Correcting Subverted Random Oracles

Qiang Tang

New Jersey Institute of Technology

Joint work with
Alexander Russell (University of Connecticut),
Moti Yung (Google & Columbia University)
Hong Sheng Zhou (Virginia Commonwealth University)

Hash Functions are Useful

Hash Functions are Complex

Hash Implementation Can Be Optimized

White Paper

Jim Guilford Kirk Yap Vinodh Gopal

IA Architects
Intel Corporation

Fast SHA-256
Implementations
on Intel[®]
Architecture
Processors

Common Deployment

This Work

- I. Practical attacks
- 11. Formal modeling
- III. Construction
- IV. Security Analysis

Subversion Attack

A Crafty Subversion

Correct on overwhelming portion of inputs

Rationale Behind

Malicious but Proud:
Keep the subversion undetectable
Via blackbox testing

Echo the classical Kleptography

Evasive Triggers are Devastating Enough

Chain Takeover Attack

Chain Takeover Attack

When dominating portion of the mining machines come from very few manufacturers?

The Crooked Hash

Chain Takeover Attack

Chain Takeover Attack

Goal: Repair Subverted Hash

Clipping the power of kleptographic hash subversion

Correcting Subverted ROs I: Modeling

Observation I: Deterministic correction won't work

$$G(\cdot) = g \circ \widetilde{H} \circ f(\cdot)$$
 cannot be RO

Set
$$\widetilde{H}(f(z)) = 0$$
 knows for sure $G(z) = g(0)$

Correcting Subverted ROs I: Modeling

Observation 2: using private randomness is trivial

 \sim / \ \sim /

Use small amount of But unrea public randomness lic object drawn after subversion

Characterizing "as good as"

Indifferentiability [MRC04,CDMP05]

Replacement theorem [MRC04,CDMP05]:

in larger systems

Correcting Subverted ROs I: Modeling

Crooked Indifferentiability

Correcting Subverted ROs I: Modeling

H-crooked Replacement theorem:

in larger systems

Correcting Subverted ROs II: Construction

Attempt I: $G(x) = \widetilde{H}(x \oplus r)$

Break: backdoor z, query $z \oplus r$

trivially distinguish $G(x) = \widetilde{H}(z)$ from random

Attempt II: $G(x) = \widetilde{H}(x \oplus r_1) \bigoplus \widetilde{H}(x \oplus r_2)$

Break: backdoors z||*, and *||z, query an x, such that

$$x \oplus r_1 = z||?, \text{ and}, x \oplus r_2 = ?||z|$$

trivially distinguish $\widetilde{H}(z||*) \oplus \widetilde{H}(*||z)$ from random

Correcting Subverted ROs II: Construction

Similar attack can be generalized to using n/λ terms

$$G(x) := \widetilde{H}(x \oplus r_1) \bigoplus \widetilde{H}(x \oplus r_2) \bigoplus \ldots \bigoplus \widetilde{H}(x \oplus r_{3n})$$

Rationale Behind

Trigger input burns bits

Sufficient number of terms must contain some "good" terms

Correcting Subverted ROs III: Analysis

$$G(x) := \widetilde{H}_1(x \oplus r_1) \bigoplus \widetilde{H}_2(x \oplus r_2) \bigoplus \ldots \bigoplus \widetilde{H}_{3n}(x \oplus r_{3n})$$

For every x,

There exist some terms that are honestly generated

The term is honest could be that it satisfies some complex adversarial rejection sampling condition

Correcting Subverted ROs III: Analysis

$$G(x) := \widetilde{H}_1(x \oplus r_1) \bigoplus \widetilde{H}_2(x \oplus r_2) \bigoplus \ldots \bigoplus \widetilde{H}_{3n}(x \oplus r_{3n})$$

For every x,

There exist some terms that are honestly generated

There exist some terms that are "independent" with others

There exist some good terms that satisfies both conditions

Two Challenges Remain

$$G(x) := \widetilde{H}_1(x \oplus r_1) \bigoplus \widetilde{H}_2(x \oplus r_2) \bigoplus \ldots \bigoplus \widetilde{H}_{3n}(x \oplus r_{3n})$$

To examine "independence", we have to evaluate all terms, how to claim uniformness?

A new analytic tool

Not clear about a full simulation, e.g., programmability

Small tweak in G

A New Machinery: Rejection Resampling Lemma

It holds that $\mu(E)^2 \leq k \cdot \mu'(E)$

The Final Construction and Analysis

$$G(x) := \widetilde{H}_0 \Big(\widetilde{H}_1(x \oplus r_1) \bigoplus \ldots \bigoplus \widetilde{H}_{3n}(x \oplus r_{3n}) \Big)$$

resample the good term and "pretend" to forget the value

internal layer is unpredicatable, applying one extra layer

handle all possible conditions of queries in a similar way

Preventing Chain Takeover

Proof of Work

And many more immediate applications.....

Reflections

Self-correcting programs V.S. Correcting subverted ROs

Preserve exact funct

Private randomness A distributional version of ublic randomness; the classical theory

e distributional properties

Open Problems

- · Optimize our analysis to tolerate larger fraction of errors
- · A different construction utilizing fewer number of randomness
- · A simpler construction for special properties only
- Many more....

Correcting Subverted Random Oracles

Alexander Russell, Qiang Tang, Moti Yung and Hong-Sheng Zhou qiang@njit.edu

Evasive Triggers are Devastating Enough: System Sneak-in Attack

Evasive Triggers are Devastating Enough: System Sneak-in Attack

