Faster Homomorphic Linear Transformations in HElab

Shai Halevi (IBM)
Victor Shoup (IBM & NYU)
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data.

In this talk, the focus is on linear transformations.

...more specifically, applying a fixed, public linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem.

We present new algorithms and their implementation in HElib.

We get speed ups of up to $\approx 75 \times$

One important application: bootstrapping

⇒ in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis
⇒ speed up of up to $\approx 6 \times$ for bootstrapping as a whole
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data.

In this talk, the focus is on linear transformations. . . more specifically, applying a fixed, public linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem.

We present new algorithms and their implementation in HElib.

We get speed ups of up to \(\approx 75 \times \)

One important application: bootstrapping.

\(\Rightarrow \) in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis.

\(\Rightarrow \) speed up of up to \(\approx 6 \times \) for bootstrapping as a whole.
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data

In this talk, the focus is on *linear transformations*

...more specifically, applying a *fixed, public* linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem

We present *new algorithms and their implementation* in HElib

We get speed ups of up to \(\approx 75 \times \)

One important application: *bootstrapping*

- in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis
- speed up of up to \(\approx 6 \times \) for bootstrapping as a whole
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data

In this talk, the focus is on *linear transformations*

... more specifically, applying a *fixed, public* linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem

We present *new algorithms and their implementation* in HElib

We get speed ups of up to $\approx 75 \times$

One important application: bootstrapping

偁 in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis

偁 speed up of up to $\approx 6 \times$ for bootstrapping as a whole
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data

In this talk, the focus is on *linear transformations*

... more specifically, applying a *fixed, public* linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem

We present *new algorithms and their implementation* in HElib

We get speed ups of up to $\approx 75\times$

One important application: bootstrapping

- in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis
- speed up of up to $\approx 6\times$ for bootstrapping as a whole
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data

In this talk, the focus is on *linear transformations*

... more specifically, applying a *fixed, public* linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem

We present *new algorithms and their implementation* in HElib

We get speed ups of up to $\approx 75\times$

One important application: *bootstrapping*

- in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis
- speed up of up to $\approx 6\times$ for bootstrapping as a whole
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data.

In this talk, the focus is on linear transformations.

...more specifically, applying a fixed, public linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem.

We present new algorithms and their implementation in HElib.

We get speed ups of up to $\approx 75 \times$.

One important application: bootstrapping.

\(\Rightarrow \) in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis.

\(\Rightarrow \) speed up of up to $\approx 6 \times$ for bootstrapping as a whole.
Fully Homomorphic Encryption allows for arbitrary computation on encrypted data

In this talk, the focus is on *linear transformations*

... more specifically, applying a *fixed, public* linear transformation to a vector encrypted in the BGV (Brakerski-Gentry-Vaikuntanathan) cryptosystem

We present *new algorithms and their implementation* in HElib

We get speed ups of up to $\approx 75\times$

One important application: **bootstrapping**

- in Chen and Han’s new bootstrapping algorithm (Eurocrypt 2018), most of the time is spent performing a change of basis
- speed up of up to $\approx 6\times$ for bootstrapping as a whole
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) (\(p = \text{small prime} \))

Ciphertext space: \(R_q := R/qR \) (\(n, p, q \) pairwise coprime)

Ciphertext: \(\tilde{c} \in R_{q}^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_{q}^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:

\[\langle \tilde{s}, \tilde{c} \rangle = p\epsilon + m \]

“noise”
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) \((p = \text{small prime})\)

Ciphertext space: \(R_q := R/qR \) \((n, p, q \text{ pairwise coprime})\)

Ciphertext: \(\tilde{c} \in R_q^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_q^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:

\[\langle \tilde{s}, \tilde{c} \rangle = pe + m \]

“noise”
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) (\(p = \) small prime)

Ciphertext space: \(R_q := R/qR \) (\(n, p, q \) pairwise coprime)

Ciphertext: \(\tilde{c} \in R_{q}^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_{q}^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:

\[\langle \tilde{s}, \tilde{c} \rangle = p\epsilon + m \]

“noise”
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) \((p = \text{small prime})\)

Ciphertext space: \(R_q := R/qR \) \((n, p, q \text{ pairwise coprime})\)

Ciphertext: \(\tilde{c} \in R_q^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_q^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:
\[\langle \tilde{s}, \tilde{c} \rangle = p \varepsilon + m \]

"noise"
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) \((p = \text{small prime}) \)

Ciphertext space: \(R_q := R/qR \) \((n, p, q \text{ pairwise coprime}) \)

