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A specific use case

We consider the problem of digit recognition.

7

Dataset: MNIST (60 000 training img + 10 000 test img).
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State of the art

Cryptonets [DGBL+16]

3 Achieves blind, non-interactive classification

3 Near state-of-the-art accuracy (98.95%)

7 Replaces sigmoidal activ. functions with low-degree f (x) = x2

7 Uses SHE =⇒ parameters have to be chosen at setup time

Main limitation
The computation at neuron level depends on the total multiplicative depth of the network
=⇒ bad for deep networks!

Goal: make the computation scale-invariant =⇒ bootstrapping.
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A restriction on the model

We want to homomorphically compute the multisum∑
i

wixi

Given w1, . . . ,wp and Enc (x1) , . . . ,Enc (xp), do∑
i

wi · Enc (xi)

Proceed with caution
In order to maintain correctness, we need wi ∈ Z

=⇒ trade-off efficiency vs. accuracy!
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Discretized neural networks (DiNNs)

Goal: FHE-friendly model of neural network.

Definition
A DiNN is a neural network whose inputs are integer values in {−I, . . . , I }, and whose weights
are integer values in {−W , . . . ,W }, for some I,W ∈ N.
For every activated neuron of the network, the activation function maps the multisum to
integer values in {−I, . . . , I }.

Not as restrictive as it seems: e.g., binarized NNs;

Trade-off between size and performance;

(A basic) conversion is extremely easy.
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Homomorphic evaluation of a DiNN
1 Evaluate the multisum: easy – just need a linearly hom. scheme

2 Apply the activation function: depends on the function

3 Bootstrap: can be costly

4 Repeat for all the layers

∑
i

wi · Enc (xi) = Enc
(∑

i
wixi

)

Issues:

Choose the message space: guess, statistics, or worst-case

The noise grows: need to start from a very small noise

How do we apply the activation function homomorphically?
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Basic idea: activate during bootstrapping

Combine bootstrapping & activation function:

Enc (x)→ Enc∗ (f (x))
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TFHE: a framework for faster bootstrapping [CGGI16,CGGI17]

T := R/ZBasic assumption: learning with errors (LWE) over the torus

(a, b = ⟨s,a⟩+ e mod 1)
c
≈ (a, u) , e ← χα, s←$ {0, 1}n, a,u←$Tn.

Scheme Message Ciphertext
LWE scalar (n + 1) scalars

TLWE polynomial (k + 1) polynomials

Overview of the bootstrapping procedure:

1 Hom. compute Xb−⟨s,a⟩: spin the wheel
2 Pick the ciphertext pointed to by the arrow
3 Switch back to the original key
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Our activation function

We focus on f (x) = sign (x) .
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Standard packing technique: encrypt a polynomial instead of a scalar.

ct = TLWE.Encrypt
(∑

i
pi X i

)

Same thing for weights (in the clear) in the first hidden layer: wpol :=
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i wiX−i .

The constant term of ct · wpol is then Enc (
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Refining TFHE
1 Reducing bandwidth usage
2 Dynamically changing the message space

Fact We can keep the msg space constant (bound on all multisums).
Better idea Change the msg space to reduce errors. Intuition: less slices when we do not

need them.
How Details in the paper. Quick intuition: change what we put in the wheel.

Bottom line
We can start with any message space at encryption time, and change it dynamically during the
bootstrapping.
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Overview of the process
Evaluation of a DiNN with 30 neurons in the hidden layer:
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1 TLWE
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(∑
i piX i)
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·
∑

i wiX−i

30 LWE
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10 scores Dec7
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Experimental results
On inputs in the clear

Original NN (R) DiNN + hard_sigmoid DiNN + sign

30 neurons 94.76% 93.76% (-1%) 93.55% (-1.21%)

100 neurons 96.75% 96.62% (-0.13%) 96.43% (-0.32%)

On encrypted inputs
Accur. Disag. Wrong BS Disag. (wrong BS) Time

30 or 93.71% 273 (105–121) 3383/300000 196/273 0.515 s

30 un 93.46% 270 (119–110) 2912/300000 164/270 0.491 s

100 or 96.26% 127 (61–44) 9088/1000000 105/127 1.679 s

100 un 96.35% 150 (66–58) 7452/1000000 99/150 1.64 s

or = original un = unfolded
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Benchmarks

Neurons Size of ct. Accuracy Time enc Time eval Time dec

FHE-DiNN 30 30 8.0 kB 93.71% 0.000168 s 0.49 s 0.0000106 s

FHE-DiNN 100 100 8.0 kB 96.35% 0.000168 s 1.65 s 0.0000106 s
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Open problems and future directions

Build better DiNNs: more attention to the conversion (+ retraining)

Implement on GPU to have realistic timings
More models (e.g., convolutional NNs) and machine learning problems

Research needed
We need a fast way to evaluate other, more complex, functions (e.g., max or ReLUa).

aReLU (x) = max (0, x)

Thank you for your attention!
Questions?
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