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What is a VDF?

* Function — unique output for every M
input
* Delay - can be evaluated intime T =
cannot be evaluated in time (1-€)T @
~d

on parallel machine

* Verifiable — correctness of output can
be verified efficiently




What is a VDF?

e Setup(A, T) — public parameters pp
» pp specify domain X and range Y

* Eval(pp, x) — outputy, proofm

» PRAM runtime T with polylog(T) processors
e Verify(pp, x,y, 1) — {yes, no}

» Time complexity at most polylog(T)



Security Properties (Informal)

e Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofm (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, ') = yes

then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time(A) < a(T),

eg.o(T)=1-¢e)T then Pr[A(pp, X) =y ] < negligible(A) ,



Related Crypto Primitives

* Time-lock puzzles [Rsw’96, BN'00, BGJPVW’16]
o Trapdoor (secret key) setup per puzzle
o Not publicly verifiable”

* Proof-of-sequential-work (mmv’13, cp’18]
o Publicly verifiable
o Not a function (output isn’t unique)



VDF minus any property is “easy”

* Not Verifiable — chained one-way function

* No Delay — Many moderately hard functions

with efficient verification, e.g. discrete log
g’ =x

* Not a Function — Proofs of sequential work



Modular square roots [pnaz2, tw'is)

Assumption: No O(log(T)) time algorithm can
compute (with non-negligible probability)

xTmod p faster than log(T) sequential
multiplications (repeated squaring) for T € [1, p)



Modular square roots [pnaz2, tw'is)

e Setup: pick prime p, p=3 mod 4

* Eval(x): Compute a square root of x
p+1

modp&®y=x 4+

* Verify(x, y): y% = x @

proof size = log(p)




Modular square roots

A “proto-VDF”
» Eval time: log(p) * M(p)
» Verify time: M(p)
» Problem: Verify time not polylogarithmic in Eval time

M(p) = time complexity of
multiplication mod p
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Security Properties (Informal)

e Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofm (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, ') = yes

then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time(A) <o (T),

eg.o(T)=1-¢e)T then Pr[A(pp, X) =y ] < negligible(A) .



VDF security more formally...

Sequentiality Game

pp « Setup(A, T) /Isample setup params

L < Ay(pp,T) [ladversary preprocesses params

x « X //choose a random challenge input x
va < A1(L,pp,x) /ladversary computes output y

A= (Ay Ay) "wins” the game if y, = y s.t. Eval(pp,x) = (y, )

Def: VDF is (p, o)-sequential if no (4y, A1) with Ay runtime poly(A)

and A; PRAM runtime o(T) on p(T) processors wins the game with

prob. > negl(A)
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Part I: Applications of VDFs

A |
4 m \\
Carol
Randomness Multiparty Timestamping Proof-of- Permissionless
beacons randomness replication consensus
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Randomness beacon

e Rabin ‘83

An ideal service that reqularly publishes random
value which no party can predict or manipulate
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Many uses for random beacons

Cryptographic proofs Leader election
16



Randomness beacon

“Public displays” ? ;l
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Public entropy source

Stock prices

Your Company, Inc. (YCOM) | 26.58 4 568
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Assumption: (1) unpredictable, (2)adversary cannot fix stock prices
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Stock price manipulation
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Stock price randomness beacon

Closing prices of 100 stocks: M

The problem: extractor

Once prices settle a minute before

closing, attacker executes 20 last- h‘lﬂi (seed)

minute trades to influence seed.

pseudorandom

Attacker can predict outcome of generator

trades and choose favorable trades _

to bias result




Solution: slow things down with a VDF

"Hash(pFIces)™ " 20 bits

extractor

A solution: one hour VDF
e Attacker cannot tell what

trades to execute before ﬂ*ﬂi
market closes

Uniqueness: ensures no 0

ambiguity about output 128 Dbits [




Simple Bulletin Board

r r " | [ mildly
° b ¢ z synchronous
Public Bulletin Board
output seed =Hash(r, || r, || - |]r,) € {0,1}>°

Problem: Zoe controls the final seed !!
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Solution: slow things down with a VDF ws;

Public Bulletin Board (blockchain)

l

Hash(ry || ry | =[] r,) € {0,1}*°

Yy — seed, T
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Part ll: Constructions

Ly~ @—0-0-0—0-0—0-0—y

) (reverse permutation) |
SNARK/STARK proof 7 This work
A
_ 22 Assumption:
11. y=9° €6G P G Followup:
the group Pietrzak’18,
7T = {proof of correct has unknown | wesolowski’18
exponentiation} size 27



Hash Chain w/ Verifiable Computation

x> Hx) > HHKX)) > >HPXx)=y

T

« SNARK = “succinct non-interactive argument of knowledge”
[G’10,GGPR’13, BCIOP’13, BCCT'13]

