Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities

Achiya Bar-On Nathan Keller Orr Dunkelman

Eyal Ronen

Adi Shamir

AES

- AES is the best known and most widely used secret key cryptosystem
 - Almost all secure connections on the Internet use AES
- Its security had been analyzed for more than 20 years
- AES has either 10, 12, or 14 rounds depending on the key size (128, 192, 256 bits)
- To date there is no known attack on full AES which is significantly faster than exhaustive search

Analyzing reduced round AES

 Interesting as a platform for analyzing the remaining security margins

- Several Light Weight Cryptosystems and Hash functions use 4 or 5 rounds AES as a building block
 - 4-Round AES: ZORRO, LED and AEZ
 - 5-Round AES: WEM, Hound and ELmD

Analyzing reduced round AES

There are 3 relevant parameters:
 Time (T), Memory (M) and Data (D)

• To combine these 3 complexity measures it is common to summarize them as a single number max(T,M,D) defined as their Total Complexity

Best attacks on 5 round AES

Only a few techniques led to successful attacks against 5-round AES

Technique	Complexity Max(T, D, M)	Year
Square	2 ³²	2000
Imp. Differential	2 ³²	2001
Yoyo	2 ³²	2017

Recent attacks on 5 rounds AES

• In 2017 a new technique (the multiple-of-8 attack [GRR, EC'17]) was proposed, and in 2018 Grassi applied a special version of it (the mixture-differentials attack) to 5 round AES

However, its complexity was not better than previous attacks

• In this work we improve the 20 year old record to 2²²

Recent attacks on 5 rounds AES

• In 2017 a new technique (the multiple-of-8 attack [GRR, EC'17]) was proposed, and in 2018 Grassi had applied a special version of it (the mixture-differentials attack) to 5 round AES

However, its complexity was not better than previous attacks

Best attacks on 5 round AES - updated

Technique	Complexity Max(T, D, M)	Year
Square	2 ³²	2000
Imp. Differential	2 ³²	2001
Yoyo	2 ³²	2017
Grassi	2 ³²	2018

Our new result

• Breaking the 20 years old 2^{32} barrier by a factor of 1000:

Technique	Complexity Max(T, D, M)	Year
Square	2 ³²	2000
Imp. Differential	2 ³²	2001
Yoyo	2 ³²	2017
Grassi	2 ³²	2018
Our new result	2 ²²	2018

AES structure

• 10, 12, or 14 rounds, where each round of AES consists of:

