
Fast Message Franking:
From Invisible Salamanders to Encryptment

Yevgeniy Dodis, Paul Grubbs,

Thomas Ristenpart, Joanne Woodage

End-to-end encrypted messaging

Message

Service
provider

[Frosch et al. 2014]

Authenticated
Encryption

Authenticated
Encryption

Message

2

End-to-end security:End-to-end security:
Provider cannot read or

modify messages

[Frosch et al. 2014]
[Cohn-Gordon et al. 2016]
[Cohn-Gordon, Cremers, Garratt 2016]
[Bellare et al. 2017]
[Jaeger and Stepanovs 2018]

Providers want to help users with abuse

Service
provider

!%$#! !%$#!

He said !%$#!
Authenticated

Encryption
Authenticated

Encryption

End-to-end security:
cannot verify “ !%$#! ”

3

[Facebook 2016]:
• Provide cryptographic proof of message contents when reporting abuse
• Called technique message franking
[G., Lu, Ristenpart 2017]:
• Formalized compactly committing authenticated encryption (ccAE):

primitive needed for message franking.
• Proved part of FB’s protocol secure

cannot verify “ !%$#! ”
was sent

Our contributions

Show vulnerability in Facebook’s scheme:
invisible salamanders

New symmetric-key primitive: encryptment.

Lower bound on efficiency of ccAE

4

New symmetric-key primitive: encryptment.
Hash-Function-Chaining (HFC):
single-pass encryptment construction

Generic, fast transform:
encryptment + compression function=ccAE

Facebook’s message franking protocol

Service
provider

KB , !%$#!

Sender cryptographically commits to message: C = HMAC(K ,M)

CB
KB , !%$#! CB , TFB

5

Sender cryptographically commits to message: CB = HMAC(KB ,M)

Provider signs CB using HMAC to generate tag TFB (fast because CB short)

Encrypt-then-HMAC message along with KB (called the opening)

Receiver decrypts, retrieves KB, and verifies CB

Facebook’s message franking protocol

Service
provider

KB , !%$#! , CB , TFB

To report abuse, send message as well as K , C , T

KB , !%$#! CB
KB , !%$#! CB , TFB

To report abuse, send message as well as KB , CB , TFB

Provider can verify CB , TFB , convinced that message was “ !%$#! ”

Attachments (images, videos) handled differently

6

Is Facebook’s approach secure?

[GLR17]: without attachments, yes
This work: with attachments, no!

Service
provider

KB , !%$#! , CB , TFB

Security goals for message franking

KB , !%$#! CB
KB , !%$#! CB , TFB

7

1) Receiver binding: receiver can’t open a message not sent

3) End-to-end confidentiality/authenticity for messages not reported

2) Sender binding: can’t send a message that can’t be reported

Facebook’s attachment franking protocol

Service
provider

KB , Kfile CB

file file

KB , Kfile CB , TFB

8

Sender cryptographically commits to attachment encryption key:
CB = HMAC(KB, Kfile)

Encrypt-then-HMAC file encryption key Kfile along with KB

AES-GCM encrypt attachment: AES-GCM(Kfile , file)

Receiver decrypts as before to get Kfile and then decrypts attachment

Facebook’s attachment franking protocol

Service
provider

file file

KB2 , Kfile2 C2B

file2

KB2 , Kfile2 C2B ,T2FB

file2

KB , Kfile CB KB , Kfile CB , TFB

9

To report abuse, receiver opens Kfile and other recent messages

Facebook checks openings & decrypts all unique AES-GCM ciphertexts
to add them to abuse report

KB , Kfile , CB , TFB

file2 file2

KB2 , Kfile2 , C2B , T2FB

file

file

KB , Kfile CB

KB2 , Kfile2 C2B

Our attack exploits AES-GCM

Service
provider

file

KB2 , Kfile2 C2B ,T2FB

file

KB , Kfile CB , TFB

3.file

2. Send ciphertext

twice - Kfile ,Kfile2

10

1. Craft special AES-GCM ciphertext:

• Decrypts under Kfile to innocuous image
• Decrypts under Kfile2 to abuse image

4. Only the innocuous

image appears in report!
(Violates sender binding)

KB , Kfile , CB , TFB

file

KB2 , Kfile2 , C2B , T2FB

3. receiver

sees
both

But isn’t AES-GCM a secure authenticated encryption scheme?

