
Cryptanalysis via Algebraic Spans

Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban

Bar-Ilan University

Crypto 2018

PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.

PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.

PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.

PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.

PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.

The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.

Conojugation in nonabelian groups

For a, c ∈ G (nonabelian group),

ac := c−1ac

(conjugation).

Conjugation is an isomorphism:

(a−1)c = (ac)−1

(ab)c = ac · bc .

For a word v(x1, . . . , xk) in the variables x1, . . . , xk (e.g., x7x
−1
3 x5):

v(ac1, . . . , a
c
k) = v(a1, . . . , ak)

c .

Conojugation in nonabelian groups

For a, c ∈ G (nonabelian group),

ac := c−1ac

(conjugation).

Conjugation is an isomorphism:

(a−1)c = (ac)−1

(ab)c = ac · bc .

For a word v(x1, . . . , xk) in the variables x1, . . . , xk (e.g., x7x
−1
3 x5):

v(ac1, . . . , a
c
k) = v(a1, . . . , ak)

c .

Conojugation in nonabelian groups

For a, c ∈ G (nonabelian group),

ac := c−1ac

(conjugation).

Conjugation is an isomorphism:

(a−1)c = (ac)−1

(ab)c = ac · bc .

For a word v(x1, . . . , xk) in the variables x1, . . . , xk (e.g., x7x
−1
3 x5):

v(ac1, . . . , a
c
k) = v(a1, . . . , ak)

c .

Commutator KE (Anshel–Anshel–Goldfeld 1999)

Alice Public Bob

v(x1, . . . , xk) 〈a1, . . . , ak〉 ≤ G w(x1, . . . , xk)

a = v(a1, . . . , ak) 〈b1, . . . , bk〉 ≤ G b = w(b1, . . . , bk)

b1
a , . . . , bk

a

//

a1
b , . . . , ak

b

oo

a−1v(a b
1 , . . . , a b

k) w(b a
1 , . . . , b a

k)−1b

a−1v(a b
1 , . . . , a

b
k) = a−1ab = a−1b−1ab = (ba)−1b = w(b a

1 , . . . , b
a
k)

−1b

Commutator KE (Anshel–Anshel–Goldfeld 1999)

Alice Public Bob

v(x1, . . . , xk) 〈a1, . . . , ak〉 ≤ G w(x1, . . . , xk)

a = v(a1, . . . , ak) 〈b1, . . . , bk〉 ≤ G b = w(b1, . . . , bk)

b1
a , . . . , bk

a

//

a1
b , . . . , ak

b

oo

a−1v(a b
1 , . . . , a b

k) w(b a
1 , . . . , b a

k)−1b

a−1v(a b
1 , . . . , a

b
k) = a−1ab = a−1b−1ab = (ba)−1b = w(b a

1 , . . . , b
a
k)

−1b

Commutator KE (Anshel–Anshel–Goldfeld 1999)

Alice Public Bob

v(x1, . . . , xk) 〈a1, . . . , ak〉 ≤ G w(x1, . . . , xk)

a = v(a1, . . . , ak) 〈b1, . . . , bk〉 ≤ G b = w(b1, . . . , bk)

b1
a , . . . , bk

a

//

a1
b , . . . , ak

b

oo

a−1v(a b
1 , . . . , a b

k) w(b a
1 , . . . , b a

k)−1b

a−1v(a b
1 , . . . , a

b
k) = a−1ab = a−1b−1ab = (ba)−1b = w(b a

1 , . . . , b
a
k)

−1b

Linear equations from conjugations

Assume G ≤ GLn(F) (matrix representations).

Given c = ba (a, b ∈ G):

ba = a−1ba

a · ba = ba

Linear equations in the entries of the matrix a.

A solution ã is invertible w.h.p. (Schwartz–Zippel).

ã · ba = bã

ba = ã−1bã

ba = bã

Linear equations from conjugations

Assume G ≤ GLn(F) (matrix representations).

Given c = ba (a, b ∈ G):

ba = a−1ba

a · ba = ba

Linear equations in the entries of the matrix a.

A solution ã is invertible w.h.p. (Schwartz–Zippel).

ã · ba = bã

ba = ã−1bã

ba = bã

Linear equations from conjugations

Assume G ≤ GLn(F) (matrix representations).

Given c = ba (a, b ∈ G):

ba = a−1ba

a · ba = ba

Linear equations in the entries of the matrix a.

A solution ã is invertible w.h.p. (Schwartz–Zippel).

ã · ba = bã

ba = ã−1bã

ba = bã

Linear equations from conjugations

Assume G ≤ GLn(F) (matrix representations).

Given c = ba (a, b ∈ G):

ba = a−1ba

a · ba = ba

Linear equations in the entries of the matrix a.

A solution ã is invertible w.h.p. (Schwartz–Zippel).