« STARK = “succinct transparent non-interactive argument of
knowledge” [\'00, BBHR 18]
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Hash Chain w/ Verifiable Computation

x> Hx) > HHKX)) > >HPXx)=y

T

Problem

* Proof generation slower than hash chain, without
massive parallelism
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Incrementally Verifiable Computation

* Incrementally verifiable computation, proof carrying data
[Val08, BCCT12]

* A o-sequential VDF with a(t) = (1 — €)t for small €

x> H(x) > HHx)-» H®(x) > HO(x) » -+ - HO(x)

4 ' Ty = " Nlfinal
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IVC SNARK Optimizations

x > H(x) > HH@)- HP(x) » HY (x) - - > HO ()

T4 Y [4, R " Nfinal

1. Replace H with “SNARK friendly” hash function
» Low mult. complexity over F,
» E.g. MiMC (round function x = x3) [AGRRT'16]
» LowMC [ARTTZ’16]
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IVC SNARK Optimizations

x — d—— - a—a—-a—0—y | slow
X'_D'_D‘_D: i: D: E< D: :: y Fast

<

SNARK/STARK proof T

2. Replace H with permutation p that is slow in
forward direction, but fast / low complexity in
reverse

» SNARK/STARK for the low complexity direction 33



IVC SNARK Optimizations

x — d—— - a—a—-a—0—y | slow
X'_D'_D‘_D: i: D: E< D: :: y Fast

<

SNARK/STARK proof T

What have we gained?

* H can be 'weaker” than VDF, i.e. “proto-VDF” but
still asymmetric

» E.g. square roots mod p, factor 256 asymmetry 34



Square-roots vs SHA256

SHA256:
c— - E-E-E-E-E—-E—--

| N
L 27,904 gates J SNARK/STARK proof 7

>

Sguare-roots:
| OverF,: | [ Coordinate swap ]

% — i~ - - B
¢ — B — B s
<

SNARK/STARK proof
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Better asymmetric permutations?

* Even more general: injective rational maps
on algebraic sets

* Square roots / Cube roots Slow ; Fast
> Invert f(x) = x> over F, y1/3 : 3
* More general: injective polynomial i
inversion i
> Find unique x such that f(x) =y ') | f(x)
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Permutation polynomials

f is a degree d polynomial and f: F, - [F, is

a permutation on the field F,

* Inversion < find root of f(x) —c¢
* Find inverse of ¢ by computing: GCD(x9 — x, f d parallelism

* Euclidean GCD algorithm: d sequential steps
» Each step takes d parallel arithmetic operations

* NC algorithm: O(d3-8>) parallel processors [cDDL'97]
» Parallel advantage kicks in at d?®°> processors asible fc




Permutation Polynomials Ho

f

- Tunable degree,—ﬂ“‘
independent of field size |F|

« Fast to evaluate (e.g. sparse
polynomial)

* No faster way to invert than
computing GCD

(Assuming fewer than O(d%8%)
parallel processors)

o

Eval: O(d) PRAM steps

Verify: O(log(d))

ly Grail

S—

Exponential

gap!
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Permutation polynomials

f is a degree d polynomial and f: F, - [F, is

a permutation of the field I,

a is not
p-1St x3 2t+1+1 3
power Xx X + x° + x € [F2t+1
i
xP —ax € F,m a is not s-1st
power Guralnick, Muler 97
1 s+1
(zxs)(xs—ax —a)(x®* —ax + a)’ + ((xs —ax +a)?* + 4a2x)_2_ c IFano




Permutation polynomials

f is a degree d polynomial and f: F, - [F, is
a permutation of the field I,

a is not
p-1st t+1
power XS x% Tt 4 i X € I[F2t+1
i .
xP —a a is not s-1st
power & Guralnick, Muler 97
s+1 .
S__ _ s __ S s __ 2 2 2 m
(sz)(x ax —a)(x ax + a)® + ((x ax + a)“ + 4a x) € I, -




Construction Summary

O(log(T)) SNARKs
O(log(T))

SNARK/STARK +
Sqar. rts. or ideal perm. polynomial

Verification
Proof size

Assumption

Trusted setup

Quantum resistant

Simple

None w/ STARKSs or using “slower”
verification, sequentiality not broken

Possibly with STARKs
No



Newer VDFs [P’18, W’18]

e Let G be afinite cyclic group with generator g€ G
G={1,g8%8 ..}

e Assumption: the group G has unknown size

op= (G, H:X— G) T squarings }

* Eval(pp, x): output Y = H(CIZ‘)(QT) c G

proof TU = (proof of correct exponentiation) [p’18, W’18]
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THE END

https://eprint.iacr.org/2018/601
Survey of VDFs
https://eprint.iacr.org/2018/712.pdf s
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