Ciphertext: \(\tilde{c} \in R_q^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_q^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:

\[
\langle \tilde{s}, \tilde{c} \rangle = p\epsilon + m
\]

“noise”
BGV encryption

\[R = \mathbb{Z}[X]/(\Phi_n(X)) \]

Plaintext space: \(R_p := R/pR \) \((p = \text{small prime})\)

Ciphertext space: \(R_q := R/qR \) \((n, p, q \text{ pairwise coprime})\)

Ciphertext: \(\tilde{c} \in R_{q}^{2 \times 1} \)

Secret key: \(\tilde{s} = (1, s_1) \in R_{q}^{2 \times 1} \), where \(s_1 \) has small norm

Decryption:

\[\langle \tilde{s}, \tilde{c} \rangle = pe + m \]

“noise”
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time

... so does multiplication by a constant

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT)
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time

... so does multiplication by a constant

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT)
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time.

... so does multiplication by a constant.

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT).
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time

... so does multiplication by a constant

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT)
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time
...so does multiplication by a constant

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT)
Representation of ciphertext space R_q

Coefficient representation

DoubleCRT representation

- $q = q_1 \cdots q_\ell$, where each q_i is a small prime such that \mathbb{Z}_{q_i} contains nth roots of unity
- A polynomial in R_q is reduced modulo each q_i, and then evaluated at the primitive nth roots of unity in \mathbb{Z}_{q_i}

Addition of ciphertexts in DoubleCRT representation takes linear time

... so does multiplication by a constant

Switching between DoubleCRT and coefficient representations: somewhat expensive (requires CRT and FFT)
Multiplication and Key Switching

Multiplying two ciphertexts in DoubleCRT representation takes linear time

But ... we get a ciphertext defined with respect to a different secret key

So ... we include an encryption of this other key under the original key in the public parameters (called a “key switching matrix”)

Using this, we can convert the product ciphertext to an equivalent one under the original key

Key switching is expensive:

- conversions between coefficient and DoubleCRT representations
Multiplication and Key Switching

Multiplying two ciphertexts in DoubleCRT representation takes linear time

But ... we get a ciphertext defined with respect to a different secret key

So ... we include an encryption of this other key under the original key in the public parameters (called a “key switching matrix”)

Using this, we can convert the product ciphertext to an equivalent one under the original key

Key switching is expensive:

- conversions between coefficient and DoubleCRT representations
Multiplication and Key Switching

Multiplying two ciphertexts in DoubleCRT representation takes linear time

But . . . we get a ciphertext defined with respect to a different secret key

So . . . we include an encryption of this other key under the original key in the public parameters (called a “key switching matrix”)

Using this, we can convert the product ciphertext to an equivalent one under the original key

Key switching is expensive:

conversions between coefficient and DoubleCRT representations
Multiplication and Key Switching

Multiplying two ciphertexts in DoubleCRT representation takes linear time.

But... we get a ciphertext defined with respect to a different secret key.

So... we include an encryption of this other key under the original key in the public parameters (called a “key switching matrix”).

Using this, we can convert the product ciphertext to an equivalent one under the original key.

Key switching is expensive:

- conversions between coefficient and DoubleCRT representations.
Multiplication and Key Switching

Multiplying two ciphertexts in DoubleCRT representation takes linear time

But ... we get a ciphertext defined with respect to a different secret key

So ... we include an encryption of this other key under the original key in the public parameters (called a “key switching matrix”)

Using this, we can convert the product ciphertext to an equivalent one under the original key

Key switching is expensive:

- conversions between coefficient and DoubleCRT representations
Plaintext space structure

Chinese Remainder Theorem:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \bigoplus_{i=1}^{h} \mathbb{Z}_p[X]/(f_i(X)) \]

where \(\Phi_n(X) = \prod_{i=1}^{h} f_i(X) \)

Each \(f_i \) irreducible of degree \(d = \text{order of } p \mod n \)

So we have

\[R_p \cong (\text{GF}(p^d))^h \quad \text{[} dh = \phi(n) \text{]} \]

We can view plaintext space as \(\text{GF}(p^d) \), and we can work on vectors of \(h \) plaintext “slots” \textit{in parallel}

Reminiscent of \textit{vectorized} or \textit{SIMD} computation
Plaintext space structure

Chinese Remainder Theorem:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \bigoplus_{i=1}^{h} \mathbb{Z}_p[X]/(f_i(X)) \]

where \(\Phi_n(X) = \prod_{i=1}^{h} f_i(X) \)

Each \(f_i \) irreducible of degree \(d = \text{order of } p \text{ mod } n \)

So we have

\[R_p \cong (\text{GF}(p^d))^h \quad [dh = \phi(n)] \]