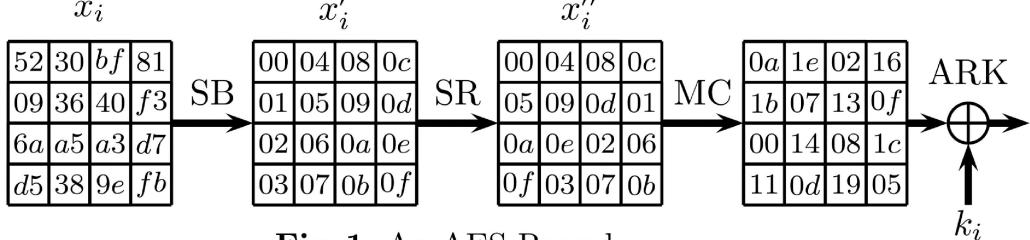
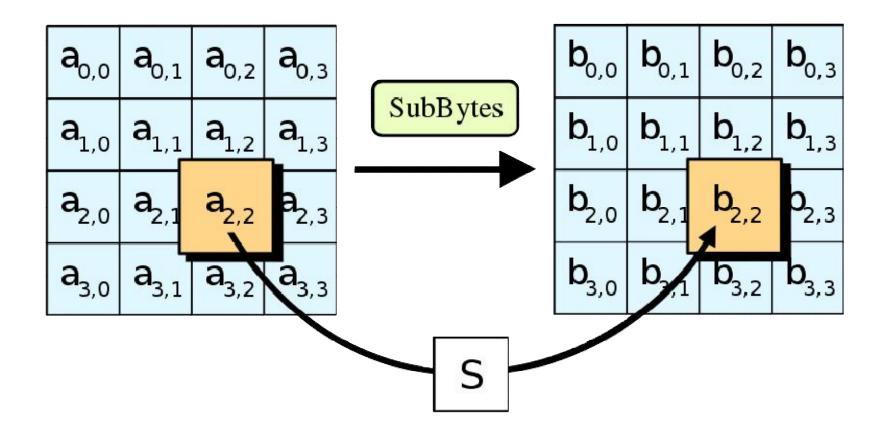
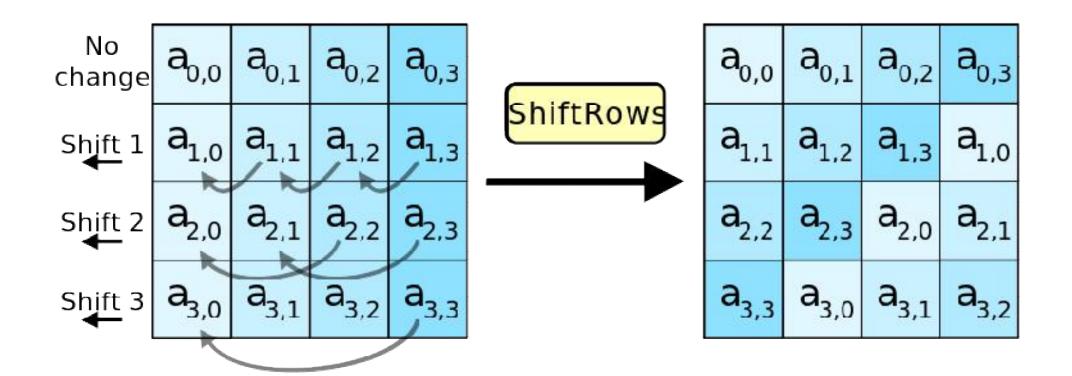
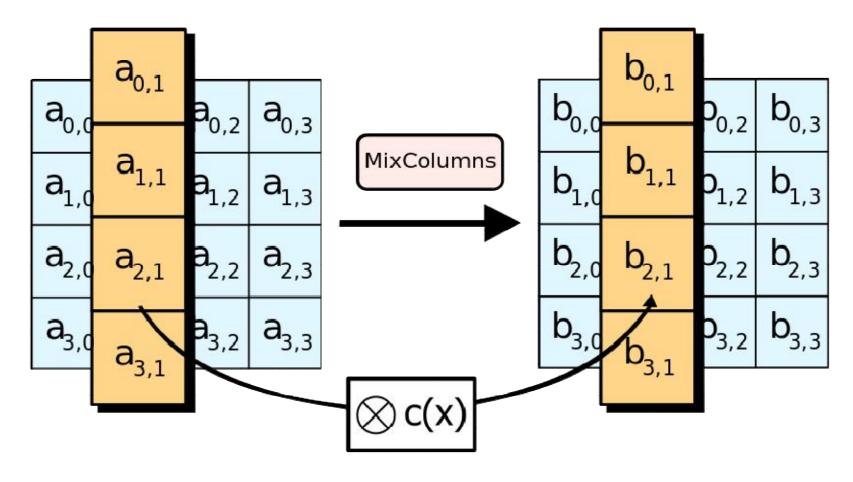



