Verifiable Delay Functions

Dan Boneh, Joe Bonneau,
Benedikt Blinz, Ben Fisch

Crypto 2018



What is a VDF?

* Function — unique output for every M
input
* Delay - can be evaluated intime T =
cannot be evaluated in time (1-€)T @
~d

on parallel machine

* Verifiable — correctness of output can
be verified efficiently




What is a VDF?

e Setup(A, T) — public parameters pp
» pp specify domain X and range Y

* Eval(pp, x) — outputy, proofm

» PRAM runtime T with polylog(T) processors
e Verify(pp, x,y, 1) — {yes, no}

» Time complexity at most polylog(T)



Security Properties (Informal)

e Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofm (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, ') = yes

then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time(A) < a(T),

eg.o(T)=1-¢e)T then Pr[A(pp, X) =y ] < negligible(A) ,



Related Crypto Primitives

* Time-lock puzzles [Rsw’96, BN'00, BGJPVW’16]
o Trapdoor (secret key) setup per puzzle
o Not publicly verifiable”

* Proof-of-sequential-work (mmv’13, cp’18]
o Publicly verifiable
o Not a function (output isn’t unique)



VDF minus any property is “easy”

* Not Verifiable — chained one-way function

* No Delay — Many moderately hard functions

with efficient verification, e.g. discrete log
g’ =x

* Not a Function — Proofs of sequential work



Modular square roots [pnaz2, tw'is)

Assumption: No O(log(T)) time algorithm can
compute (with non-negligible probability)

xTmod p faster than log(T) sequential
multiplications (repeated squaring) for T € [1, p)



Modular square roots [pnaz2, tw'is)

e Setup: pick prime p, p=3 mod 4

* Eval(x): Compute a square root of x
p+1

modp&®y=x 4+

* Verify(x, y): y% = x @

proof size = log(p)




Modular square roots

A “proto-VDF”
» Eval time: log(p) * M(p)
» Verify time: M(p)
» Problem: Verify time not polylogarithmic in Eval time

M(p) = time complexity of
multiplication mod p

10



Security Properties (Informal)

e Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofm (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, ') = yes

then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time(A) <o (T),

eg.o(T)=1-¢e)T then Pr[A(pp, X) =y ] < negligible(A) .



VDF security more formally...

Sequentiality Game

pp « Setup(A, T) /Isample setup params

L < Ay(pp,T) [ladversary preprocesses params

x « X //choose a random challenge input x
va < A1(L,pp,x) /ladversary computes output y

A= (Ay Ay) "wins” the game if y, = y s.t. Eval(pp,x) = (y, )

Def: VDF is (p, o)-sequential if no (4y, A1) with Ay runtime poly(A)

and A; PRAM runtime o(T) on p(T) processors wins the game with

prob. > negl(A)

12



Part I: Applications of VDFs

A |
4 m \\
Carol
Randomness Multiparty Timestamping Proof-of- Permissionless
beacons randomness replication consensus

14



Randomness beacon

e Rabin ‘83

An ideal service that reqularly publishes random
value which no party can predict or manipulate

15



Many uses for random beacons

Cryptographic proofs Leader election
16



Randomness beacon

“Public displays” ? ;l
-

R
Iy

are easily corrupted - .~
o b

4 an
—
A -

_ Ho7rs

Em—
i
4133 12| 27| 27

e, .




Public entropy source

Stock prices

Your Company, Inc. (YCOM) | 26.58 4 568

30
25
20 ool I Vv" I‘L" \ e | “b | ,‘
15 ) .“A r\n I‘ 3‘4“'(.‘“.“ J‘T ‘” ‘MI\[IY‘IM ’1.‘ J "
A A R
WL AL L
- 1’\,’,‘ L \” | L

I
5 L

: o
10am 11lam  12pm 1pm 2pm 3pm 4pm \

Assumption: (1) unpredictable, (2)adversary cannot fix stock prices

18



Stock price manipulation

MICHAEL

LEWIS
FREQUENCY [ £ =
TRADING EREQUENC)

A WALL STREET REVOLT
Everything You Need to Know, Including: T R A D I N G
1 * Who profits from high-frequency trading
. ODELS
’ o' 29 ¥ B, 53 * Comparisons of bencfits and drawbacks
> - 1 o ’ s well as analyses of inherent risk
) £ R, * The internal configuration of 3 high-frequency
.88 % racing systes

Irene Aldridge - e ICHAEL DURBIN... . » GEWE! YE,pht

19



Stock price randomness beacon

Closing prices of 100 stocks: M

The problem: extractor

Once prices settle a minute before

closing, attacker executes 20 last- h‘lﬂi (seed)

minute trades to influence seed.

pseudorandom

Attacker can predict outcome of generator

trades and choose favorable trades _

to bias result




Solution: slow things down with a VDF

"Hash(pFIces)™ " 20 bits

extractor

A solution: one hour VDF
e Attacker cannot tell what

trades to execute before ﬂ*ﬂi
market closes

Uniqueness: ensures no 0

ambiguity about output 128 Dbits [




Simple Bulletin Board

r r " | [ mildly
° b ¢ z synchronous
Public Bulletin Board
output seed =Hash(r, || r, || - |]r,) € {0,1}>°

Problem: Zoe controls the final seed !!