We can view plaintext space as \(\text{GF}(p^d) \), and we can work on vectors of \(h \) plaintext “slots” in parallel

Reminiscent of vectorized or SIMD computation
Plaintext space structure

Chinese Remainder Theorem:

\[
R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \bigoplus_{i=1}^{h} \mathbb{Z}_p[X]/(f_i(X))
\]

where \(\Phi_n(X) = \prod_{i=1}^{h} f_i(X) \)

Each \(f_i \) irreducible of degree \(d = \text{order of } p \mod n \)

So we have

\[
R_p \cong (\text{GF}(p^d))^h \quad [dh = \phi(n)]
\]

We can view plaintext space as \(\text{GF}(p^d) \), and we can work on vectors of \(h \) plaintext “slots” *in parallel*

Reminiscent of **vectorized** or **SIMD** computation
Plaintext space structure

Chinese Remainder Theorem:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \bigoplus_{i=1}^{h} \mathbb{Z}_p[X]/(f_i(X)) \]

where \(\Phi_n(X) = \prod_{i=1}^{h} f_i(X) \)

Each \(f_i \) irreducible of degree \(d = \text{order of } p \mod n \)

So we have

\[R_p \cong (\text{GF}(p^d))^h \quad [dh = \phi(n)] \]

We can view plaintext space as \(\text{GF}(p^d) \), and we can work on vectors of \(h \) plaintext “slots” *in parallel*

Reminiscent of *vectorized* or *SIMD* computation
Plaintext space structure

Chinese Remainder Theorem:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \bigoplus_{i=1}^{h} \mathbb{Z}_p[X]/(f_i(X)) \]

where \(\Phi_n(X) = \prod_{i=1}^{h} f_i(X) \)

Each \(f_i \) irreducible of degree \(d = \) order of \(p \mod n \)

So we have

\[R_p \cong (\text{GF}(p^d))^h \quad [dh = \phi(n)] \]

We can view plaintext space as \(\text{GF}(p^d) \), and we can work on vectors of \(h \) plaintext “slots” \textit{in parallel}

Reminiscent of \textbf{vectorized} or \textbf{SIMD} computation
Some useful automorphisms

Each $j \in \mathbb{Z}_n^*$ defines an automorphism on R_p that sends $X \mapsto X^j$

Homomorphic evaluation: just apply $X \mapsto X^j$ directly to R_q

Easy ... but it requires “key switching”

This gives us a set of “rotations” that allow us to move data between “slots”
Some useful automorphisms

Each \(j \in \mathbb{Z}_n^* \) defines an automorphism on \(R_p \) that sends \(X \mapsto X^j \)

Homomorphic evaluation: just apply \(X \mapsto X^j \) directly to \(R_q \)

\(\square \) easy . . . but it requires “key switching”

This gives us a set of “rotations” that allow us to move data between “slots”
Some useful automorphisms

Each \(j \in \mathbb{Z}_n^* \) defines an automorphism on \(R_p \) that sends \(X \mapsto X^j \)

Homomorphic evaluation: just apply \(X \mapsto X^j \) directly to \(R_q \)

\(\land \) easy ... but it requires “key switching”

This gives us a set of “rotations” that allow us to move data between “slots”
A simplified (but not very typical) setting:

\[p \equiv 1 \pmod{n} \implies \Phi_n(X) \text{ splits completely over } \mathbb{Z}_p \]

We have:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \text{GF}(p)^h \text{ where } h = \phi(n) \]

via the isomorphism

\[[f(X) \mod \Phi_n(X)] \mapsto [f(\omega^i)]_{i \in \mathbb{Z}_n^*} \]

where \(\omega \in \mathbb{Z}_p^* \) is a primitive \(n \)th root of unity

The automorphism \(X \mapsto X^j \) sends

\[[f(\omega^i)]_{i \in \mathbb{Z}_n^*} \mapsto [f(\omega^{ij})]_{i \in \mathbb{Z}_n^*} \]

So the data in slot \(ij \) moves to slot \(i \)
A simplified (but not very typical) setting:

\[p \equiv 1 \pmod{n} \implies \Phi_n(X) \text{ splits completely over } \mathbb{Z}_p \]

We have:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong GF(p)^h \text{ where } h = \phi(n) \]

via the isomorphism

\[[f(X) \mod \Phi_n(X)] \mapsto [f(\omega^i)]_{i \in \mathbb{Z}_n^*} \]

where \(\omega \in \mathbb{Z}_p^* \) is a primitive \(n \)th root of unity

The automorphism \(X \mapsto X^i \) sends

\[[f(\omega^i)]_{i \in \mathbb{Z}_n^*} \mapsto [f(\omega^i)]_{i \in \mathbb{Z}_n^*} \]

