1/c^4)$.
 - Even if we find linear approximation with correlation 2^{-50} , the required data is about 2^{200} .
 - In the case of Grain-128a, the correlation must be larger than 2^{-32} .

New Insight of Fast Correlation Attack

First step

- s is an n-bit row vector and secret.
 - For simplicity, we rewrite $s^{(0)}$ as s.
- G is the $n \times n$ matrix representation of LFSR.
- Γ is an n-bit linear mask.

Focus on $G^t \times \Gamma$

- s is an n-bit row vector and secret.
 - For simplicity, we rewrite $s^{(0)}$ as s.
- G is the $n \times n$ matrix representation of LFSR.
- Γ is an n-bit linear mask.

Link to $GF(2^n)$

- Let's consider the finite field $GF(2^n)$.
 - The primitive polynomial is the feedback polynomial of LFSR.
 - Let $\alpha \in GF(2^n)$ be the primitive root.
 - $\gamma \in GF(2^n)$ is natural conversion from $\Gamma \in \{0,1\}^n$.

$G^t \times \Gamma$ is "commutative"

• $G^t \times \Gamma \in \{0,1\}^n$ is natural conversion of $\alpha^t \gamma \in GF(2^n)$.

• Multiplication over $GF(2^n)$ is commutative.

$$G^t \times \Gamma \iff \alpha^t \gamma \Leftrightarrow \gamma \alpha^t \Leftrightarrow M_{\gamma} \times \alpha^t$$

$G^t \times \Gamma$ is "commutative"

Structure of M_{ν}

$$\gamma = \alpha + \alpha^3 + \alpha^4 + \alpha^6 + \alpha^7$$
($\Gamma = 01011011$)

Corresponding Galois Field

$$GF(2^8) = GF(2)[x]/(x^8 + x^4 + x^3 + x^2 + 1)$$

$$M_{\gamma} = egin{pmatrix} \gamma & \gamma \alpha & \gamma \alpha & \gamma \alpha \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \end{pmatrix}$$

New property for FCA

$$s \times G^t \times \Gamma = \langle s, G^t \times \Gamma \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

$$\langle s \times M_{\gamma}, \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

where α^t is converted into an element over $\{0,1\}^n$ naturally.

New property for FCA

$$\langle s \times M_{\gamma}, \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

where α^t is converted into an element over $\{0,1\}^n$ naturally.

- Parity check equations are generated from α^t .
 - If attackers guess $s \times M_{\gamma}$ instead of s, the approximation above holds with high probability.
 - If there are m high-biased masks $\gamma_1, ..., \gamma_m$, all of $s \times M_{\gamma_i}$ are highly biased.

We have multiple biased solutions!!

New Algorithm for the FCA

Motivation

We want to exploit multiple solutions.

Conventional FCA
$$\langle s', G^t imes \Gamma
angle pprox \oplus_{i \in \mathbb{T}_z} z_{t+i}$$

If s' = s, the approximation above holds w.h.p.

New FCA
$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}_z} z_{t+i}$$

If $s' = s \times M_{\gamma}$, the approximation above holds w.h.p. Multiple γ implies multiple high-biased solutions.

1. Generate parity-check equations.

$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}} z_{t+i} \text{ for } t \in \{0, 1, \dots, N-1\}$$

2. Pick top $N_p s'$ whose empirical bias is high.

$$s' = s \times M_{\gamma_i}$$

$$s' \times M_{\gamma_i}^{-1} = s$$

1. Generate parity-check equations.

$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}} z_{t+i} \text{ for } t \in \{0, 1, \dots, N-1\}$$

Time complexity: N

2. Pick top $N_p s'$ whose empirical bias is high.

$$s' = s \times M_{\gamma_i}$$

$$s' \times M_{\gamma_i}^{-1} = s$$

1. Generate parity-check equations.

$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}} z_{t+i} \text{ for } t \in \{0, 1, \dots, N-1\}$$

Time complexity: N

2. Pick top $N_p s'$ whose empirical bias is high.

$$s' = s \times M_{\gamma_i}$$

Time complexity : $n2^n$

$$s' \times M_{\gamma_i}^{-1} = s$$

Bypassed FWHT

- We don't need to evaluate all $s' \in GF(2)^n$.
 - Because there are multiple s's with high bias.
 - Even if we only evaluate s' whose LSB is always 0, we should find m/2 high-biased s's on average.
 - Complexity of the bypassed FWHT is $(n-1)2^{n-1}$.
 - If β bits are bypassed, it reduces to $(n \beta)2^{n-\beta}$.

