Verifiable Delay Functions

Dan Boneh, Joe Bonneau, Benedikt Bünz, <u>Ben Fisch</u>

Crypto 2018

What is a VDF?

- Function unique output for every input
- **Delay** can be evaluated in time T cannot be evaluated in time $(1-\epsilon)$ T on parallel machine
- Verifiable correctness of output can be verified efficiently

What is a VDF?

- Setup(λ , T) \rightarrow public parameters pp
 - > pp specify domain X and range Y
- Eval $(pp, x) \rightarrow \text{output } y$, proof π
 - > PRAM runtime T with polylog(T) processors
- Verify(pp, x, y, π) \rightarrow { yes, no }
 - > Time complexity at most polylog(T)

Security Properties (Informal)

- Setup $(\lambda, T) \rightarrow$ public parameters pp
- Eval $(pp, \mathbf{x}) \rightarrow \text{output } \mathbf{y}, \text{ proof } \boldsymbol{\pi} \text{ (requires } T \text{ steps)}$
- Verify $(pp, \mathbf{x}, \mathbf{y}, \boldsymbol{\pi}) \rightarrow \{yes, no\}$

```
"Soundness": if Verify(pp, x, y, \pi) = Verify(pp, x, y', \pi') = yes
then y = y'
```

" σ -Sequentiality": if A is a PRAM algorithm, time(A) $\leq \sigma(T)$, e.g. $\sigma(T) = (1 - \epsilon)T$ then $\Pr[A(pp, X) = Y]$ < negligible(λ)

Related Crypto Primitives

- Time-lock puzzles [RSW'96, BN'00, BGJPVW'16]
 - Trapdoor (secret key) setup per puzzle
 - Not ``publicly verifiable"

- Proof-of-sequential-work [MMV'13, CP'18]
 - Publicly verifiable
 - Not a function (output isn't unique)

VDF minus any property is "easy"

- Not Verifiable chained one-way function
- No **Delay** Many *moderately hard* functions with efficient verification, e.g. discrete log $g^y = x$
- Not a Function Proofs of sequential work

Modular square roots [DN'92, LW'15]

```
Assumption: No O(log(T)) time algorithm can compute (with non-negligible probability) x^T \mod p faster than log(T) sequential multiplications (repeated squaring) for T \in [1, p)
```

Modular square roots [DN'92, LW'15]

Setup: pick prime p, p = 3 mod 4

• Eval(x): Compute a square root of x mod p \Leftrightarrow y = $x^{\frac{p+1}{4}}$

• Verify(x, y): $y^2 = x$

1 squaring

proof size = log(p)

log(p) squarings

Modular square roots

- A "proto-VDF"
 - \triangleright Eval time: log(p) * M(p)
 - Verify time: M(p)

M(p) = time complexity of multiplication mod p

> Problem: Verify time not polylogarithmic in Eval time

Security Properties (Informal)

- Setup $(\lambda, T) \rightarrow$ public parameters pp
- Eval $(pp, x) \rightarrow \text{output } y$, proof π (requires T steps)
- Verify $(pp, \mathbf{x}, \mathbf{y}, \boldsymbol{\pi}) \rightarrow \{yes, no\}$

```
"Soundness": if Verify(pp, x, y, \pi) = Verify(pp, x, y', \pi') = yes
then y = y'
```

" σ -Sequentiality": if A is a PRAM algorithm, time(A) < $\sigma(T)$, e.g. $\sigma(T) = (1 - \epsilon)T$ then $\Pr[A(pp, X) = Y]$ < negligible(λ)

VDF security more formally...

Sequentiality Game

```
pp \leftarrow Setup(\lambda, T) //sample setup params L \leftarrow A_0(pp, T) //adversary preprocesses params x \leftarrow X //choose a random challenge input x y_A \leftarrow A_1(L, pp, x) //adversary computes output y
```

$$A=(A_0,A_1)$$
 "wins" the game if $y_A=y$ s. t. $Eval(pp,x)=(y,\pi)$

Def: VDF is (p, σ) -sequential if no (A_0, A_1) with A_0 runtime poly(λ) and A_1 PRAM runtime $\sigma(T)$ on p(T) processors wins the game with prob. > negl(λ)

Part I: Applications of VDFs

Proof-ofreplication

Permissionless consensus

Randomness beacon

• Rabin '83

An ideal service that regularly publishes random value which no party can predict or manipulate

Many uses for random beacons

Games

Cryptographic proofs

Lotteries

Leader election

Randomness beacon

"Public displays" are easily corrupted

Public entropy source

Stock prices [Clark, Hengartner 2010]

Assumption: (1) unpredictable, (2) adversary cannot fix stock prices

Stock price manipulation

Stock price randomness beacon

Closing prices of 100 stocks:

The problem:

- Once prices settle a minute before closing, attacker executes 20 lastminute trades to influence seed.
- Attacker can predict outcome of trades and choose favorable trades to bias result

Solution: slow things down with a VDF

A solution: one hour VDF

 Attacker cannot tell what trades to execute before market closes

Uniqueness: ensures no ambiguity about output

Simple Bulletin Board

Problem: Zoe controls the final seed!!