So the data in slot \(ij \) moves to slot \(i \)
A simplified (but not very typical) setting:

\[p \equiv 1 \pmod{n} \implies \Phi_n(X) \text{ splits completely over } \mathbb{Z}_p \]

We have:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \text{GF}(p)^h \quad \text{where } h = \phi(n) \]

via the isomorphism

\[[f(X) \mod \Phi_n(X)] \mapsto [f(\omega^i)]_{i \in \mathbb{Z}_n^*} \]

where \(\omega \in \mathbb{Z}_p^* \) is a primitive \(n \)th root of unity

The automorphism \(X \mapsto X^i \) sends

\[[f(\omega^i)]_{i \in \mathbb{Z}_n^*} \mapsto [f(\omega^{ij})]_{i \in \mathbb{Z}_n^*} \]

So the data in slot \(ij \) moves to slot \(i \)
A simplified (but not very typical) setting:

\[p \equiv 1 \pmod{n} \implies \Phi_n(X) \text{ splits completely over } \mathbb{Z}_p \]

We have:

\[R_p = \mathbb{Z}_p[X]/(\Phi_n(X)) \cong \text{GF}(p)^h \text{ where } h = \phi(n) \]

via the isomorphism

\[[f(X) \mod \Phi_n(X)] \mapsto [f(\omega^i)]_{i \in \mathbb{Z}^*_n} \]

where \(\omega \in \mathbb{Z}_p^* \) is a primitive \(n \)th root of unity

The automorphism \(X \mapsto X^i \) sends

\[[f(\omega^i)]_{i \in \mathbb{Z}^*_n} \mapsto [f(\omega^{ij})]_{i \in \mathbb{Z}^*_n} \]

So the data in slot \(ij \) moves to slot \(i \)
General case: the available rotations are determined by the group structure of $\mathbb{Z}_n^*/\langle p \rangle$

Structure theorem:

$$\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where } n_{i+1} | n_i \text{ for each } i$$

Example: suppose $\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$

We have 9 slots arranged in a 3×3 array:

$$
\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{bmatrix}
$$

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount.

More generally: we have a k-dimensional hypercube, with rotations in each dimension.
General case: the available rotations are determined by the group structure of $\mathbb{Z}_n^*/\langle p \rangle$

Structure theorem:

$$\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where } n_{i+1} | n_i \text{ for each } i$$

Example: suppose $\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$

We have 9 slots arranged in a 3×3 array:

\[
\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{bmatrix}
\]

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount

More generally: we have a k-dimensional hypercube, with rotations in each dimension
General case: the available rotations are determined by the group structure of \(\mathbb{Z}_n^*/\langle p \rangle \)

Structure theorem:

\[\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where} \quad n_{i+1} | n_i \quad \text{for each} \quad i \]

Example: suppose \(\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \)

We have 9 slots arranged in a \(3 \times 3 \) array:

\[
\begin{pmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{pmatrix}
\]

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount

More generally: we have a \(k \)-dimensional hypercube, with rotations in each dimension
General case: the available rotations are determined by the group structure of $\mathbb{Z}_n^*/\langle p \rangle$

Structure theorem:

$$\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where } n_{i+1} | n_i \text{ for each } i$$

Example: suppose $\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$

We have 9 slots arranged in a 3×3 array:

$$\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{bmatrix}$$

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount.

More generally: we have a k-dimensional hypercube, with rotations in each dimension.
General case: the available rotations are determined by the group structure of $\mathbb{Z}_n^*/\langle p \rangle$

Structure theorem:

$$\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where } n_{i+1} | n_i \text{ for each } i$$

Example: suppose $\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$

We have 9 slots arranged in a 3×3 array:

$$\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{bmatrix}$$

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount.

More generally: we have a k-dimensional hypercube, with rotations in each dimension
General case: the available rotations are determined by the group structure of $\mathbb{Z}_n^*/\langle p \rangle$

Structure theorem:

$$\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}, \quad \text{where } n_{i+1} | n_i \text{ for each } i$$

Example: suppose $\mathbb{Z}_n^*/\langle p \rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$

We have 9 slots arranged in a 3×3 array:

$$\begin{bmatrix}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{bmatrix}$$

We can rotate all the rows (simultaneously) by any amount, or all the columns simultaneously by any amount

More generally: we have a k-dimensional hypercube, with rotations in each dimension
The main topic: computing $GF(p^d)$-linear maps

