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PKC foundations are mainly abelian (and quantum insecure)

DLP in finite fields (1976); Factorization (RSA, 1978).

Poor performance vs security tradeoff; no long-term security.

Subexp algorithms for DLP in some elliptic curves.

Quantum computers break them all.

Options: (0) Abelian (DLP/RSA); (1) Lattices; (2) nonabelian groups/structures.
The nonablian option must be explored.

In particular, we need general cryptanalytic tools for nonabelian crypto.

Here: Algebraic Span Cryptanalysis.
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For a,c € G (nonabelian group),

(conjugation).

Conjugation is an isomorphism:

For a word v(xi1,...,xx) in the variables xq, ..., xx (e.g., X7X§IX5):

v(ag,...,ay) = v(a1,...,ak)".
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Linear equations from conjugations

Assume G < GL,(F) (matrix representations).

Given ¢ = (a, b€ G):

:aflba
a~:ba

Linear equations in the entries of the matrix a.

A solution 3 is invertible w.h.p. (Schwartz—Zippel).

5.b°|=b3
[b?|=5"1bs
b= b
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Algebraic spans

G < GLy(F), a,b € G.
Can find 3 with = b? by linear equations.
i¢G!

We can force
3 € Alg(G) = spang(G) C M,(F),

the algebra generated by G (because that's a vector space.)

For G = (g1,...,8k) < GL,(F), finding a basis for Alg(G) by repeated multiplication
by generators and Gauss elimination is O(kn®).
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Algebraic Span Cryptanalysis
Gi,y...,Gk < GL,(F); g1 € Gu,...,8 € Gy.
Given: linear equations on the entries of g1, ..., gk.
Need to find (g1, ..., 8k)-

Instead of solving subject to
g1 € Gi,...,gqk € Gy,
(infeasible!) solve subject to the linear constraints
g1 € Alg(Gy), ..., gk € Alg(Gk).
Pray (or prove) that every solution gi, ..., 8k satisfies

f(gla e 7gk) = f(gla e 7gk)'
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Application: Commutator KEP

36<31,...,ak>,b€(bl,...,bk>§ GSGL,,(F)

Need: (b1?,...,bc% a1°, ..., a%) — a~tb~tab.

Solving linear equations, we obtain 3 € Alg(ay, ..., ax), be Alg(b1,. .., by) with
b = | b’ ab = |aP
b = |b? ab = |ab

Since 5 € Alg(a, ..., ax), 5b = 5b. Similarly, b® = b°.

5 5h=513=51"=5"1b"1ab=(b?)"th=(b)"tb=a b tab!



Triple Decomposition KE (Kurt 2005)

Alice Public Bob

A A A Xi Xo
a,ai, az, X1, X ] <G yi,y2, b1, b2, b

Y1 Y2 Bi By, B
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biyi ||y thaya |y 5 tb
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1 1 1 1
a biyi a1 yy “bay2|ag v, “b|= abiaibyacb =| axq |b1| x; “aixz by x; " a2
K

The triple products do not provide linear equations! (And without them we faill)



Cryptanalysis of Triple Dec KE

Alg(B1)y1 = Alg(B1) - | biyi |

Alg(B U Ya)yr = Alg(Ba U Ya) - y5 thytyr = Alg(Boa U Y5) -

i thays

Alg(A2)xo = Alg(A2) - a5 'xo = Alg(A2) | x5 "o

Alg(Al U Xl)X2 = Alg(Al U Xl) .

Pick invertible

—1

Xl_ ! a1 X2

}71 S Alg( Yl) N A|g(Bl)y1 N AIg(B2 U Y2)y1;
X € Alg(X2) N A|g(A2)X2 N Alg(Al U Xl)Xz.

B
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.Xl
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- Xo

g

v thoys

cXo - x{lag

Gives (intricate proof) abja;byasb = K! (Alternatively, could check empirically.)
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3. Groups with no small-dim representations.
4. The application of this method keeps getting harder as new systems emerge (cf.

recent cryptanalysis of Algebraic Eraser).

THANK YOU!