ã · ba = bã

ba = ã−1bã

ba = bã

Algebraic spans

G ≤ GLn(F), a, b ∈ G .

Can find ã with ba = bã by linear equations.

ã /∈ G !

We can force
ã ∈ Alg(G) = spanF(G) ⊆ Mn(F),

the algebra generated by G (because that’s a vector space.)

For G = 〈g1, . . . , gk〉 ≤ GLn(F), finding a basis for Alg(G) by repeated multiplication
by generators and Gauss elimination is O(kn6).

Algebraic spans

G ≤ GLn(F), a, b ∈ G .

Can find ã with ba = bã by linear equations.

ã /∈ G !

We can force
ã ∈ Alg(G) = spanF(G) ⊆ Mn(F),

the algebra generated by G (because that’s a vector space.)

For G = 〈g1, . . . , gk〉 ≤ GLn(F), finding a basis for Alg(G) by repeated multiplication
by generators and Gauss elimination is O(kn6).

Algebraic spans

G ≤ GLn(F), a, b ∈ G .

Can find ã with ba = bã by linear equations.

ã /∈ G !

We can force
ã ∈ Alg(G) = spanF(G) ⊆ Mn(F),

the algebra generated by G (because that’s a vector space.)

For G = 〈g1, . . . , gk〉 ≤ GLn(F), finding a basis for Alg(G) by repeated multiplication
by generators and Gauss elimination is O(kn6).

Algebraic spans

G ≤ GLn(F), a, b ∈ G .

Can find ã with ba = bã by linear equations.

ã /∈ G !

We can force
ã ∈ Alg(G) = spanF(G) ⊆ Mn(F),

the algebra generated by G (because that’s a vector space.)

For G = 〈g1, . . . , gk〉 ≤ GLn(F), finding a basis for Alg(G) by repeated multiplication
by generators and Gauss elimination is O(kn6).

Algebraic Span Cryptanalysis

G1, . . . ,Gk ≤ GLn(F); g1 ∈ G1, . . . , gk ∈ Gk .

Given: linear equations on the entries of g1, . . . , gk .

Need to find f (g1, . . . , gk).

Instead of solving subject to

g1 ∈ G1, . . . , gk ∈ Gk ,

(infeasible!) solve subject to the linear constraints

g1 ∈ Alg(G1), . . . , gk ∈ Alg(Gk).

Pray (or prove) that every solution g̃1, . . . , g̃k satisfies

f (g̃1, . . . , g̃k) = f (g1, . . . , gk).

Algebraic Span Cryptanalysis

G1, . . . ,Gk ≤ GLn(F); g1 ∈ G1, . . . , gk ∈ Gk .

Given: linear equations on the entries of g1, . . . , gk .

Need to find f (g1, . . . , gk).

Instead of solving subject to

g1 ∈ G1, . . . , gk ∈ Gk ,

(infeasible!) solve subject to the linear constraints

g1 ∈ Alg(G1), . . . , gk ∈ Alg(Gk).

Pray (or prove) that every solution g̃1, . . . , g̃k satisfies

f (g̃1, . . . , g̃k) = f (g1, . . . , gk).

Algebraic Span Cryptanalysis

G1, . . . ,Gk ≤ GLn(F); g1 ∈ G1, . . . , gk ∈ Gk .

Given: linear equations on the entries of g1, . . . , gk .

Need to find f (g1, . . . , gk).

Instead of solving subject to

g1 ∈ G1, . . . , gk ∈ Gk ,

(infeasible!) solve subject to the linear constraints

g1 ∈ Alg(G1), . . . , gk ∈ Alg(Gk).

Pray (or prove) that every solution g̃1, . . . , g̃k satisfies

f (g̃1, . . . , g̃k) = f (g1, . . . , gk).

Application: Commutator KEP

a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉 ≤ G ≤ GLn(F).

Need: (b1
a, . . . , bk

a, a1
b, . . . , ak

b) 7→ a−1b−1ab.

Solving linear equations, we obtain ã ∈ Alg(a1, . . . , ak), b̃ ∈ Alg(b1, . . . , bk) with

b1
ã = b1

a

...
bk

ã = bk
a

;

a1
b̃ = a1

b

...

ak
b̃ = ak

b

Since ã ∈ Alg(a1, . . . , ak), ãb̃ = ãb. Similarly, bã = ba.

ã−1b̃−1ãb̃ = ã−1ãb̃ = ã−1ãb = ã−1b−1ãb = (bã)−1b = (ba)−1b = a−1b−1ab !

Application: Commutator KEP

a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉 ≤ G ≤ GLn(F).

Need: (b1
a, . . . , bk

a, a1
b, . . . , ak

b) 7→ a−1b−1ab.