Yes, but ... this type of attack is not standard

Our attack exploits AES-GCM

Craft special AES-GCM ciphertext:
1) Decrypts under Kfile to innocuous image
2) Decrypts under Kfile2 to abuse image

11

attacker gets to choose Kfile and Kfile2

Our attack violates robustness: can find ciphertext that decrypts under two keys
(First robustness attack against real system)

[Abdalla, Bellare, Neven 2010] [Farshim et al. 2013] [Farshim et al. 2017]

GCM uses a universal-hash-based MAC
not collision resistant (CR)

Abusive JPEG seen by receiver,
but not in abuse report

Innocuous BMP
in abuse report

Disclosed to Facebook
Thanks to Jon Millican for answering questions!Thanks to Jon Millican for answering questions!

They fixed by changing report generation logic

Awarded us a bug bounty

12

Service
provider

KB , !%$#! , CB , TFB

Recall Facebook’s message franking

Commitment + authenticated encryption (AE):

KB , !%$#! CB
KB , !%$#! CB , TFB

Commitment + authenticated encryption (AE):
[GLR] proved secure as ccAE

Can we make faster ccAE schemes?

Didn’t use for attachments because too slow
• Signal uses AES-CBC then HMAC for AE
• Total of 3 passes (HMAC-Encrypt-HMAC)

13

Scheme ccAE? # passes

AES-GCM No 1

OCB No 1

Encrypt-then-HMAC

Ideally: ~1 blockcipher call per msg block.

Thm. Secure ccAE => CR hashing.

How do we build faster ccAE?

Can any secure scheme achieve this?
No!

Encrypt-then-HMAC
(distinct keys)

No 2

Encrypt-then-HMAC
(one key)

Yes 2

Facebook HMAC-
Encrypt-HMAC

Yes 3

Leverage prior impossibility results for CR
hashing from fixed-key blockciphers

[Black, Cochran, Shrimpton 2005]
[Rogaway, Steinberger 2008]

No similar ccAE scheme can be secure!

How do we build faster ccAE?

New primitive: encryptment
“one-time” ccAE

Hash-Function-Chaining (HFC) scheme

+

Step 1

Simple transforms from
encryptment to ccAE

Encryptment-to-ccAE transform from
compression function

ccAE in one SHA-256 call

Step 2

Encryptment:
syntax, semantics, security

EC(K, M) = C1, CB

DO(K, C1,CB) = M/

EVer(M, K , CB) = 0/1

encrypts and commits to M

decrypts (C1, CB) and opens to M

verifies commitment CB of M

Should be short: e.g. 256 bits

EVer(M, K , CB) = 0/1 verifies commitment CB of M

1. Confidentiality: can’t distinguish ciphertexts from random bits
2. Second-ciphertext unforgeability: can’t forge ciphertexts in particular way
3. Receiver binding: can’t generate K,M pairs that verify for same CB

4. Sender binding: can’t decrypt ciphertext that doesn’t verify properly

The hash-function chaining (HFC) scheme

Recall Merkle-Damgard style hash functions
(e.g., SHA-256) built in two steps:
1) Specify a compression function f: {0,1}n x {0,1}d -> {0,1}n

2) Iterate f to hash long message (after some suitable padding)

M M M M

17

IV

M1 M2 M3 M4

F(M)

Constant bit string called
initialization vector

M M M M

The hash-function chaining (HFC) scheme

The HFC scheme EC(K, M):
1) Prepend message with a block of zeros, XOR key into each block
2) Use chaining variables as encryption pad to compute C1

3) MD output is the binding tag CB

18

IV

M1 M2 M3 M4

F(M)

