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Machine Learning as a Service (MLaa$S)
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Possible solution: FHE.
v Privacy data is encrypted (both input and output)
X Efficiency

main issue with FHE-based solutions
Goal of this work: homomorphic evaluation of trained networks.
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(Very quick) refresher on neural networks

Input Hidden Output
layer layers layer




(Very quick) refresher on neural networks

Computation for every neuron:

Xi, Wi,y € R
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(Very quick) refresher on neural networks

Computation for every neuron:

Xi, Wi,y € R

Yt (z " ) ,
i
where f is an activation function.
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A specific use case

We consider the problem of digit recognition.
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Dataset: MNIST (60000 training img + 10000 test img).
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State of the art

Cryptonets [DGBL"16]
v Achieves blind, non-interactive classification
v Near state-of-the-art accuracy (98.95%)
X Replaces sigmoidal activ. functions with low-degree f(x) = x>

X Uses SHE = parameters have to be chosen at setup time

Main limitation

The computation at neuron level depends on the total multiplicative depth of the network
— bad for deep networks!

Goal: make the computation scale-invariant = bootstrapping.
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A restriction on the model

We want to homomorphically compute the multisum
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We want to homomorphically compute the multisum
5w
i
Given wi,...,w, and Enc(x1),...,Enc(xp), do

Z w; - Enc (x;)
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A restriction on model

We want to homomorphically compute the multisum
5w
i
Given wi,...,w, and Enc(x1),...,Enc(xp), do

Z w; - Enc (x;)

Proceed with caution

In order to maintain correctness, we need w; € Z — trade-off efficiency vs. accuracy!
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Discretized neural networks (DiNNs)

Goal: FHE-friendly model of neural network.
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Goal: FHE-friendly model of neural network.

Definition

A DiNN is a neural network whose inputs are integer values in {—/,...,/}, and whose weights
are integer values in {—W, ..., W}, for some I, W € N.

For every activated neuron of the network, the activation function maps the multisum to
integer values in {—/,...,/}.
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Discretized neural networks (DiNNs)
Goal: FHE-friendly model of neural network.

Definition

A DiNN is a neural network whose inputs are integer values in {—/,...,/}, and whose weights
are integer values in {—W, ..., W}, for some I, W € N.

For every activated neuron of the network, the activation function maps the multisum to
integer values in {—/,...,/}.

@ Not as restrictive as it seems: e.g., binarized NNs;
@ Trade-off between size and performance;

@ (A basic) conversion is extremely easy.
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Homomorphic evaluation of a DiNN

© Evaluate the multisum: easy — just need a linearly hom. scheme

Z w; - Enc (x;) = Enc (Z WiXi>

i
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Homomorphic evaluation of a DiNN

© Evaluate the multisum: easy — just need a linearly hom. scheme
@ Apply the activation function: depends on the function
© Bootstrap: can be costly

Q Repeat for all the layers

(5
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Homomorphic evaluation of a DiNN

o
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o
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Issues:

@ Choose the message space: guess, statistics, or worst-case
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Homomorphic evaluation of a DiNN

o

2]
o
o

Issues:

@ Choose the message space: guess, statistics, or worst-case
@ The noise grows: need to start from a very small noise

@ How do we apply the activation function homomorphically?
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Basic idea: activate during bootstrapping

Combine bootstrapping & activation function:

Enc (x) — Enc® (f (x))
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Basic idea: activate during bootstrapping

Two steps:
@ Compute the multisum >, wix;

@ Bootstrap to the activated value
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TFHE: a framework for faster bootstrapping (cceusceeny
Basic assumption: learning with errors (LWE) over the torus T=R/Z
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TFHE: a framework for faster bootstrapping (ccens.cceny

Basic assumption: learning with errors (LWE) over the torus T=R/Z

(a, b= (s,a) +e mod 1) ~ (a, u), €4 Xa, s<s{0,1}", a,u<«-sT".
Scheme Message Ciphertext
LWE scalar (n+1) scalars

TLWE  polynomial (k + 1) polynomials

Overview of the bootstrapping procedure:

@ Hom. compute X?~(52): spin the wheel v, A

@ Pick the ciphertext pointed to by the arrow .
© Switch back to the original key % x
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Our activation function

We focus on f (x) = sign (x) . |
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Same thing for weights (in the clear) in the first hidden layer: wp, = >, w; X',
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Refining TFHE

@ Reducing bandwidth usage

Standard packing technique: encrypt a polynomial instead of a scalar.

ct = TLWE.Encrypt (Z pi Xi>

]

Same thing for weights (in the clear) in the first hidden layer: wp, = >, w; X',

The constant term of ct - wp,y is then Enc (3, w; x;).
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Refining TFHE

© Dynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).

