Combiners for Backdoored Random Oracles

Balthazar Bauer, Pooya Farshim, Sogol Mazaheri

ENS, Paris

TU Darmstadt

Backdoors

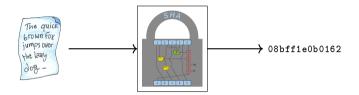
1

Backdoors

It makes more sense to address any security risks by developing intercept solutions during the design phase, rather than resorting to a patchwork solution when law enforcement comes knocking after the fact.

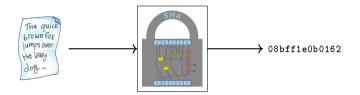
James Comey (former FBI director, Oct. 2014)

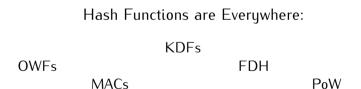
Hash Functions



Hash Functions are Everywhere:

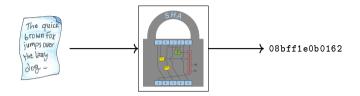
Hash Functions





security proofs are not always possible...

Random Oracles



Random Oracles = Ideal Hash Functions

Random Oracles = Ideal Hash Functions

Random Oracles are Practical,

enabling proofs of many practical schemes:

RSA-OAEP

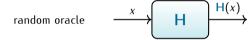
TLS

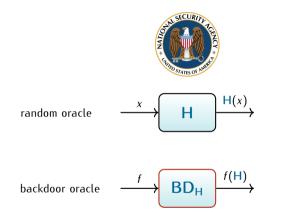
Identification protocols

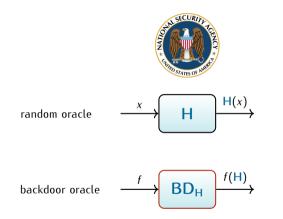
FDH

DSA

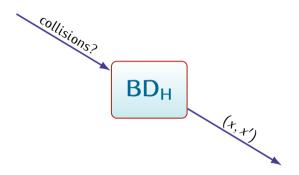
PSS

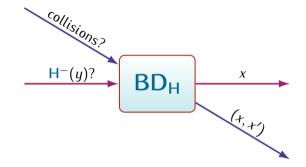


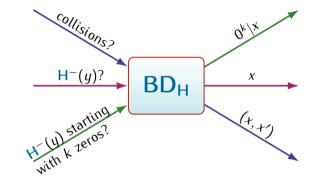


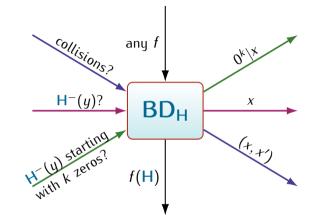


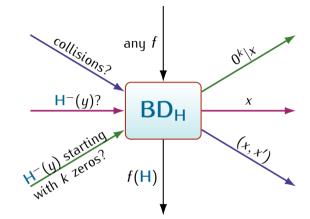
adaptive and unrestricted access to the backdoor oracle









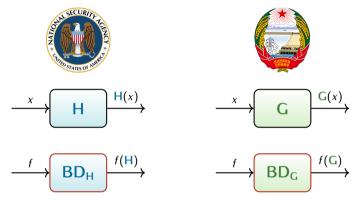


no security is possible...

Combining BROs

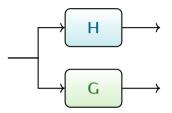
Combining BROs

Combining BROs



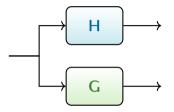
Can we combine two **independent** but **backdoored** hash functions to build one that is secure against adversaries with access to **both** backdoor oracles?

