Out-of-Band Authentication in Group Messaging: Computational, Statistical, Optimal

Lior Rotem Gil Segev

Hebrew University

Major Effort: E2E-Encrypted Messaging

@Rakuten Vibe

OVERVIEW

Tele

- Government surveillance and/or coercion
- Untrusted or corrupted messaging servers

Detecting **man-in-the-middle attacks** when setting up E2E-encrypted channels

Man-in-the-Middle Attacks

ABlodge'ss pothoome

Man-in-the-Middle Attacks

Impossible to detect without any setup

Impractical to assume a trusted PKI in messaging platforms...

Out-of-Band Authentication

Practical to assume: Users can "out-of-band" authenticate one short value

- Users can compare a short string displayed on their devices
- Assuming that they recognize each other's voice, this is a low-bandwidth authenticated channel

Out-of-Band Authentication

Taccoot	JK	icicgian	11	Allo	
●●●●● Vodafone IN 중 14:19	Ø 1% - +		⊿ 1:06		⊿ 🖬 1:54
Back Device keys		← Encryption Key		\leftarrow Conversation code	
Your key is the same for all of your conversations on this device. Kul's the one on their device. Learn more YOUR KEY 05 39 32 0B B5 38 46 9C D5 67 34 3B 67 A3 B2 A0 2B A8 3B 39 81 75 36 A0 31 KUL'S KEY 05 C6 80 EA 05 07 8D 22 A1	C Verify safety nu		 Verify security code Vou, Alice 	21587 72111 35481 62982 16557 18628 87927 64571 04833 41057 52657 60124 You and Alice should have the same Check to make sure they match.	SHOW MY DEVICE FINGERPRINT
EB B5 10 A8 1D 77 E6 B0 51 6 61 A8 CF 70 25	Tap to scan 31820 01310 12 21593 15141 85 63078 38145 99	D6 08 A1 79 9B 09 A7 E1 1F F0 BA DB 1C A0 2D FD 0E B0 09 96 43 81 D6 59 F1 27 E0 32 This image and text were derive	56890 59295 6170 38897 13310 8007 50646 41640 6101		Verify that this matches the fingerprint shown on Alice's device. How do I do that?
	If you wish to verify the se end-to-end encryption wit the number above with th their device. Alternatively, the code on their phone, o scan your code. <u>Learn no</u> verifying safety numbers	If they look the same on Alice's of a Alice's and encryption is guarantee in a Alice's and encryption is guarantee in a guaran	Scan the code on your contact's them to scan your code, to ver messages and calls to them a encrypted. You can also compa above to verify. This is optional	SCAN CODE	PHONE ID: 7D C7 FE B4 7E C7 44 ID 01 4e 2d 42 93 f6 07 ab 26 b0 e6 59 94 b3 13 01 61 42 71 6d b0 4b 22 83 e0 11 22 7c 93 d8 2d 70 verified verified
	Signa		WhatsAp	p	Wire

Out-of-Band Authentication

The User-to-User Setting

• An equivalent problem: Detecting MitM attacks in message authentication

- ⇒ Given a shared key: MAC the message
- Given a message authentication protocol: Run any key exchange protocol and authenticate the transcript

whenever $\widehat{m} \neq m$

The User-to-User Setting

The User-to-User Setting

User-to-User Bounds

	Protocols	Lower Bounds
Computational Security [Vau05, PV06]	$\log(1/\epsilon)$	$\log(1/\epsilon) - O(1)$
Statistical Security [NSS06]	$2\log(1/\epsilon) + O(1)$	$2\log(1/\epsilon) - O(1)$

This Talk: The Group Setting

User-to-User Setting

Group Setting

Not yet studied

X Impractical protocols deployed

Our Contributions

A framework modeling out-of-band authentication in the group setting

- Users communicate over an insecure channel
- Group administrator can out-of-band authenticate one short value to all users
- Consistent with and supported by existing messaging platforms

Our Contributions

A framework modeling out-of-band authentication in the group setting

Tight bounds for out-of-band authentication in the group setting

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	

k – number of receivers

Our computationally-secure protocol is practically relevant, and substantially improves the currently-deployed protocols:

E.g., k = 32 and $\epsilon = 2^{-80}$: $32 \times 85 = 2720$ bits vs. 85 bits!!

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

Communication Model

- Insecure channel: Adversary can read, remove and insert messages
- Out-of-band channel:

Adversary can read, remove and delay messages, for all or for some of the users Adversary cannot modify messages/insert new ones in an undetectable manner $_{17}$

- **Correctness:** In an honest execution $\forall i: \hat{m}_i = m$
- Unforgeability: $\Pr[\exists i: \widehat{m}_i \notin \{m, \bot\}] \le \epsilon + \nu(\lambda)$
- Computational vs. statistical security

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

The Naïve Protocol

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

Our Computationally-Secure Protocol

$$r_{S} \leftarrow \{0,1\}^{\ell} \underbrace{2m, c_{S} = com(m||r_{S})}_{S \oplus c_{1} \oplus c_{S}} \underbrace{3m, c_{S} = com(m||r_{S})}_{Out-of-band channel} \underbrace{5m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{1} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2}}_{T_{S} \oplus r_{2} \oplus r_{2}} \underbrace{7m, c_{S} \oplus r_{1} \oplus r_{2} \oplus r_{2}$$