Solving linear equations, we obtain ã ∈ Alg(a1, . . . , ak), b̃ ∈ Alg(b1, . . . , bk) with

b1
ã = b1

a

...
bk

ã = bk
a

;

a1
b̃ = a1

b

...

ak
b̃ = ak

b

Since ã ∈ Alg(a1, . . . , ak), ãb̃ = ãb. Similarly, bã = ba.

ã−1b̃−1ãb̃ = ã−1ãb̃ = ã−1ãb = ã−1b−1ãb = (bã)−1b = (ba)−1b = a−1b−1ab !

Application: Commutator KEP

a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉 ≤ G ≤ GLn(F).

Need: (b1
a, . . . , bk

a, a1
b, . . . , ak

b) 7→ a−1b−1ab.

Solving linear equations, we obtain ã ∈ Alg(a1, . . . , ak), b̃ ∈ Alg(b1, . . . , bk) with

b1
ã = b1

a

...
bk

ã = bk
a

;

a1
b̃ = a1

b

...

ak
b̃ = ak

b

Since ã ∈ Alg(a1, . . . , ak), ãb̃ = ãb. Similarly, bã = ba.

ã−1b̃−1ãb̃ = ã−1ãb̃ = ã−1ãb = ã−1b−1ãb = (bã)−1b = (ba)−1b = a−1b−1ab !

Triple Decomposition KE (Kurt 2005)

Alice Public Bob

a, a1, a2, x1, x2

A A1 A2 X1 X2
| | | |
Y1 Y2 B1 B2 B

≤ G y1, y2, b1, b2, b

ax1 , x−1
1 a1x2 , x−1

2 a2
//

b1y1 , y−1
1 b2y2 , y−1

2 b
oo

a b1y1 a1 y−1
1 b2y2 a2 y−1

2 b = ab1a1b2a2b︸ ︷︷ ︸
K

= ax1 b1 x−1
1 a1x2 b2 x−1

2 a2 b

The triple products do not provide linear equations! (And without them we fail!)

Cryptanalysis of Triple Dec KE

Alg(B1)y1 = Alg(B1) · b1y1

Alg(B2 ∪ Y2)y1 = Alg(B2 ∪ Y2) · y−1
2 b−1

2 y1 = Alg(B2 ∪ Y2) · y−1
1 b2y2

−1

Alg(A2)x2 = Alg(A2) · a−1
2 x2 = Alg(A2) · x−1

2 a2
−1

Alg(A1 ∪ X1)x2 = Alg(A1 ∪ X1) · x−1
1 a1x2

Pick invertible
ỹ1 ∈ Alg(Y1) ∩ Alg(B1)y1 ∩ Alg(B2 ∪ Y2)y1;

x̃2 ∈ Alg(X2) ∩ Alg(A2)x2 ∩ Alg(A1 ∪ X1)x2.

ax1 · b1y1 · ỹ1
−1 · x−1

1 a1x2 · x̃2
−1 · ỹ1 · y−1

1 b2y2 · x̃2 · x−1
2 a2 · y−1

2 b

Gives (intricate proof) ab1a1b2a2b = K ! (Alternatively, could check empirically.)

Final comments

Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park
2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more.

Not the end of nonabelian cryptography:

1. Additional nonabelian proposals
(Dehornoy et al., Kalka, . . .).

2. Additional problems (CSP, Multiple CSP,. . .) to build upon.
3. Groups with no small-dim representations.
4. The application of this method keeps getting harder as new systems emerge (cf.

recent cryptanalysis of Algebraic Eraser).

THANK YOU!

Final comments

Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park
2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more.

Not the end of nonabelian cryptography:

1. Additional nonabelian proposals
(Dehornoy et al., Kalka, . . .).

2. Additional problems (CSP, Multiple CSP,. . .) to build upon.
3. Groups with no small-dim representations.
4. The application of this method keeps getting harder as new systems emerge (cf.

recent cryptanalysis of Algebraic Eraser).

THANK YOU!

Final comments

Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park
2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more.

Not the end of nonabelian cryptography:

1. Additional nonabelian proposals
(Dehornoy et al., Kalka, . . .).

2. Additional problems (CSP, Multiple CSP,. . .) to build upon.
3. Groups with no small-dim representations.
4. The application of this method keeps getting harder as new systems emerge (cf.

recent cryptanalysis of Algebraic Eraser).

THANK YOU!

Final comments

Method also applies to: Nonabelian Diffie–Hellman (Ko–Lee–Cheon–Han–Kang–Park
2000), Centralizer KE (Shpilrain–Ushakov 2006), and some more.

Not the end of nonabelian cryptography:

1. Additional nonabelian proposals
(Dehornoy et al., Kalka, . . .).

2. Additional problems (CSP, Multiple CSP,. . .) to build upon.
3. Groups with no small-dim representations.
4. The application of this method keeps getting harder as new systems emerge (cf.

recent cryptanalysis of Algebraic Eraser).

THANK YOU!