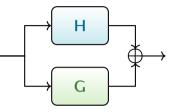
concatenation:



concatenation:

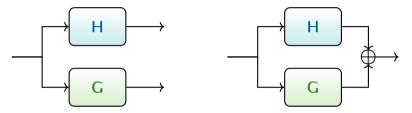
xor:



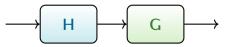


concatenation:

xor:

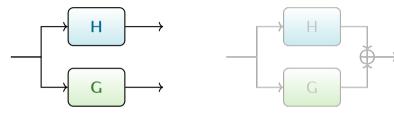


cascade:

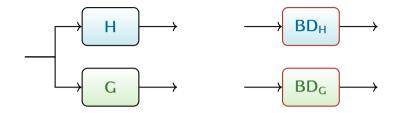


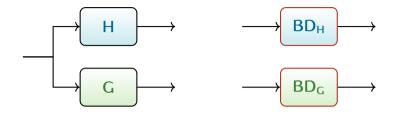
concatenation:

xor:

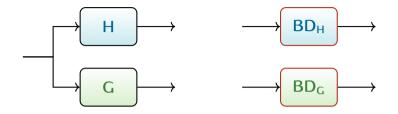


cascade:



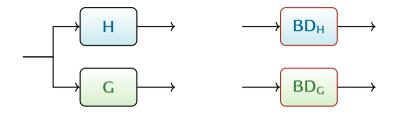


one-way security?



one-way security? pseudorandomness?

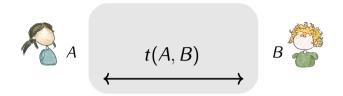
collision-resistance?

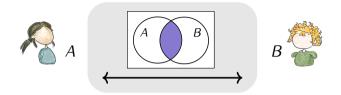


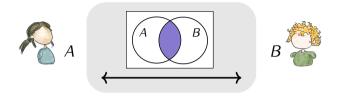
one-way security? pseudorandomness?

collision-resistance?

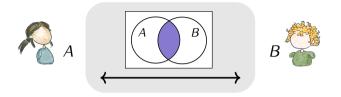
We need results from communication complexity...







INT: find $x \in A \cap B$. **DISJ**: decide $A \cap B = \emptyset$



INT: find
$$x \in A \cap B$$
. **DISJ**: decide $A \cap B = \emptyset$

Theorem ([Babai, Frankl, Simon 86]): For independent random sets $A, B \subseteq [2^n]$ of size $2^{n/2}$, and protocols with 99% correctness, it holds that

 $CC(DISJ) \ge \Omega(2^{n/2}).$

Communication Complexity - Generalized

A , B	lower-bound	problem	by
$=2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Babai, Frankl, Simon 86]
$\approx 2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Moshkovitz, Barak 12], [Guruswami, Cheraghchi 13]

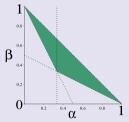
Communication Complexity - Generalized

A , B	lower-bound	problem	by	
$=2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Babai, Frankl, Simon 86]	
$\approx 2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Moshkovitz, Barak 12], [Guruswami, Cheraghchi 13	

Theorem: For independent random sets $A, B \subseteq [2^n]$ of expected sizes $2^{n(1-\alpha)}$ and $2^{n(1-\beta)}$ respectively,

 $CC(INT) \ge \Omega(2^{n(\min(\alpha,\beta)+\alpha+\beta-1)}),$

for (α, β) in the feasible region.



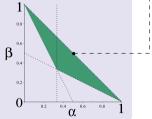
Communication Complexity - Generalized

A , B	lower-bound	problem	by	
$=2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Babai, Frankl, Simon 86]	
$\approx 2^{n/2}$	$\Omega(2^{n/2})$	DISJ	[Moshkovitz, Barak 12], [Guruswami, Cheraghchi 13]	<

Theorem: For independent random sets $A, B \subseteq [2^n]$ of expected sizes $2^{n(1-\alpha)}$ and $2^{n(1-\beta)}$ respectively,

 $CC(INT) \ge \Omega(2^{n(\min(\alpha,\beta)+\alpha+\beta-1)}),$

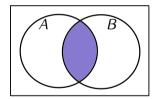
for (α, β) in the feasible region.