24




Solution: slow things down with a VDF ws;

Public Bulletin Board (blockchain)

l

Hash(ry || ry | =[] r,) € {0,1}*°

Yy — seed, T

25



Part ll: Constructions

Ly~ @—0-0-0—0-0—0-0—y

) (reverse permutation) |
SNARK/STARK proof 7 This work
A
_ 22 Assumption:
11. y=9° €6G P G Followup:
the group Pietrzak’18,
7T = {proof of correct has unknown | wesolowski’18
exponentiation} size 27



Hash Chain w/ Verifiable Computation

x> Hx) > HHKX)) > >HPXx)=y

T

« SNARK = “succinct non-interactive argument of knowledge”
[G’10,GGPR’13, BCIOP’13, BCCT'13]

« STARK = “succinct transparent non-interactive argument of
knowledge” [\'00, BBHR 18]

28



Hash Chain w/ Verifiable Computation

x> Hx) > HHKX)) > >HPXx)=y

T

Problem

* Proof generation slower than hash chain, without
massive parallelism

29



Incrementally Verifiable Computation

* Incrementally verifiable computation, proof carrying data
[Val08, BCCT12]

* A o-sequential VDF with a(t) = (1 — €)t for small €

x> H(x) > HHx)-» H®(x) > HO(x) » -+ - HO(x)

4 ' Ty = " Nlfinal

30



IVC SNARK Optimizations

x > H(x) > HH@)- HP(x) » HY (x) - - > HO ()

T4 Y [4, R " Nfinal

1. Replace H with “SNARK friendly” hash function
» Low mult. complexity over F,
» E.g. MiMC (round function x = x3) [AGRRT'16]
» LowMC [ARTTZ’16]

31



IVC SNARK Optimizations

x — d—— - a—a—-a—0—y | slow
X'_D'_D‘_D: i: D: E< D: :: y Fast

<

SNARK/STARK proof T

2. Replace H with permutation p that is slow in
forward direction, but fast / low complexity in
reverse

» SNARK/STARK for the low complexity direction 33



IVC SNARK Optimizations

x — d—— - a—a—-a—0—y | slow
X'_D'_D‘_D: i: D: E< D: :: y Fast

<

SNARK/STARK proof T

What have we gained?

* H can be 'weaker” than VDF, i.e. “proto-VDF” but
still asymmetric

» E.g. square roots mod p, factor 256 asymmetry 34



Square-roots vs SHA256

SHA256:
c— - E-E-E-E-E—-E—--

| N
L 27,904 gates J SNARK/STARK proof 7

>

Sguare-roots:
| OverF,: | [ Coordinate swap ]

% — i~ - - B
¢ — B — B s
<

SNARK/STARK proof

35



Better asymmetric permutations?

* Even more general: injective rational maps
on algebraic sets

* Square roots / Cube roots Slow ; Fast
> Invert f(x) = x> over F, y1/3 : 3
* More general: injective polynomial i
inversion i
> Find unique x such that f(x) =y ') | f(x)

37



Permutation polynomials

f is a degree d polynomial and f: F, - [F, is

a permutation on the field F,

* Inversion < find root of f(x) —c¢
* Find inverse of ¢ by computing: GCD(x9 — x, f d parallelism

* Euclidean GCD algorithm: d sequential steps
» Each step takes d parallel arithmetic operations

* NC algorithm: O(d3-8>) parallel processors [cDDL'97]
» Parallel advantage kicks in at d?®°> processors asible fc




Permutation Polynomials Ho

f

- Tunable degree,—ﬂ“‘
independent of field size |F|

« Fast to evaluate (e.g. sparse
polynomial)

* No faster way to invert than
computing GCD

(Assuming fewer than O(d%8%)
parallel processors)

o

Eval: O(d) PRAM steps

Verify: O(log(d))

ly Grail

S—

Exponential

gap!

39



Permutation polynomials

f is a degree d polynomial and f: F, - [F, is

a permutation of the field I,

a is not
p-1St x3 2t+1+1 3
power Xx X + x° + x € [F2t+1
i
xP —ax € F,m a is not s-1st
power Guralnick, Muler 97
1 s+1
(zxs)(xs—ax —a)(x®* —ax + a)’ + ((xs —ax +a)?* + 4a2x)_2_ c IFano




Permutation polynomials

f is a degree d polynomial and f: F, - [F, is
a permutation of the field I,

a is not
p-1st t+1
power XS x% Tt 4 i X € I[F2t+1
i .
xP —a a is not s-1st
power & Guralnick, Muler 97
s+1 .
S__ _ s __ S s __ 2 2 2 m
(sz)(x ax —a)(x ax + a)® + ((x ax + a)“ + 4a x) € I, -




Construction Summary

O(log(T)) SNARKs
O(log(T))

SNARK/STARK +
Sqar. rts. or ideal perm. polynomial

Verification
Proof size

Assumption

Trusted setup

Quantum resistant

Simple

None w/ STARKSs or using “slower”
verification, sequentiality not broken

Possibly with STARKs
No



Newer VDFs [P’18, W’18]

e Let G be afinite cyclic group with generator g€ G
G={1,g8%8 ..}

e Assumption: the group G has unknown size

op= (G, H:X— G) T squarings }

* Eval(pp, x): output Y = H(CIZ‘)(QT) c G

proof TU = (proof of correct exponentiation) [p’18, W’18]
43




THE END

https://eprint.iacr.org/2018/601
Survey of VDFs
https://eprint.iacr.org/2018/712.pdf s



https://eprint.iacr.org/2018/601