Fig. 1. An AES Round

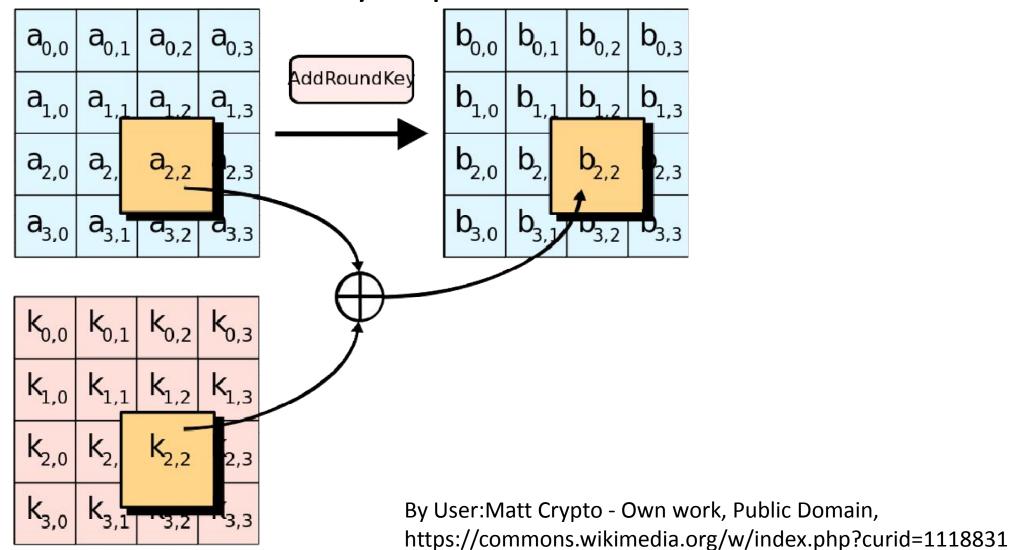

- Extra ARK operation before the first round
- No Mix Column in the last round

SB – SubBytes Operation

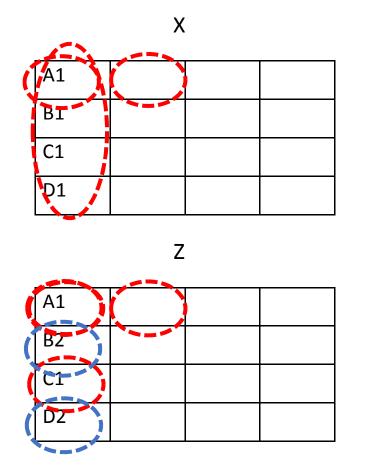


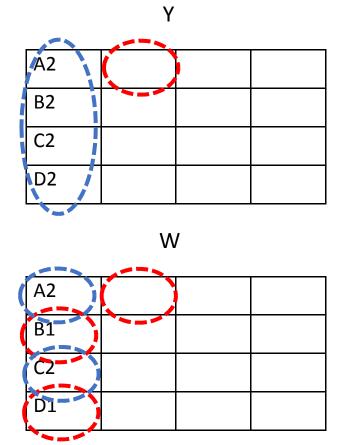
By User:Matt Crypto - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1118913

SR – ShiftRows Operation



MC – MixColumn Operation


By User:Matt Crypto - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1118874


ARK – Add Round Key Operation

The notation of mixtures (Grassi et. al 2017)

• What is a mixture of an AES state pair (x,y)?

(1	l iqual
	Α	specific Value
•		4 values Xor to 0
		Arbitrary Value

• Consider the following 4 inputs to round i

X

A1		
B1		
C1		
D1		

Z

A1		
B2		
C1		
D2		

A2		
B2		
C2		
D2		

A2		
B1		
C2		
D1		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i after Sub Byte

Χ

A1*		
B1*		
C1*		
D1*		

Ζ

A1*		
B2*		
C1*		
D2*		

Υ

A2*		
B2*		
C2*		
D2*		

A2*		
B1*		
C2*		
D1*		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

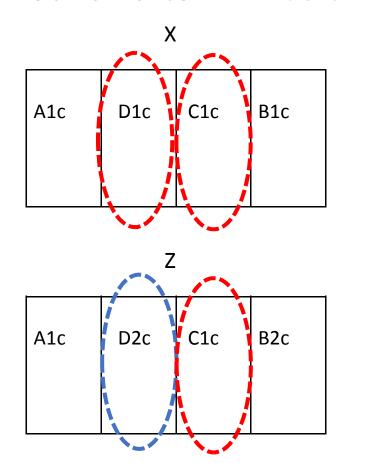
Round i after Shift Rows

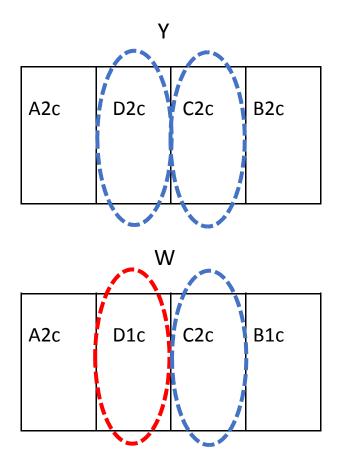
X

A1*			
			B1*
		C1*	
	D1*		

Ζ

A1*			
			B2*
		C1*	
	D2*		


Υ


A2*			
			B2*
		C2*	
	D2*		

A2*			
			B1*
		C2*	
	D1*		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i after Mix Column