Input: an encrypted vector ν with h slots in $GF(p^d)$

Output: $L(\nu)$, for some fixed, public $GF(p^d)$-linear map L

- Equivalently: $M\nu$, where $M \in GF(p^d)^{h \times h}$
The main topic: computing $GF(p^d)$-linear maps

Input: an encrypted vector ν with h slots in $GF(p^d)$

Output: $L(\nu)$, for some fixed, public $GF(p^d)$-linear map L

- Equivalently: $M\nu$, where $M \in GF(p^d)^{h \times h}$
An obvious approach: Example: \(h = 3 \)

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{bmatrix} v_1 + \begin{bmatrix}
 a_{12} \\
 a_{22} \\
 a_{32}
\end{bmatrix} v_2 + \begin{bmatrix}
 a_{13} \\
 a_{23} \\
 a_{33}
\end{bmatrix} v_3
\]

Requires a “multibroadcast”:

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
\rightarrow
\left(\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}, \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}, \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}\right)
\]

- can be done using \(O(h) \) rotations/mul-by-const
- overkill
An obvious approach: Example: \(h = 3 \)

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3
\end{bmatrix}
\]

\[
= \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} v_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} v_2 + \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} v_3
\]

Requires a “multibroadcast”:

\[
\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}
\rightarrow
\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},
\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix},
\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}
\]

\(\bullet \) can be done using \(O(h) \) rotations/mul-by-const

\(\bullet \) overkill
An obvious approach: Example: $h = 3$

$$
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{bmatrix}
$$

$$
= \begin{bmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{bmatrix} \nu_1 + \begin{bmatrix}
 a_{12} \\
 a_{22} \\
 a_{32}
\end{bmatrix} \nu_2 + \begin{bmatrix}
 a_{13} \\
 a_{23} \\
 a_{33}
\end{bmatrix} \nu_3
$$

$$
= \begin{bmatrix}
 a_{11} \nu_1 \\
 a_{21} \nu_1 \\
 a_{31} \nu_1
\end{bmatrix} + \begin{bmatrix}
 a_{12} \nu_2 \\
 a_{22} \nu_2 \\
 a_{32} \nu_2
\end{bmatrix} + \begin{bmatrix}
 a_{13} \nu_3 \\
 a_{23} \nu_3 \\
 a_{33} \nu_3
\end{bmatrix}
$$

Requires a “multibroadcast”:

$$
\begin{bmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{bmatrix}
\rightarrow
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix},
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix},
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
$$

- can be done using $O(h)$ rotations/mul-by-const
- overkill
A better idea: Cannon [1969], Bernstein [2008]

Example: \(h = 3 \)

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11} v_1 \\
 a_{22} v_2 \\
 a_{33} v_3
\end{bmatrix}
+ \begin{bmatrix}
 a_{12} v_2 \\
 a_{23} v_3 \\
 a_{31} v_1
\end{bmatrix}
+ \begin{bmatrix}
 a_{13} v_3 \\
 a_{21} v_1 \\
 a_{32} v_2
\end{bmatrix}
\]

The constants

\[C_0 = (a_{11}, a_{22}, a_{33}), \quad C_1 = (a_{12}, a_{23}, a_{31}), \quad C_2 = (a_{13}, a_{21}, a_{32}) \]

constructed using CRT and converted to DoubleCRT

\[\ldots \text{as a pre-computation} \]

Total cost: \(h \) rotations (expensive), \(h \) mul-by-const (cheap)
A better idea: Cannon [1969], Bernstein [2008]

Example: $h = 3$

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{bmatrix}
= \begin{bmatrix}
a_{11} \nu_1 \\
a_{22} \nu_2 \\
a_{33} \nu_3
\end{bmatrix}
+ \begin{bmatrix}
a_{12} \nu_2 \\
a_{23} \nu_3 \\
a_{31} \nu_1
\end{bmatrix}
+ \begin{bmatrix}
a_{13} \nu_3 \\
a_{21} \nu_1 \\
a_{32} \nu_2
\end{bmatrix}
\]

The constants

\[C_0 = (a_{11}, a_{22}, a_{33}), C_1 = (a_{12}, a_{23}, a_{31}), C_2 = (a_{13}, a_{21}, a_{32})\]
constructed using CRT and converted to DoubleCRT

...as a pre-computation

Total cost: h rotations (expensive), h mul-by-const (cheap)
A better idea: Cannon [1969], Bernstein [2008]