K K⨁ M K⨁ M K⨁ M

The hash-function chaining (HFC) scheme

The HFC scheme EC(K, M):
1) Prepend message with a block of zeros, XOR key into each block
2) Use chaining variables as encryption pad to compute C1

3) MD output is the binding tag CB

19

IV F(M)

K K⨁ M1 K⨁ M2 K⨁ M3

K K⨁ M K⨁ M K⨁ M

The hash-function chaining (HFC) scheme

The HFC scheme EC(K, M):
1) Prepend message with a block of zeros, XOR key into each block
2) Use chaining variables as encryption pad to compute C1

3) MD output is the binding tag CB

20

IV

K K⨁ M1 K⨁ M2 K⨁ M3

F(M)

M1

Ca

M2

Cb

M3

Cc

The HFC scheme EC(K, M):
1) Prepend message with a block of zeros, XOR key into each block
2) Use chaining variables as encryption pad to compute C1

3) MD output is the binding tag CB

K K⨁ M K⨁ M K⨁ M

The hash-function chaining (HFC) scheme

DO(K, C1, CB) runs MD, recovers message blocks, checks CB

EVer(K, M, CB) recomputes, checks CB

Similar to AE from
[Cogliani et al. ‘10]
[Bertoni et al. ‘11]

21

IV

K K⨁ M1 K⨁ M2 K⨁ M3

CB

M1 M2 M3 EC/DO/EVer require

function

EC/DO/EVer require
just one pass of hash

function
21

[Bertoni et al. ‘11]

Ca Cb Cc

(Fast) Encryptment => (Fast) ccAE

Construct fast ccAE from fast encryptment: 2 additional compression function calls

K K⨁ M K⨁ M K⨁ M

Klt

R
K

1. Use long-term key Klt

2. Derive encryptment key via
3. MAC the binding tag CB

22

IV

K K⨁ M1 K⨁ M2 K⨁ M3

CB

M1 M2 M3

Ca Cb Cc

R
Klt

T

(Fast) Encryptment => (Fast) ccAE

Thm. If EC is a secure encryptment scheme
and compression function is PRF,
this construction is ccAE

Construct fast ccAE from fast encryptment: 2 additional compression function calls

23

Encryptment is useful elsewhere,
gives single-pass:

- concealments [DH03]
- remotely-keyed AE [BFN98]
- robust AE [FOR17]

See paper for details

Show vulnerability in Facebook’s scheme:
invisible salamanders

Lower bound on efficiency of ccAE

Conclusion

New symmetric-key primitive: encryptment.

24
Thanks for listening! Any questions?

New symmetric-key primitive: encryptment.
Hash-Function-Chaining (HFC):
single-pass encryptment construction

Generic, fast transform:
encryptment + compression function=ccAE

Security of HFC

K K⨁ M K⨁ M K⨁ M

Theorem (informal):
HFC is a secure encryptment scheme

See paper for details!

25

IV

K K⨁ M1 K⨁ M2 K⨁ M3

CB

Constant bit string called
initialization vector

M1

C1

M2

C2

M3

C3

CTR mode encryption
with AES blockcipher E

Universal hash-based
message authentication

(called GMAC)

Can rewrite GMAC as:
Tag = C *H3 + C *H2 + len*H + Pad

H = EK(0128)

26[Diagram from McGrew, Viega 2005]

Tag = C1*H3 + C2*H2 + len*H + Pad

1) Pick key Kfile , derive H1, Pad1
2) Pick block of plaintext
3) Let C1 be ciphertext block using Kfile

4) Pick key Kfile2, derive H2, Pad2
5) Solve Tag equation for C2:

6) Output Kfile , Kfile2 , C1 , C2 , Tag

Tag = C1*H13 + C2*H12 + len*H1 + Pad1
= C1*H23 + C2*H22 + len*H2 + Pad2

Let this be Pad

Our contributions

Show vulnerability in Facebook’s scheme:
invisible salamanders

Introduce new symmetric-key primitive:
encryptment

27

Lower bound on efficiency of encryptment

Construct optimally-efficient encryptment:
gives fastest-known ccAEAD, robust encryption,
remotely-keyed AE, etc.