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i after Add Round Key

X

Ζ

A1c*	D2c*	C1c*	B2c*

Υ

A2c*	D2c*	C2c*	B2c*

A2c*	D1c*	C2c*	B1c*

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

• Input to round i+1

Χ

A1c*	D1c*	C1c*	B1c*

Ζ

A1c*	D2c*	C1c*	B2c*

Υ

A2c*	D2c*	C2c*	B2c*

A2c*	D1c*	C2c*	B1c*

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+1 after Sub Byte

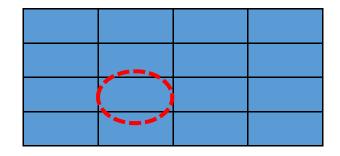
Χ

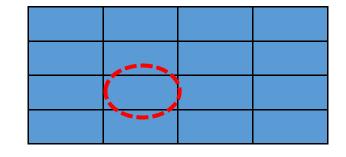
A1c'	D1c′	C1c'	B1c'

Ζ

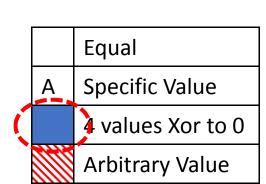
A1c'	D2c'	C1c'	B2c'

Υ

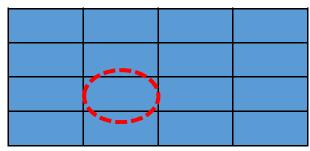

A2c'	D1c'	C2c'	B1c′

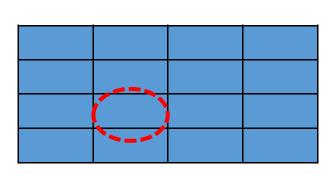


	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value


Implies weaker property in round i+1 after Sub Byte

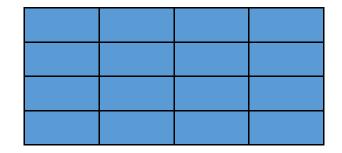
X

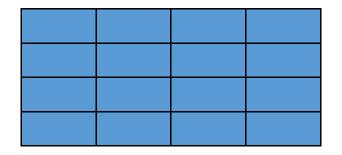


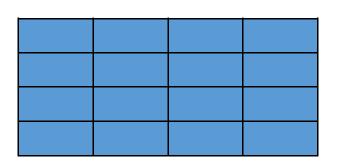


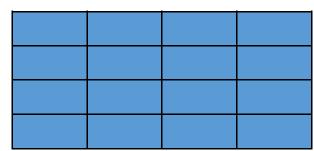
W

Z

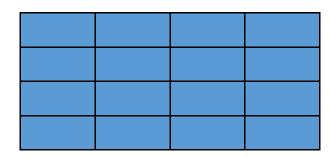


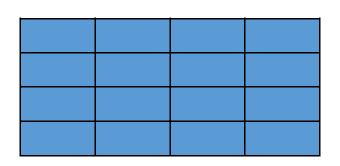



Round i+1 after Shift Row, Mix Column and ARK

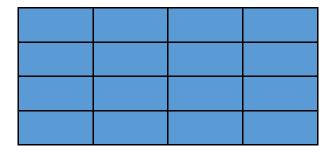

X

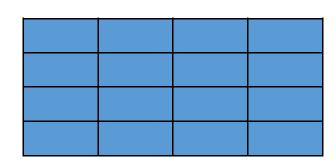
Z




	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

• Input to round i+2


X



Ζ

Υ

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

• Assume states (X,Y) are equal in one of their diagonals

X

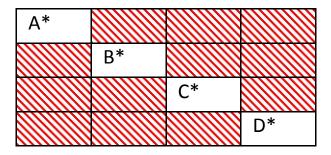
А			
	В		
		С	
			D

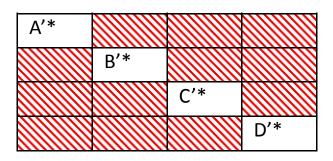
А			
	В		
		С	
			D

W

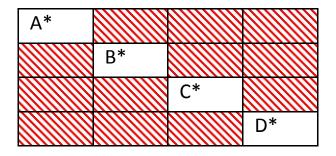
• Then: z

A'			
	B'		
		C'	
			D'


A'			
	B'		
		C'	
			D'


