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Hash Functions are Useful
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Hash Functions are Complex
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Hash Implementation Can Be

Optimized
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ommon Deployment

orer -lOW €A We assure we are
really using a SHA256?

Home Blog Do

#include <openssl/sha.h>

int SHA1_Init(SHA_CTX *c);

int SHA1_Update(SHA_CTX *c, co

int SHA1_Final(unsigned char x

unsigned char *SHAl(const unsig
unsigned char xmd);
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int SHA224_Init(SHA256_CTX *c);
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len);
int SHA224_Final(unsigned char xmd, SHA256_CTX *c);

unsigned char *SHA224(const unsigned char xd, size_t n,
unsigned char xmd);

int SHA256_Init(SHA256_CTX *c);

int SHA256_Update(SHA256_CTX *c, const void *data, size_t len);

int SHA256_Final(unsigned char xmd, SHA256_CTX *c);

unsigned char *SHA256(const unsigned char *xd, size_t n,
unsigned char xmd);
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Subversion Attack
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A Crafty Subversion
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Correct on overwhelming portion of inputs



Rationale Behind

—

Malicious but Proud:
Keep the subversion undetectable
Via blackbox testing

Echo the classical Kleptography

Evasive Triggers are Devastating Enough



Chain Takeover Attack
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Chain Takeover Attack

When dominating portion

of the mining machines come
from very few manufacturers!?
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The Crooked Hash
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Chain Takeover Attack
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Chain Takeover Attack

|. Create valid new blocks without efforts
2. No one can detect in advance via blackbox testing

! P ) )< D
o

Whatever ﬂ ‘ﬂ ‘)QE

Fransactions

block




Goal: Repair Subverted Hash

Preserve all

% / properties of RO
H / )

Clipping the power of kleptographic hash subversion
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Correcting Subverted ROs |:
Modeling

Observationl: Deterministic correction won’t work

G(-) = go H o f(-) cannot be RO

Set ﬁ(f(z)) =0  knows for sure G(z) = g(0)



Correcting Subverted ROs |:
Modeling

Observation 2: using private randomness is trivial

VS d
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Use small amount of
But unre: public randomness lic object
drawn after subversion



Characterizing ““as good as”

Indifferentiability [MRC04,CDMPO05]

Replacement theorem [MRC04,CDMPO05]: é as good as in larger systems



Correcting Subverted ROs |:
Modeling

Crooked Indifferentiability

ideal ideal




Correcting Subverted ROs |:
Modeling

@ Crooked Indifferentiability @
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A small fixed amount

¥
H-crooked Replacement theorem: é as good as in larger systems




Correcting Subverted ROs |l:
Construction

~~

Attemptl : G(x)=H(x®r)
Break: bac%;cgéoor z,query z @ r

~

trivially distingsuish G(x) = H(z) from random

Attempt II: G(z)=H(zer)P H(x®rs)
Break: b)%gg%ors z||*, and *||z, query an X, such that

rPdry=z||?,and, x H ro =7||2

trivially distinguish H (z||*) @ H (x||z) from random



Correcting Subverted ROs |l:
Construction

Similar attack can be generalized to using n/\ terms
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Rationale Behind

Trigger input burns bits

Sufficient number of terms must
contain some “good” terms



Correcting Subverted ROs Il
Analysis

G(x) = ﬁl(a: D) @ﬁz(x D ) @ i @ﬁgn(x D 31,
For every X,

There exist some terms that are honestly generated

The term is honest could be
that it satisfies some

complex adversarial
rejection sampling condition




Correcting Subverted ROs |l
Analysis

G(z) = Hi(z ®rq) @ Hy(z @ 1) @ R @ Hsp (2 D r3n)
For every x,
There exist some terms that are honestly generated

There exist some terms that are “independent” with others

There exist some good terms that satisfies both conditions



Two Challenges Remain

G(z) :=Hi(zor) P H(zdr2) P ... D Hsnlz @ ra)

To examine
“independence”, we have

Not clear about a full
simulation, e.g.,

to evaluate all terms, how o
programmability

to claim uniformness’

A new analytic tool Small tweak In G




A New Machinery: Rejection
Resampling Lemma

LL(E) X17'°'7Xi17Xi7X’i—|—17'°°7Xk

l

/L,(E) Xl,...,Xil,U,X]_|_1,...,Xk

It holds that pw(E)* < k- u'(E)



The Final Construction and
Analysis

G(z) = Hy(Hi(z @ 1) D .- @D Hon(z ® 70) )

resample the good term and “pretend’” to forget the value
internal layer 1s unpredicatable, applying one extra layer

handle all possible conditions of queries Iin a similar way



Preventing Chain Takeover
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Reflections

Self-correcting programs V.S. Correcting subverted ROs
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Private randomness lAe gl iale IR S s lelake M Dl IC randomness:

Preserve exact func EREERNIEIRGECTIN A distributional properties




Open Problems

Optimize our analysis to tolerate larger fraction of errors
A different construction utilizing fewer number of randomness

A simpler construction for special properties only

Many more......
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Evasive Iriggers are Devastating
Enough: System Sneak-in Attack
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Evasive Iriggers are Devastating
Enough: System Sneak-in Attack