Our contributions

Show vulnerability in Facebook’s scheme:
invisible salamanders

Introduce new symmetric-key primitive:
encryptment

28

Lower bound on efficiency of encryptment

Construct optimally-efficient encryptment:
gives fastest-known ccAEAD, robust encryption,
remotely-keyed AE, etc.

Our contributions

Show vulnerability in Facebook’s scheme:
invisible salamanders

Introduce new symmetric-key primitive:
encryptment

29

Lower bound on efficiency of encryptment

Construct optimally-efficient encryptment:
gives fastest-known ccAEAD, robust encryption,
remotely-keyed AE, etc.

Our contributions

Show vulnerability in Facebook’s scheme:
invisible salamanders

Introduce new symmetric-key primitive:
encryptment

30

Lower bound on efficiency of encryptment

Construct optimally-efficient encryptment:
gives fastest-known ccAEAD, robust encryption,
remotely-keyed AE, etc.

Facebook’s attachment franking protocol

K , K , C , T

Service
provider

file file

KB , Kfile CB KB , Kfile CB , TFB

31

K , Kfile , CB , TFB

To report abuse, receiver opens Kfile and other recent messages

Facebook checks openings & decrypts all unique AES-GCM ciphertexts
to add them to abuse report

Our attack exploits AES-GCM

Craft special AES-GCM ciphertext:
1) Decrypts under Kfile to innocuous image
2) Decrypts under Kfile2 to abuse image

Adversary can use to violate sender binding:
i. Craft special ciphertext and keys
ii. Send ciphertext twice as distinct encrypted attachments

32

ii. Send ciphertext twice as distinct encrypted attachments
iii. Victim sees both plaintext attachments
iv. Abuse report will omit first (chosen) attachment

How do we build faster ccAE?

Define new primitive: encryptment
simpler than ccAE

Generic, efficient transforms from

Introduce Hash-Function-Chaining
(HFC): optimally-efficient encryptment

+
Generic, efficient transforms from
encryptment to ccAE

Encryptment-to-ccAE transform from
fixed-length AE (others too, see paper)

Fastest-possible ccAE!

Encryptment:
syntax, semantics, security

EC(K, H, M) = C1, CB

DO(K, H, C1,CB) = M/

EVer(H, M, K , CB) = 0/1

encrypts M and commits to (H, M)

decrypts (C1, CB) and opens to M

verifies commitment CB of (H,M)

Should be short: e.g. 256 bits

EVer(H, M, K , CB) = 0/1 verifies commitment CB of (H,M)

Confidentiality Integrity Binding
One-time real-or-random
(otROR): cannot distinguish
between EC oracle and
random bits oracle

Second ctxt unforgeability
(SCU): cannot forge new
ciphertext for fixed K, CB

Strong receiver binding
(srBIND): cannot verify two
(H, M, K) tuples with same CB .
Sender binding as in [GLR]

Encryptment => Concealment, RKAE, Robust AE,…

ccAEAD-Enc(K, H, M):
KEC <-$ ECKeyGen()
C , B <- EC(K , H, M)

Construct ccAEAD from encryptment
with same performance profile

Encryptment is “core” primitive
for other interesting applications:

- concealments [DH03]
- remotely-keyed AE [BFN98]
- robust AE [FOR17]

See paper for detailsC1, BEC <- EC(KEC, H, M)
C2 <-$ AEAD-Enc(K, BEC, KEC)
Return C1, BEC||C2

See paper for details

35

Encryptment => ccAEAD

ccAEAD-Enc(K, H, M):
KEC <-$ ECKeyGen()
C , B <- EC(K , H, M)

Use a fixed-input-length
AEAD scheme with header

BEC to encrypt KEC

Construct ccAEAD from encryptment
with same performance profile

C1, BEC <- EC(KEC, H, M)
C2 <-$ AEAD-Enc(K, BEC, KEC)
Return C1, BEC||C2

Theorem (informal): If EC is a secure encryptment scheme
and AEAD is secure AE scheme,
this construction is ccAE 36