	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+2 after Sub Byte


Χ

Z

Υ

A'*			
	B'*		
		C'*	
			D'*

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+2 after Shift rows

X

A*	
B*	
C*	
D*	

Ζ

A'*	
B'*	
C'*	
D'*	

Υ

A*	
B*	
C*	
D*	

A'*	
B'*	
C'*	
D'*	

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+2 after Mix Column

X

A°	
B°	
C°	
D°	

Ζ

A°′	
B°′	
C°′	
D°′	

Υ

A°	
B°	
C°	
D°	

A°′	
B°'	
C°′	
D°′	

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+2 after Add Round Key

X

A*	
B*	
C*	
D*	

Ζ

A*'	
B*'	
C*'	
D*'	

Υ

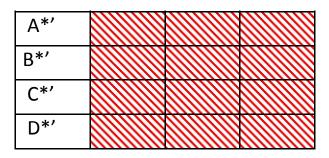
A*	
B*	
C*	
D*	

A*'	
B*'	
C*'	
D*'	

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

• Then in the input to round i+3 we get

Χ


A*

B*

C*

D*

Z

Υ

A*	
B*	
C*	
D*	

A*'	
B*'	
C*'	
D*'	

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Round i+3 after sub byte

X

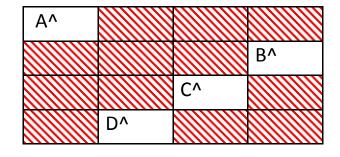
Α^	
B^	
C^	
D^	

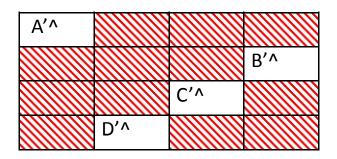
Ζ

A^'	
B^'	
C^'	
D^'	

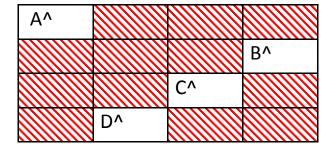
Υ

Α^	
B^	
C^	
D^	


A^'	
B^'	
C^'	
D^'	



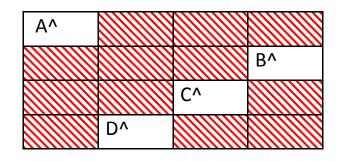
	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value


Round i+3 after Shift Rows and before Mix Column

X

Z

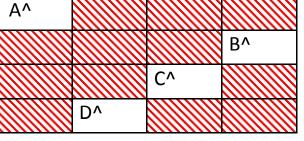
Α'^			
			B'^
		C'^	
	D'^		



	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

AES 4 Round Distinguisher

Last round of AES has no Mix Column



X

Ζ

Α'^			
			B'^
		C'^	
	D'^		

Α'^			
			B'^
		C'^	
	D'^		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

A 5 Round AES Attack (Grassi 18)

- Precede the 4 round distinguisher with an extra round before it
- We encrypt all possible values of A,B,C,D

Α			
	В		
		С	
			D

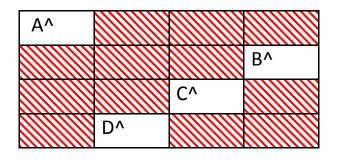
Equal

A Specific Value

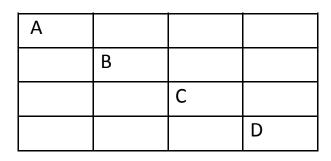
4 values Xor to 0

Arbitrary Value

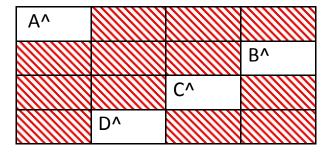
Then as input to round 1 we get:


A'		
B'		
C'		
D'		

A', B', C', and D' is a permutation of A, B, C, D which depends only on 4 key bytes


A 5 Round AES Attack [Grassi 18]

• We look for a "good ciphertext pair", and get the plaintext

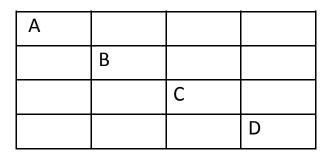

X ciphertext

X plaintext

Y ciphertext

Y plaintext

A'			
	B'		
		C'	
			D'


	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

• For all 2³² possible key bytes: partially encrypt (AKR, SB, SR, MC)

X partial round encryption

A*		
B*		
C*		
D*		

X plaintext

Y partial round encryption

A'*		
B'*		
C'*		
D'*		

Y plaintext

A'			
	B'		
		C'	
			D'