Example: $h = 3$

$$
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11} \nu_1 \\
 a_{22} \nu_2 \\
 a_{33} \nu_3
\end{bmatrix}
+ \begin{bmatrix}
 a_{12} \nu_2 \\
 a_{23} \nu_3 \\
 a_{31} \nu_1
\end{bmatrix}
+ \begin{bmatrix}
 a_{13} \nu_3 \\
 a_{21} \nu_1 \\
 a_{32} \nu_2
\end{bmatrix}
$$

The constants

$$C_0 = (a_{11}, a_{22}, a_{33}), C_1 = (a_{12}, a_{23}, a_{31}), C_2 = (a_{13}, a_{21}, a_{32})$$

constructed using CRT and converted to DoubleCRT

… as a pre-computation

Total cost: h rotations (expensive), h mul-by-const (cheap)
A better idea: Cannon [1969], Bernstein [2008]

Example: $h = 3$

$$
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11} \nu_1 \\
 a_{22} \nu_2 \\
 a_{33} \nu_3
\end{bmatrix}
+ \begin{bmatrix}
 a_{12} \nu_2 \\
 a_{23} \nu_3 \\
 a_{31} \nu_1
\end{bmatrix}
+ \begin{bmatrix}
 a_{13} \nu_3 \\
 a_{21} \nu_1 \\
 a_{32} \nu_2
\end{bmatrix}
$$

The constants $C_0 = (a_{11}, a_{22}, a_{33}), C_1 = (a_{12}, a_{23}, a_{31}), C_2 = (a_{13}, a_{21}, a_{32})$ constructed using CRT and converted to DoubleCRT

... as a pre-computation

Total cost: h rotations (expensive), h mul-by-const (cheap)
A better idea: Cannon [1969], Bernstein [2008]

Example: $h = 3$

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11} \nu_1 \\
 a_{22} \nu_2 \\
 a_{33} \nu_3
\end{bmatrix}
+ \begin{bmatrix}
 a_{12} \nu_2 \\
 a_{23} \nu_3 \\
 a_{31} \nu_1
\end{bmatrix}
+ \begin{bmatrix}
 a_{13} \nu_3 \\
 a_{21} \nu_1 \\
 a_{32} \nu_2
\end{bmatrix}
\]

The constants

\[C_0 = (a_{11}, a_{22}, a_{33}), C_1 = (a_{12}, a_{23}, a_{31}), C_2 = (a_{13}, a_{21}, a_{32})\]

constructed using CRT and converted to DoubleCRT

...as a pre-computation

Total cost: h rotations (expensive), h mul-by-const (cheap)
A better idea: Cannon [1969], Bernstein [2008]

Example: \(h = 3 \)

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 a_{11} v_1 \\
 a_{22} v_2 \\
 a_{33} v_3
\end{bmatrix} + \begin{bmatrix}
 a_{12} v_2 \\
 a_{23} v_3 \\
 a_{31} v_1
\end{bmatrix} + \begin{bmatrix}
 a_{13} v_3 \\
 a_{21} v_1 \\
 a_{32} v_2
\end{bmatrix}
\]

The constants

\[
C_0 = (a_{11}, a_{22}, a_{33}), \quad C_1 = (a_{12}, a_{23}, a_{31}), \quad C_2 = (a_{13}, a_{21}, a_{32})
\]

constructed using CRT and converted to DoubleCRT

... as a pre-computation

Total cost: \(h \) rotations (expensive), \(h \) mul-by-const (cheap)
An even better idea: baby-step/giant-step

Let \(\rho^i(\nu) \) denote rotation of \(\nu \) by \(i \) positions

We want to compute \(L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu) \) for constants \(C_0, \ldots, C_{h-1} \)

Observation: \(\rho \) is an automorphism on the plaintext space \(R_\rho \)

\[
L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu) \\
= \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{i+f_k}(\nu), \quad \text{where } f, g \approx \sqrt{h} \\
= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^j(\nu) \right], \quad \text{where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})
\]
An even better idea: baby-step/giant-step

Let $\rho^i(\nu)$ denote rotation of ν by i positions

We want to compute $L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu)$ for constants C_0, \ldots, C_{h-1}

Observation: ρ is an automorphism on the plaintext space R_{ρ}

\[
L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu) = \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{i+f_k}(\nu), \text{ where } f, g \approx \sqrt{h}
\]

\[
= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^i(\nu) \right], \text{ where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})
\]
An even better idea: baby-step/giant-step

Let $\rho^i(\nu)$ denote rotation of ν by i positions

We want to compute $L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu)$ for constants C_0, \ldots, C_{h-1}

Observation: ρ is an automorphism on the plaintext space R_ρ

$$L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu)$$

$$= \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{i+f_k}(\nu), \text{ where } f, g \approx \sqrt{h}$$

$$= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^j(\nu) \right], \text{ where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})$$
An even better idea: baby-step/giant-step