Theorem: Inverting a random value $\mathbf{u}|\mathbf{v}$ under $\mathbf{H}|\mathbf{G}$ in the 2-BRO model is as hard as the set-intersection problem.

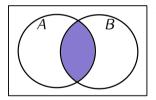
Theorem: Inverting a random value $\mathbf{u}|\mathbf{v}$ under $\mathbf{H}|\mathbf{G}$ in the 2-BRO model is as hard as the set-intersection problem.

Let
$$A := \mathbf{H}^-(\mathbf{u})$$
 and $B := \mathbf{G}^-(\mathbf{v})$.



Theorem: Inverting a random value $\mathbf{u}|\mathbf{v}$ under $\mathbf{H}|\mathbf{G}$ in the 2-BRO model is as hard as the set-intersection problem.

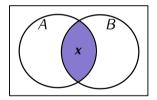
Let
$$A := \mathsf{H}^-(\mathsf{u})$$
 and $B := \mathsf{G}^-(\mathsf{v}).$



Then, for any pre-image x of $\mathbf{u}|\mathbf{v}$: $x \in \mathbf{H}^{-}(\mathbf{u})$ and $x \in \mathbf{G}^{-}(\mathbf{v})$

Theorem: Inverting a random value $\mathbf{u}|\mathbf{v}$ under $\mathbf{H}|\mathbf{G}$ in the 2-BRO model is as hard as the set-intersection problem.

Let
$$A := \mathsf{H}^-(\mathsf{u})$$
 and $B := \mathsf{G}^-(\mathsf{v}).$



Then, for any pre-image x of $\mathbf{u}|\mathbf{v}$: $x \in \mathbf{H}^{-}(\mathbf{u})$ and $x \in \mathbf{G}^{-}(\mathbf{v})$ Hence, $x \in A \cap B$.

Security of Concatenation in 2-BRO

One-Way Security

Inverting a random value $\mathbf{u}|\mathbf{v}$ is as hard as the **set-intersection** problem.

Security of Concatenation in 2-BRO

One-Way Security

Inverting a random value $\mathbf{u}|\mathbf{v}$ is as hard as the **set-intersection** problem.

Pseudorandomness

Deciding whether a random value $\mathbf{u}|\mathbf{v}$ has a pre-image is as hard as the **set-disjointness** problem.

Security of Concatenation in 2-BRO

One-Way Security

Inverting a random value $\mathbf{u}|\mathbf{v}$ is as hard as the **set-intersection** problem.

Pseudorandomness

Deciding whether a random value **u**|**v** has a pre-image is as hard as the **set-disjointness** problem.

Collision-Resistance

Finding a collision is as hard as ...

Collision-Resistance of Concatenation

Theorem: Finding a collision under H|G in the 2-BRO model is as hard as finding 2 sets, given many, and 2 elements in their intersection.

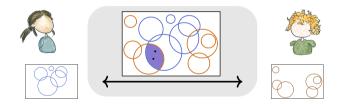
Collision-Resistance of Concatenation

Theorem: Finding a collision under H|G in the 2-BRO model is as hard as finding 2 sets, given many, and 2 elements in their intersection.



Collision-Resistance of Concatenation

Theorem: Finding a collision under H|G in the 2-BRO model is as hard as finding 2 sets, given many, and 2 elements in their intersection.



Hardness of the above problem is open.

Combiners and Security Notions

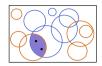
	OW	PRG	CR
$ \xrightarrow{H} \xrightarrow{H} \xrightarrow{G} \xrightarrow{H} \xrightarrow{G} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	\checkmark	\checkmark	??
	\checkmark	?	??
$\rightarrow H \rightarrow G \rightarrow$	\checkmark	\checkmark	??

Open Problems

• lower bound for the multi-INT problem

• extend parameters for DISJ and INT

• combiners for other backdoored primitives



 π E

Thank You.

16