Amortized Complexity of Information-Theoretically Secure MPC Revisited

Ignacio Cascudo¹ Ronald Cramer^{2,3} Chaoping Xing⁴ Chen Yuan²

¹Aalborg University ²CWI Amsterdam ³Leiden University ⁴NTU Singapore

CRYPTO, 22 August 2018

Secure multiparty computation (MPC)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Secret-sharing based MPC

- Function represented by arithmetic circuit over some field \mathbb{F}_q .
- Parties secret-share inputs.
- Gate-by-gate computation ([a], [b] \rightarrow [G(a, b)])
 - Linear gates: using linearity of secret sharing.
 - Multiplication gates: Dedicated subprotocol.

Many secret-sharing-based MPC protocols need large finite fields.

Many secret-sharing-based MPC protocols need large finite fields.

For example:

- Use of Shamir's scheme (BGW88 and many others)
- Use of hyperinvertible matrices (Beerliova-Hirt 08)
- Use of message authentication codes (SPDZ)

How can we use those protocols for computing arithmetic circuits over **small** fields (e.g. q = 2)?.

How can we use those protocols for computing arithmetic circuits over **small** fields (e.g. q = 2)?.

Standard solution: Consider each input ∈ 𝔽₂ as an element of a large extension field 𝔽_{2^m}, use protocol for 𝔽_{2^m}.

How can we use those protocols for computing arithmetic circuits over **small** fields (e.g. q = 2)?.

- Standard solution: Consider each input ∈ 𝔽₂ as an element of a large extension field 𝔽_{2^m}, use protocol for 𝔽_{2^m}.
- Problem: Seems wasteful.

How can we use those protocols for computing arithmetic circuits over **small** fields (e.g. q = 2)?.

- Standard solution: Consider each input ∈ 𝔽₂ as an element of a large extension field 𝔽_{2^m}, use protocol for 𝔽_{2^m}.
- Problem: Seems wasteful.
- Can we get more out of this?.

Goal

We want to securely compute k > 1 parallel evaluations of the binary circuit...

...by using one execution of the arithmetic MPC protocol over \mathbb{F}_{2^m} plus "cheaper" steps (in terms of communication complexity).

We want to securely compute k > 1 parallel evaluations of the binary circuit...

...by using one execution of the arithmetic MPC protocol over \mathbb{F}_{2^m} plus "cheaper" steps (in terms of communication complexity).

More concretely, we focus on **information-theoretically perfectly** secure MPC. We consider Beerliova-Hirt 08 as "arithmetic" MPC protocol.

BH08 result / Our result

BH08

There exists an information-theoretically perfectly secure *n*-party MPC protocol for an arithmetic circuit over \mathbb{F}_{2^m} , $2^m > 2n$, which

- ► Is secure against $\lfloor (n-1)/3 \rfloor$ active corruptions (optimal).
- Has communication complexity of O(n) field elements per gate.

BH08 result / Our result

BH08

There exists an information-theoretically perfectly secure *n*-party MPC protocol for an arithmetic circuit over \mathbb{F}_{2^m} , $2^m > 2n$, which

- ► Is secure against $\lfloor (n-1)/3 \rfloor$ active corruptions (optimal).
- Has communication complexity of O(n) field elements per gate.

Our main result (Theorem 1:)

There exists a *n*-party MPC protocol for any **boolean** circuit which

- ▶ Is secure against $\lfloor (n-1)/3 \rfloor$ active corruptions (optimal).
- Computes $\Omega(\log n)$ evaluations in parallel.
- Has communication complexity of O(n) bits per gate per instance.

Results

- ▶ Using packed secret-sharing cannot achieve this, as it can not attain $\lfloor (n-1)/3 \rfloor$ corruption tolerance.
- In fact we can combine our techniques with packed secret sharing and obtain:

Results

- ► Using packed secret-sharing cannot achieve this, as it can not attain [(n-1)/3] corruption tolerance.
- In fact we can combine our techniques with packed secret sharing and obtain:

Result 2: for every $\epsilon > 0$, a *n*-party MPC protocol for any **boolean** circuit

- Secure against $t < (1 \epsilon)n/3$ active corruptions.
- Computes $\Omega(n \log n)$ evaluations in parallel.
- Amortized communication complexity of O(1) bits per gate per instance.

Goal

Obstacle

 $(\mathbb{F}_{2}^{k}, +), (\mathbb{F}_{2^{k}}, +)$ isomorphic as \mathbb{F}_{q} -vector spaces, but $(\mathbb{F}_{2}^{k}, +, *), (\mathbb{F}_{2^{k}}, +, \cdot)$ **not** isomorphic as \mathbb{F}_{q} -algebras for k > 1. (where * is Schur product in \mathbb{F}_{2}^{k} , and \cdot is field product in $\mathbb{F}_{2^{k}}$).