Let $\rho^i(v)$ denote rotation of v by i positions

We want to compute $L(v) = \sum_{i \in [h]} C_i \cdot \rho^i(v)$ for constants C_0, \ldots, C_{h-1}

Observation: ρ is an automorphism on the plaintext space R_p

$$L(v) = \sum_{i \in [h]} C_i \cdot \rho^i(v)$$

$$= \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{i+f_k}(v), \text{ where } f, g \approx \sqrt{h}$$

$$= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^j(v) \right], \text{ where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})$$
An even better idea: baby-step/giant-step

Let $\rho^i(\nu)$ denote rotation of ν by i positions

We want to compute $L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu)$ for constants C_0, \ldots, C_{h-1}

Observation: ρ is an automorphism on the plaintext space R_p

$$L(\nu) = \sum_{i \in [h]} C_i \cdot \rho^i(\nu)$$

$$= \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{j+f_k}(\nu), \text{ where } f, g \approx \sqrt{h}$$

$$= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^j(\nu) \right], \text{ where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})$$
An even better idea: baby-step/giant-step

Let $\rho^i(v)$ denote rotation of v by i positions.

We want to compute $L(v) = \sum_{i \in [h]} C_i \cdot \rho^i(v)$ for constants C_0, \ldots, C_{h-1}.

Observation: ρ is an automorphism on the plaintext space R_{ρ}.

$$L(v) = \sum_{i \in [h]} C_i \cdot \rho^i(v)$$

$$= \sum_{j \in [f]} \sum_{k \in [g]} C_{j+f_k} \cdot \rho^{j+f_k}(v), \quad \text{where } f, g \approx \sqrt{h}$$

$$= \sum_{k \in [g]} \rho^{f_k} \left[\sum_{j \in [f]} C'_{j+f_k} \cdot \rho^j(v) \right], \quad \text{where } C'_{j+f_k} := \rho^{-f_k}(C_{j+f_k})$$
Baby-step/giant-step algorithm:

1. for each $j \in [f]$: compute $v_j \leftarrow \rho^j(v)$ // baby steps

2. for each $k \in [g]$: compute $w_k \leftarrow \sum_{j \in [f]} C'_{j+f_k} \cdot v_j$

3. compute $w \leftarrow \sum_{k \in [g]} \rho^{f_k}(w_k)$ // giant steps

Cost:

- Step 1: $\approx \sqrt{h}$ rotations
- Step 2: $\approx h$ mul-by-const
- Step 3: $\approx \sqrt{h}$ rotations
Baby-step/giant-step algorithm:

1. for each $j \in [f]$: compute $v_j \leftarrow \rho^j(v)$ // baby steps
2. for each $k \in [g]$: compute $w_k \leftarrow \sum_{j\in[f]} C'_{j+f(k)} \cdot v_j$
3. compute $w \leftarrow \sum_{k\in[g]} \rho^{f(k)}(w_k)$ // giant steps

Cost:

- Step 1: $\approx \sqrt{h}$ rotations
- Step 2: $\approx h$ mul-by-const
- Step 3: $\approx \sqrt{h}$ rotations
Baby-step/giant-step algorithm:

1. for each $j \in [f]$: compute $\nu_j \leftarrow \rho^j(\nu)$ // baby steps

2. for each $k \in [g]$: compute $w_k \leftarrow \sum_{j\in[f]} C'_{j+f_k} \cdot \nu_j$

3. compute $w \leftarrow \sum_{k\in[g]} \rho^{f_k}(w_k)$ // giant steps

Cost:

- Step 1: $\approx \sqrt{h}$ rotations
- Step 2: $\approx h$ mul-by-const
- Step 3: $\approx \sqrt{h}$ rotations
Baby-step/giant-step algorithm:

1. for each $j \in [f]$: compute $v_j \leftarrow \rho^j(v)$ // baby steps

2. for each $k \in [g]$: compute $w_k \leftarrow \sum_{j \in [f]} C'_{j+f_k} \cdot v_j$

3. compute $w \leftarrow \sum_{k \in [g]} \rho^{f_k}(w_k)$ // giant steps

Cost:

- Step 1: $\approx \sqrt{h}$ rotations
- Step 2: $\approx h$ mul-by-const
- Step 3: $\approx \sqrt{h}$ rotations
An even more better idea(?)

or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector ν

The ciphertext is a pair $(c_0, c_1) \in R^{2 \times 1}_q$

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):

decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm

\[\text{requires DoubleCRT/coeffient conversion}\]

C) Key Switching, part 2 – apply key switching matrix (cheap):

compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{n}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector ν