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Create a state mixture Z, W

X partial round encryption

A*		
B*		
C*		
D*		

Z partial round encryption

A*		
B'*		
C*		
D'*		

Y partial round encryption

A'*		
B'*		
C'*		
D'*		

W partial round encryption

A'*		
B*		
C'*		
D*		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Partially decrypt Z and W

Z plaintext

A°			
	B°		
		C°	
			D°

Z partial round encryption

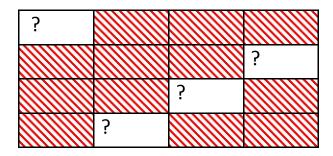
A*		
B'*		
C*		
D'*		

W plaintext

A°′			
	B°'		
		C°′	
			D°′

W partial round encryption

A'*		
B*		
C'*		
D*		


	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Get Z and W ciphertexts, and check the equality condition

Z plaintext

A°			
	B°		
		C°	
			D°

Z ciphertext

W plaintext

A°'			
	B°'		
		C°'	
			D°'

W ciphertext

3			
			5
		?	
	,		

	Equal
Α	Specific Value
	4 values Xor to 0
	Arbitrary Value

Attack	Complexity
Grassi's original attack	$T=2^{32}$, $D=2^{32}$, $M=2^{32}$

Attack	Complexity
Grassi's original attack	$T=2^{32}$, $D=2^{32}$, $M=2^{32}$
Reduce data to get one "good mixture"	$T=2^{47}$, $D=2^{24}$, $M=2^{24}$

Attack	Complexity
Grassi's original attack	$T=2^{32}$, $D=2^{32}$, $M=2^{32}$
Reduce data to get one "good mixture"	$T=2^{47}$, $D=2^{24}$, $M=2^{24}$
Switch order to iterate over pairs	$T=2^{33}$, $D=2^{24}$, $M=2^{24}$

Attack	Complexity
Grassi's original attack	$T=2^{32}$, $D=2^{32}$, $M=2^{32}$
Reduce data to get one "good mixture"	$T=2^{47}$, $D=2^{24}$, $M=2^{24}$
Switch order to iterate over pairs	$T=2^{33}$, $D=2^{24}$, $M=2^{24}$
Use precomputed table	$T=2^{29}$, $D=2^{24}$, $M=2^{24}$

Attack	Complexity
Grassi's original attack	$T=2^{32}$, $D=2^{32}$, $M=2^{32}$
Reduce data to get one "good mixture"	$T=2^{47}$, $D=2^{24}$, $M=2^{24}$
Switch order to iterate over pairs	$T=2^{33}$, $D=2^{24}$, $M=2^{24}$
Use precomputed table	$T=2^{29}$, $D=2^{24}$, $M=2^{24}$
Smart selection of input structure	T=2 ²² , D=2 ²² , M=2 ²²

Idea 1 - Reduce Data: The good

- There are many mixtures, but we only need one of them
- Grassi used 2³² data
 - 2³² encryptions -> 2⁶³ pairs -> 2³¹ good pairs
- We use only 2²⁴ data
 - 2²⁴ encryptions -> 2⁴⁷ pairs -> 2¹⁵ good pairs
 - For each key and mixture type: We have the mixture in our data with probability $(2^{24}/2^{32})^2 = 2^{-16}$
 - There are 2^{15} pairs and 7 mixture types: We have a good mixture with probability 1- $(1-2^{-16})^{(7*2^{15})} \sim 0.97$

Idea 1 - Reduce Data: The bad

- We can thus reduce the data complexity
- However, we need to go over all 2¹⁵ pairs
 - So now $T = 2^{32}*2^{15} = 2^{47}$
- This is only a time \ data tradeoff:
 - We reduce the data by a factor of 2⁸
 - While increasing the time by a factor of 2¹⁵

Idea 2 – Switch Order: The good

- We can change the order of operations, iterating over all pairs of pairs:
 - If we have a mixture after ARK, SB , SR and MC operations: $X_0'' \oplus Y_0'' \oplus Z_0'' \oplus W_0'' = 0$
 - Holds for each byte separately, depending on a single key byte $SB(X_{0,0} \oplus k_0) \oplus SB(Y_{0,0} \oplus k_0) \oplus SB(Z_{0,0} \oplus k_0) \oplus SB(W_{0,0} \oplus k_0) = 0$
 - Can find a suggestion for each of the 4 key bytes independently
 - Take the 4 key bytes and check for mixture after 1 round