Solution: slow things down with a VDF [LW'15]

Part II: Constructions

I.
$$x \to \Pi \to \Pi \to \Pi \to \Pi \to y$$

(reverse permutation)

SNARK/STARK proof π

This work

II.
$$y = g^{2^{2^t}} \in G$$

$$\pi = \{\text{proof of correct exponentiation}\}$$

Assumption: the group G has $\underbrace{\text{unknown}}_{\text{size}}$

Followup:
Pietrzak'18,
Wesolowski'18

Hash Chain w/ Verifiable Computation

$$x \to H(x) \to H(H(x)) \to \cdots \to H^{(t)}(x) = y$$

- SNARK = "succinct non-interactive argument of knowledge" [G'10,GGPR'13, BCIOP'13, BCCT'13]
- STARK = "succinct transparent non-interactive argument of knowledge" [M'00, BBHR'18]

Hash Chain w/ Verifiable Computation

$$\mathbf{x} \to H(x) \to H(H(x)) \to \cdots \to H^{(t)}(x) = \mathbf{y}$$

Problem

 Proof generation slower than hash chain, without massive parallelism

Incrementally Verifiable Computation

- Incrementally verifiable computation, proof carrying data [Val08, BCCT12]
- A σ -sequential VDF with $\sigma(t) = (1 \epsilon)t$ for small ϵ

IVC SNARK Optimizations

$$x \to H(x) \to H(H(x)) \to H^{(3)}(x) \to H^{(4)}(x) \to \cdots \to H^{(t)}(x)$$

$$\pi_1 \longrightarrow \pi_{2} \to \pi_{final}$$

- 1. Replace H with "SNARK friendly" hash function
 - Low mult. complexity over F_q
 - \triangleright E.g. MiMC (round function $x \mapsto x^3$) [AGRRT'16]
 - LowMC [ARTTZ'16]

IVC SNARK Optimizations

- 2. Replace H with permutation ρ that is *slow* in forward direction, but fast / low complexity in reverse
 - SNARK/STARK for the low complexity direction

IVC SNARK Optimizations

What have we gained?

- H can be ``weaker" than VDF, i.e. "proto-VDF" but still asymmetric
 - E.g. square roots mod p, factor 256 asymmetry

Square-roots vs SHA256

SHA256:

Better asymmetric permutations?

- Square roots / Cube roots
 - ightharpoonup Invert $f(x) = x^3$ over \mathbb{F}_p

- More general: injective polynomial inversion
 - \triangleright Find unique x such that f(x) = y

• Even more general: *injective rational maps* on algebraic sets

Slow

,1/3

Fast

 x^3

 $f^{-1}(y)$ f(x)

Permutation polynomials

f is a degree d polynomial and $f\colon \mathbb{F}_q \to \mathbb{F}_q$ is a permutation on the field \mathbb{F}_q

- Inversion \Leftrightarrow find root of f(x) c
 - Find inverse of c by computing: $GCD(x^q x, f(x))$
 - Euclidean GCD algorithm: d sequential steps
 - Each step takes d parallel arithmetic operations
 - NC algorithm: O(d^{3.85}) parallel processors [CDDL'97]
 - ➤ Parallel advantage kicks in at d^{2.85} processors

Eval requires d parallelism

d^{2.85} parallel. infeasible for Adv.

Permutation Polynomials Holy Grail

Exponentially

- Tunable degree, independent of field size $|\mathbb{F}_q|$
- Fast to evaluate (e.g. sparse polynomial)
- No faster way to invert than computing GCD
 (Assuming fewer than O(d^{2.85}) parallel processors)

Eval: O(d) PRAM steps

Verify: O(log(d))

Exponential gap!

Permutation polynomials

f is a degree d polynomial and $f \colon \mathbb{F}_q \to \mathbb{F}_q$ is a permutation of the field \mathbb{F}_q

a is not p-1st power

 x^3

$$x^{2^{t+1}+1} + x^3 + x \in \mathbb{F}_{2^{2t+1}}$$

$$x^{p^i} - ax \in \mathbb{F}_{p^m}$$

a is not s-1st power

Guralnick, Müler '97

$$(\frac{1}{2x^s})(x^s - ax - a)(x^s - ax + a)^s + ((x^s - ax + a)^2 + 4a^2x)^{\frac{s+1}{2}} \in \mathbb{F}_{p_{\frac{40}{40}}^m}$$

Permutation polynomials

f is a degree d polynomial and $f \colon \mathbb{F}_q \to \mathbb{F}_q$ is a permutation of the field \mathbb{F}_q

$$x^{2^{t+1}+1} + x + x \in \mathbb{F}_{2^{2t+1}}$$

a is not s-1st power

Guralnick, Müler '97

$$(\frac{1}{2x^s})(x^s - ax - a)(x^s - ax + a)^s + ((x^s - ax + a)^2 + 4a^2x)^{\frac{s+1}{2}} \in \mathbb{F}_{p_{\frac{41}{41}}}$$

Construction Summary

O(log(T)) SNARKs

Proof size	O(log(T))
Assumption	SNARK/STARK +

Verification

Sqr. rts. or ideal perm. polynomial None w/ STARKs or using "slower" **Trusted setup** verification, sequentiality not broken

Quantum resistant Possibly with STARKs

Simple No

42

Newer VDFs [P'18, W'18]

 Let G be a finite cyclic group with generator g ∈ G $G = \{1, g, g^2, g^3, ...\}$

Assumption: the group G has unknown size

$$pp = (G, H: X \rightarrow G)$$

T squarings

• Eval(pp, x): output
$$y = H(x)^{(2^T)} \in G$$

proof $\pi = (proof of correct exponentiation)$ [P'18, W'18]

THE END

https://eprint.iacr.org/2018/601

Survey of VDFs

https://eprint.iacr.org/2018/712.pdf