Better idea Change the msg space to reduce errors. Intuition: less slices when we do not
need them.

How Details in the paper. Quick intuition: change what we put in the wheel.

Bottom line

We can start with any message space at encryption time, and change it dynamically during the
bootstrapping.
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Overview of the process

Evaluation of a DiNN with 30 neurons in the hidden layer:

User Server
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Overview of the process

Evaluation of a DiNN with 30 neurons in the hidden layer:
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Evaluation of a DiNN with 30 neurons in the hidden layer:

User Server
Enc (3; piX') S wiX
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Overview of the process

Evaluation of a DiNN with 30 neurons in the hidden layer:

User Server

Enc Z,p,-X" 'ZiWiX_i
7 ( ) 1 TLWE 30 TLWE

extract

sign bootstrapping

30 LWE

weighted sums

argmax
T ETF= S R 10 LWE
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Experimental results

On inputs in the clear

Original NN (R)

DiNN + hard_sigmoid

DiNN + sign

30 neurons 94.76% 93.76% (-1%) 93.55% (-1.21%)
100 neurons 96.75% 96.62% (-0.13%) 96.43% (-0.32%)
On encrypted inputs
Accur. Disag. Wrong BS Disag. (wrong BS) Time
30 or 93.71% 273 (105-121)  3383/300000 196/273 0.515 s
30 un 93.46% 270 (119-110) 2912/300000 164/270 0.491 s
100 or 96.26% 127 (61-44) 9088,/1000000 105/127 1.679 s
100 un 96.35% 150 (66-58) 7452/1000000 99/150 1.64 s
or = original un = unfolded
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Experimental results

On inputs in the clear

Original NN (R)

DiNN + hard_sigmoid

DiNN + sign

30 neurons 94.76% 93.76% (-1%) 93.55% (-1.21%)
( 100 neurons 96.75% 96.62% (-0.13%) 96.43% (—0.32%))
On encrypted inputs
Accur. Disag. Wrong BS Disag. (wrong BS) Time
30 or 93.71% 273 (105-121)  3383/300000 196/273 0.515s
30 un 93.46% 270 (119-110) 2912/300000 164/270 0.491 s
100 or 96.26% 127 (61-44) 9088/1000000 105/127 1.679 s
100 un 96.35% 150 (66-58) 7452/1000000 99/150 1.64 s
or = original un = unfolded
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Neurons Size of ct. Accuracy Time enc Time eval Time dec

FHE-DiINN 30 30 8.0 kB 03.71%  0.000168 s 0.49 s 0.0000106 s
FHE-DiNN 100 100 8.0 kB 96.35%  0.000168 s 1.65s 0.0000106 s
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Neurons Size of ct. Accuracy Time enc Time eval Time dec
FHE-DIiNN 30 30 8.0 kB 93.71%  0.000168 s 0.49 s 0.0000106 s
FHE-DIiNN 100 100 8.0 kB 96.35%  0.000168 s 0.0000106 s
Scales
linearly
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Open problems and future directions

o Build better DiNNs: more attention to the conversion (+ retraining)
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Open problems and future directions

o Build better DiNNs: more attention to the conversion (+ retraining)
@ Implement on GPU to have realistic timings

e More models (e.g., convolutional NNs) and machine learning problems

Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU?).

’ReLU (x) = max (0, x)
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Open problems and future directions

o Build better DiNNs: more attention to the conversion (+ retraining)
@ Implement on GPU to have realistic timings

e More models (e.g., convolutional NNs) and machine learning problems

Research needed

We need a fast way to evaluate other, more complex, functions (e.g., max or ReLU?).

’ReLU (x) = max (0, x)

Thank you for your attention!

Questions?
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