Idea 2 – Switch Order: The bad

- For each pair of pairs (quartet) we can get a 4 key bytes suggestion with 4*2⁸ S-Box applications
 - 2²⁴ encryptions -> 2⁴⁷ pairs -> 2¹⁵ "good pairs"
 - 2^{29} quartets * 4 * 2^8 S box = 2^{39} S-Box ~ 2^{33} encryptions

Idea 3 - Precomputed Table

- We can use an optimized precomputed table
- Consider quartet of bytes of the form (0, a, b, c)
 - For each quartet we find a k such as: $SB(k) \oplus SB(a \oplus k) \oplus SB(b \oplus k) \oplus SB(c \oplus k) = 0$
 - We get (0, a, b, c) by $(0, y \oplus x, z \oplus x, w \oplus x)$
- We get a table of size 2²⁴
 - The order is irrelevant so we can arrange in increasing order: save a factor of 6 to get ~ 2 (21.4)
 - Precomputation can be optimize to use ~ 2²⁴ S Box applications

Idea 4 – Smart Input Structure

- So far we get data and memory 2²⁴ and time 2²⁹
- We can use just 2^{22.25} data by a smarter choice of input

Α			
	В		
		С	

- E.g., A and B can get all 28 values each, C gets 26.25 possible values
- We get a boost of 2⁸ to the mixture probability from 2⁻⁶³ to 2⁻⁵⁵
- 3 possible mixtures instead of 7, so in total 3* 2⁻⁵⁵

Idea 4 – Smart Input Structure

- What is the probability of a mixture?
- $2^{22.25}$ encryptions -> $2^{43.5}$ pairs -> 2^{86} pairs of pairs
- Number of mixture $2^{86} * 3*2^{-55} = 3*2^{31}$
- With "decent" probability we will get at least one "good mixture"
- We use hash tables of the ciphertext to sort the pairs

- Only get 3 bytes of key for each diagonal
 - By applying the same technique on the other diagonals we can recover 13 key bytes and brute force the rest of the key

Our Observation 5

- Data \ Memory trade off
- We can check for zero diff also in SR(Col(1)) and SR(Col(2)) ...

- We can check 4 diagonals
 - Increase probability of success by 4
 - Amount of quartets = date^4
 - Reduces the data only by $4^{(1/4)} = \text{sqrt}(2)$
 - Increases the amount of memory by factor of 4

Experimental Verification of Our Attack

- We have experimentally verified our theoretic analysis
 - 4 possible amounts of data
 - 200 different keys for each amount
 - Calculated the partial and full key recovery probability

Amount Of Data	3 Byte recovery probability	Full Key recovery probability
2 ²²	0.5	0.031
2 ^{22.25}	0.715	0.187
2 ^{22.5}	0.935	0.715
2 ²³	1	1

Extending to 7 round AES

Technique	Rounds	Data	Memory	Time
Gilbert-Minier	7	2^32	2^80	2^144
Demirci-Selcuk	7	2^99	2^98	2^99
Demirci-Selcuk	7	2^32	>2^100	>2^100
Square	7 (192-bit)	2^36	2^36	2^155
Square	7 (256-bit)	2^36	2^36	2^171

Extending to 7 round AES

Technique	Rounds	Data	Memory	Time
Gilbert-Minier	7	2 ³²	280	2144
Demirci-Selcuk	7	2 ⁹⁹	2 ⁹⁸	2 ⁹⁹
Demirci-Selcuk	7	2 ³²	>2100	>2100
Square	7 (192-bit)	2 ³⁶	2 ³⁶	2 ¹⁵⁵
Square	7 (256-bit)	2 ³⁶	2 ³⁶	2 ¹⁷¹
Mixture (our)	7 (192-bit)	2 ²⁷	2 ³²	2 ¹⁵²
Mixture (our)	7 (192+256)	2 ²⁷	2 ⁴⁰	2144

Summary and open questions

- We broke a 20 year old attack complexity barrier on 5 round AES, improving it by a factor of 1000
- We obtained an improved "practical data and memory" attack on 7 round AES
- Is it possible to extend our new attacks to larger versions of AES?
- Can our results be used to attack schemes which use reduced 4/5 round AES as a component?