1. Generate parity-check equations.

$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}} z_{t+i} \text{ for } t \in \{0, 1, \dots, N-1\}$$

Time complexity: N

2. Pick top $N_p s'$ whose empirical bias is high.

$$s' = s \times M_{\gamma_i}$$

Time complexity : $(n - \beta)2^{n-\beta}$

$$s' \times M_{\gamma_i}^{-1} = s$$

1. Generate parity-check equations.

$$\langle s', \alpha^t \rangle \approx \bigoplus_{i \in \mathbb{T}} z_{t+i} \text{ for } t \in \{0, 1, \dots, N-1\}$$

Time complexity: N

2. Pick top $N_p s'$ whose empirical bias is high.

$$s' = s \times M_{\gamma_i}$$

Time complexity : $(n - \beta)2^{n-\beta}$

3. Recover s from picked s'.

$$s' \times M_{\gamma_i}^{-1} = s$$

m: # of biased masks

Time complexity : $N_p \times m$

How to estimate the success probability

1. Generate parity-check equations.

- 2. Pick top $N_p s'$ whose empirical bias is high.
 - ➤ Normal distributions are used.

- 3. Recover s from picked s'.
 - > Poisson distributions are used.

Example parameter

- $(n, c, m, \beta, th) = (24, 2^{-10.415}, 2^{10}, 5, 2^{12.68})$
- Collect $N=2^{23.25}$, and evaluate $\sum_{t=0}^{N}(-1)^{\langle s',\alpha^t\rangle \bigoplus_{i\in \mathbb{T}_Z} z_{t+i}}$
- Normal distributions

- If $s' = s \times M_{\gamma_i}$, $\mathcal{N}(Nc, N)$.
 - Let ϵ_b be the probability s.t. it's greater than th.
- Otherwise, $\mathcal{N}(0, N)$.
 - Let ϵ_u be the probability s.t. it's greater than th.

$$N_p = m2^{-\beta}\epsilon_b + 2^{n-\beta}\epsilon_u \approx 2^{n-\beta}\epsilon_u = 2^{13.28}$$
 solutions are left.

Theoretical estimation (Poisson distribution)

Theoretical and experimental simulations

Plot experimental results (Poisson distribution)

Average of 1000 trails

Theoretical and experimental simulations

Application to Grain Family

Grain Family

- If there are many high-biased linear masks, the new framework is powerful.
- Grain-like ciphers tend to have many high-biased linear masks because of the h function.

Why Grain has many approximations

Example, case of Grain v1

$$h(x_0, \dots, x_4) = x_1 + x_4 + x_0 x_3 + x_2 x_3 + x_3 x_4 + x_0 x_1 x_2 + x_0 x_2 x_3 + x_0 x_2 x_4 + x_1 x_2 x_4 + x_2 x_3 x_4.$$

Correlation	Input linear mask				
-2^{-2}	00011, 01001, 01010, 01011, 01101, 01111, 10110, 11000, 11011, 11100				
2^{-2}	00111, 01110, 10010, 11010, 11110, 11111				

Each input linear mask derives different linear approximations.

Why Grain has many approximations

- Example, case of Grain v1
 - There are 2^4 input linear mask for each active h function.

- Moreover, the sum of $|\mathbb{T}_z|$ key stream bits is used.
 - So, the potential number of approximations is $2^{4\times |\mathbb{T}_Z|}$.
 - $\mathbb{T}_z = \{0,14,21,28,37,45,52,60,62,80\}$ is exploited when Grain-v1 is attacked.
 - Potentially, there are $2^{4\times10}=2^{40}$ different linear approximations.
 - But, in real, ...
 - More complicated evaluation is required.
 - Please read our paper in detail.

Conclusion and open question

Our attack result.

Target	# of lin. approx.	Correlations	Data	Time
Grain-128a				
Grain-128				
Grain-v1				

^{*} For Grain-128, dynamic cube attack is more powerful.

- Open question.
 - We only break full Grain-128a w/o authentication.
 - If the authentication is enabled, only even-clock outputs are used.
 - Odd-clock ones are used for the authentication, and we cannot observe them.
 - Then, we weren't able to find high-biased linear approximations.

