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Backdoors

It makes more sense to address any security risks by
developing intercept solutions during the design phase,
rather than resorting to a patchwork solution when law
enforcement comes knocking after the fact.

James Comey (former FBI director, Oct. 2014)
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Hash Functions
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Hash Functions are Everywhere:
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OWFs FDH

MACs PoW

security proofs are not always possible...
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Random Oracles

= Ideal Hash Functions

ideal hash function
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Random Oracles are Practical,
enabling proofs of many practical schemes:

RSA-OAEP TLS

Identification protocols

FDH DSA PSS
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Backdoored Random Oracles (BROs)

H
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f f (H)
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Combining BROs

Hx H(x)

BDH
f f (H)

Gx G(x)

BDG
f f (G)

Can we combine two independent but backdoored
hash functions to build one that is secure

against adversaries with access to both backdoor oracles?
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Concatenation in 2-BRO
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one-way security?

pseudorandomness?

collision-resistance?

We need results from communication complexity...
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Communication Complexity

A Bt(A,B)

A B

INT: find x ∈ A ∩ B. DISJ: decide A ∩ B = ∅

Theorem ([Babai, Frankl, Simon 86]): For independent random
sets A,B ⊆ [2n] of size 2n/2, and protocols with 99% correctness,
it holds that

CC(DISJ) ≥ Ω(2n/2).

9



Communication Complexity

A B

t(A,B)

A B

INT: find x ∈ A ∩ B. DISJ: decide A ∩ B = ∅

Theorem ([Babai, Frankl, Simon 86]): For independent random
sets A,B ⊆ [2n] of size 2n/2, and protocols with 99% correctness,
it holds that

CC(DISJ) ≥ Ω(2n/2).

9



Communication Complexity

A B

t(A,B)

A B

INT: find x ∈ A ∩ B. DISJ: decide A ∩ B = ∅

Theorem ([Babai, Frankl, Simon 86]): For independent random
sets A,B ⊆ [2n] of size 2n/2, and protocols with 99% correctness,
it holds that

CC(DISJ) ≥ Ω(2n/2).

9



Communication Complexity

A B

t(A,B)

A B

INT: find x ∈ A ∩ B. DISJ: decide A ∩ B = ∅

Theorem ([Babai, Frankl, Simon 86]): For independent random
sets A,B ⊆ [2n] of size 2n/2, and protocols with 99% correctness,
it holds that

CC(DISJ) ≥ Ω(2n/2).

9



Communication Complexity - Generalized

|A|, |B| lower-bound problem by
= 2n/2 Ω(2n/2) DISJ [Babai, Frankl, Simon 86]

≈ 2n/2 Ω(2n/2) DISJ [Moshkovitz, Barak 12],
[Guruswami, Cheraghchi 13]

Theorem: For independent random sets A,B ⊆ [2n] of expected
sizes 2n(1−α) and 2n(1−β) respectively,

CC(INT) ≥ Ω(2n(min(α,β)+α+β−1)),

for (α, β) in the feasible region.
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One-Way Security of Concatenation Combiner

Theorem: Inverting a random value u|v under H|G in the 2-BRO
model is as hard as the set-intersection problem.

Let A := H−(u) and B := G−(v).

A B
x

Then, for any pre-image x of u|v:
x ∈ H−(u) and x ∈ G−(v)

Hence, x ∈ A ∩ B.
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Security of Concatenation in 2-BRO
One-Way Security

Inverting a random value u|v is as hard as
the set-intersection problem.

Pseudorandomness

Deciding whether a random value u|v has
a pre-image is as hard as
the set-disjointness problem.

Collision-Resistance

Finding a collision is as hard as ...
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Collision-Resistance of Concatenation

Theorem: Finding a collision under H|G in the 2-BRO model is
as hard as finding 2 sets, given many, and 2 elements in their
intersection.

..

Hardness of the above problem is open.
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Combiners and Security Notions
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Open Problems

lower bound for the multi-INT problem

extend parameters for DISJ and INT

combiners for other backdoored primitives π E
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Thank You.

Thanks to Giorgia Marson for drawing Alice, Bob, and the sheet.
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