Our Computationally-Secure Protocol

Theorem:

If (com, decom) is statistically-binding & concurrent non-malleable, then for any $k, \ell \in \mathbb{N}$ it holds that $\epsilon = k \cdot 2^{-\ell}$

Proof sketch:

- Focus individually on each receiver R_i
- Consider all possible synchronizations of a MitM attack
 - Today: Exemplify one notable attack
- Reduce each one to the security of the commitment scheme
 - Statistical binding or concurrent non-malleability

Example: One Possible Attack

S chooses r_S before R₁ decommits

$$r_{S} \leftarrow \{0,1\}^{\ell} \xrightarrow{c_{1} = \operatorname{com}(\widehat{r_{1}})}{c_{2} = \operatorname{com}(\widehat{r_{2}})} \xrightarrow{c_{1} = \operatorname{com}(r_{1})} \xrightarrow{r_{1} \leftarrow \{0,1\}^{\ell}} R_{1}$$
• Fix "worst-case" $r_{1}, \widehat{r_{1}} \text{ and } \widehat{r_{2}} \xrightarrow{decom(c_{1})}$

- Attacker gets $\operatorname{com}(m||r_S)$ and needs to output $\operatorname{com}(\tilde{r_2})$ and $\operatorname{com}(\hat{m}||\hat{r_S})$ such that $r_S \bigoplus \hat{r_1} \bigoplus \hat{r_2} = \hat{r_S} \bigoplus r_1 \bigoplus \tilde{r_2}$
- Concurrent non-malleability implies that either $m = \hat{m}$ or $\Pr[r_s \bigoplus \hat{r_1} \bigoplus \hat{r_2} = \hat{r_s} \bigoplus r_1 \bigoplus \tilde{r_2}] = 2^{-\ell} + \nu(\lambda)$

Concurrent Non-Malleable Commitments

Infeasible to "non-trivially correlate" concurrent executions

- Extensive research leading to constant-round schemes from any one-way function [DDN91, ..., PR05, PR06, LPV08, LP11, Goy11, GRRV14, GPR16, COSV17, ...]
- Simple, efficient and non-interactive in the random-oracle model com(v; r) = Hash(v||r)

Talk Outline

- Communication model & notions of security
- The naïve protocol
- Our protocols & lower bounds

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

- Denote by Σ the out-of-band value in an honest execution with a random m
- During any execution Σ 's Shannon entropy decreases from $H(\Sigma)$ to 0
- Intuition [NSS06]: Each party must "independently reduce" at least $\log(1/\epsilon)$ bits from $H(\Sigma)$ ° $\epsilon k = \Rightarrow H(\Sigma) \ge (k+1) \cdot \log(1/\epsilon)$

Protocol Structure

- Assume that the protocol has t rounds over the insecure channel
- In each round *i* a single party is "active" and sends a message x_i
 - If $i \equiv 0 \mod (k+1)$ then S is active
 - Otherwise, $R_{i \mod (k+1)}$ is active

Understanding $H(\Sigma)$

- Random variables $M, X_0, \dots, X_{t-1}, \Sigma$
- Split $H(\Sigma)$ according to the marginal contribution of each round:

 $H(\Sigma) = H(\Sigma) - H(\Sigma|M, X_0) + H(\Sigma|M, X_0) - H(\Sigma|M, X_0, X_1) + H(\Sigma|M, X_0, X_1)$

$$- \dots - H(\Sigma|M, X_0, \dots, X_{t-1}) + H(\Sigma|M, X_0, \dots, X_{t-1})$$

Understanding $H(\Sigma)$

Lemma 1:

There exists a man-in-the-middle attacker that succeeds with probability

$$- \left(I(\Sigma; M, X_0) + \sum_{j \equiv 0 \mod (k+1)} I(\Sigma; X_j | M, X_0, \dots, X_{j-1}) + H(\Sigma | M, X_0, \dots, X_{t-1}) \right)$$

$$\ge 2^{-1} \sum_{j \equiv 0 \mod (k+1)} I(\Sigma; X_j | M, X_0, \dots, X_{j-1}) + H(\Sigma | M, X_0, \dots, X_{t-1}) \right)$$

Lemma 2:

 ϵ_0

For every $i \in [k]$ there exists a man-in-the-middle attacker that succeeds with probability

$$\epsilon_i \ge 2^{-\sum_{j\equiv i \mod (k+1)} I(\Sigma; X_j | M, X_0, \dots, X_{j-1})}$$

Lower Bounding $H(\Sigma)$

• We present k + 1 attacks that succeed with probabilities $\epsilon_0, \dots, \epsilon_k$ such that

$$2^{-H(\Sigma)-k} \le \prod_{i=0}^k \epsilon_i$$

• The security of the protocol guarantees that

$$\prod_{i=0}^{\kappa} \epsilon_i \le \epsilon^{k+1}$$

$$\bigcup$$

$$H(\Sigma) \ge (k+1) \cdot \log(1/\epsilon) - k$$

Summary

A framework modeling out-of-band authentication in the group setting

Tight bounds for out-of-band authentication in the group setting

	Protocols	Lower Bounds
Computational Security	$\log(1/\epsilon)$	
Statistical Security	$(k+1) \cdot (\log(1/\epsilon))$	

Thank You!

https://eprint.iacr.org/2018/493