Reverse multiplication-friendly embeddings

Next best thing: reverse multiplication-friendly embeddings (RMFE)

A $(k, m)_2$ -RMFE is a pair (ϕ, ψ) where

- $\phi : \mathbb{F}_2^k \to \mathbb{F}_{2^m}$ is \mathbb{F}_2 -linear.
- $\psi : \mathbb{F}_{2^m} \to \mathbb{F}_2^k$ is \mathbb{F}_2 -linear.
- ► For all $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^k$,

$$\mathbf{x} * \mathbf{y} = \psi(\phi(\mathbf{x}) \cdot \phi(\mathbf{y}))$$

Remark: ϕ is invertible, **but** $\psi \neq \phi^{-1}$.

History

Multiplication-friendly embeddings (\mathbb{F}_2^k and \mathbb{F}_{2^m} swapped):

- Introduced in MPC in CCCX09
- "Bilinear multiplication algorithms" (Chud 86)

Reverse multiplication-friendly embeddings

- Can be used to improve CCCX09 (unpublished)
- BMN17
- This paper
- BMN18

Constructions

[Remember a $(k, m)_2$ -RMFE embeds \mathbb{F}_2^k into \mathbb{F}_{2^m}]

Asymptotical:

There exist families of $(k, O(k))_2$ -RMFE.

Algebraic geometric construction.

Constructions

[Remember a $(k, m)_2$ -RMFE embeds \mathbb{F}_2^k into \mathbb{F}_{2^m}]

Asymptotical:

There exist families of $(k, O(k))_2$ -RMFE.

Algebraic geometric construction.

Non-asymptotical:

For all $r \leq 33$, there exists a $(3r, 10r - 5)_2$ -RMFE.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Polynomial interpolation-based construction (e.g. we can embed \mathbb{F}_2^{99} into $\mathbb{F}_{2^{325}}).$

How to use RMFEs

$$\begin{cases} \mathbf{x}_{1} = (\mathbf{x}_{11}, \mathbf{x}_{12}, \dots, \mathbf{x}_{1k}) \rightarrow \phi(\mathbf{x}_{1}) & \qquad \mathbf{GF(2^{m})} \\ \mathbf{x}_{2} = (\mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{2k}) \rightarrow \phi(\mathbf{x}_{2}) & \qquad \mathbf{C'} \\ & \qquad \mathbf{C'} \\ & \qquad \mathbf{x}_{n} = (\mathbf{x}_{n1}, \mathbf{x}_{n2}, \dots, \mathbf{x}_{nk}) \rightarrow \phi(\mathbf{x}_{n}) & \qquad \mathbf{W.r.t. C).} \end{cases}$$

- Invariant: all intermediate values are sharings of φ-encodings.
- We decode the output with the inverse ϕ^{-1} (not with ψ).

Main circuit modification

Main circuit modification explained

◆□ > ◆□ > ◆豆 > ◆豆 > □ = の < ⊙

Obstacles

- 1. How do we (efficiently) process the ($\phi \circ \psi$)-gates?
- 2. How do we guarantee that parties input ϕ -encodings?

Random sharings in \mathbb{F}_2 -linear subspaces

These can be reduced to the following problem:

"Given a \mathbb{F}_2 -linear subspace $V \subseteq (\mathbb{F}_{2^m})^{\ell}$, generate $[R_1], \ldots, [R_{\ell}]$ for $(R_1, \ldots, R_{\ell}) \in_R V$."

Random sharings in \mathbb{F}_2 -linear subspaces

These can be reduced to the following problem:

```
"Given a \mathbb{F}_2-linear subspace V \subseteq (\mathbb{F}_{2^m})^{\ell},
generate [R_1], \ldots, [R_{\ell}] for (R_1, \ldots, R_{\ell}) \in_R V."
```

Hyper-invertible matrices (BH08):

- ▶ Would work if *V* were a \mathbb{F}_{2^m} -linear subspace
- But do not work directly for \mathbb{F}_2 -linear subspaces.

Random sharings in \mathbb{F}_2 -linear subspaces

These can be reduced to the following problem:

```
"Given a \mathbb{F}_2-linear subspace V \subseteq (\mathbb{F}_{2^m})^{\ell},
generate [R_1], \ldots, [R_{\ell}] for (R_1, \ldots, R_{\ell}) \in_R V."
```

Hyper-invertible matrices (BH08):

- Would work if V were a \mathbb{F}_{2^m} -linear subspace
- But do not work directly for \mathbb{F}_2 -linear subspaces.

Solution: Apply HIM-based protocol to the **tensor product** $\mathbb{F}_{2^m} \otimes V$.

- $\mathbb{F}_{2^m} \otimes V$ is a \mathbb{F}_{2^m} -vector space.
- We can see its elements as vectors from V^m .

Conclusions

We present:

- A methodology to securely evaluating several instances in parallel of a circuit over a small field, by using a SSS-based MPC for a large field.
- ► An extension of the results from BH08 to small fields (in an amortized sense).

► Main technical handle: Reverse multiplication-friendly embeddings.

Future work:

Extending these results to other models (e.g. dishonest majority).