The ciphertext is a pair $(c_0, c_1) \in \mathbb{R}^{2 \times 1}_q$

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):

- decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm

- requires DoubleCRT/coefficient conversion

C) Key Switching, part 2 – apply key switching matrix (cheap):

- compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)

or . . . “if $2 \sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector v

The ciphertext is a pair $(c_0, c_1) \in \mathbb{R}^{2 \times 1}$

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):

decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm

\(\text{requires DoubleCRT/coefficient conversion}\)

C) Key Switching, part 2 – apply key switching matrix (cheap):

compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector v

The ciphertext is a pair $(c_0, c_1) \in R^{2 \times 1}_q$

A) **Raw automorphism step (cheap):** $c_j' \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) **Key Switching, part 1 – break into digits (expensive):**
 decompose c_1' as $c_1' = \sum_k d_k' R_k$, where the R_k’s are integer constants and each “digit” d_k' has small norm
 - requires DoubleCRT/coefficient conversion

C) **Key Switching, part 2 – apply key switching matrix (cheap):**
 compute the ciphertext $(c_0' + c_0'', c_1'')$, where $c_j'' = \sum_k d_k' A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector v

The ciphertext is a pair $(c_0, c_1) \in R_q^{2 \times 1}$

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):
 decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm
 requires DoubleCRT/coefficient conversion

C) Key Switching, part 2 – apply key switching matrix (cheap):
 compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphically rotation

We want to apply a rotation ρ^i to an encrypted vector ν

The ciphertext is a pair $(c_0, c_1) \in \mathbb{R}_q^{2 \times 1}$

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):

decompose c'_1 as $c'_1 = \sum_{k} d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm

* requires DoubleCRT/coeficient conversion

C) Key Switching, part 2 – apply key switching matrix (cheap):

compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_{k} d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphically rotated vector

We want to apply a rotation ρ^i to an encrypted vector v

The ciphertext is a pair $(c_0, c_1) \in \mathbb{R}^{2 \times 1}_q$

A) **Raw automorphism step (cheap):** $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) **Key Switching, part 1 – break into digits (expensive):**
decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm

- requires DoubleCRT/coefficient conversion

C) **Key Switching, part 2 – apply key switching matrix (cheap):**
compute the ciphertext $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects
An even more better idea(?)
or . . . “if $2\sqrt{h}$ rotations are good, then a single rotation is better”

Anatomy of a homomorphic rotation

We want to apply a rotation ρ^i to an encrypted vector v.

The ciphertext is a pair $(c_0, c_1) \in \mathbb{R}^{2 \times 1}_q$.

A) Raw automorphism step (cheap): $c'_j \leftarrow \rho^i(c_j)$ for $j = 0, 1$

B) Key Switching, part 1 – break into digits (expensive):

decompose c'_1 as $c'_1 = \sum_k d'_k R_k$, where the R_k’s are integer constants and each “digit” d'_k has small norm.

(requires DoubleCRT/coeficient conversion)

C) Key Switching, part 2 – apply key switching matrix (cheap):

compute the ciphertext $(c'_0 + c''_0, c''_1)$, where $c''_j = \sum_k d'_k A_{jk}$ and the A_{jk}’s are pre-computed DoubleCRT objects.
The idea: re-factor this three step process

- Basically, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much

A') Key Switching, part 1 – break into digits (expensive):
 decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B') Raw automorphism step (cheap):
 $c'_0 \leftarrow \rho^i(c_0)$ and $d'_k \leftarrow \rho^i(d_k)$ for each k

C) Key Switching, part 2 – apply key switching matrix (cheap):
 exactly the same as above: compute $(c'_0 + c''_0, c''_1)$, where $c''_j = \sum_k d'_k A_{jk}$

Why is this better? … we can perform step (A’) just once for many rotations ρ^i
The idea: re-factor this three step process

- Basically, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much

A’) Key Switching, part 1 – break into digits (expensive):

decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B’) Raw automorphism step (cheap):

$c'_0 \leftarrow \rho^i(c_0)$ and $d'_k \leftarrow \rho^i(d_k)$ for each k

C) Key Switching, part 2 – apply key switching matrix (cheap):

exactly the same as above: compute $(c'_0 + c''_0, c'_1)$, where $c''_j = \sum_k d'_k A_{jk}$

Why is this better? … we can perform step (A’) just once for many rotations ρ^i
The idea: re-factor this three step process

* Basically, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much

A’) Key Switching, part 1 – break into digits (expensive):
 decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B’) Raw automorphism step (cheap): $c'_0 \leftarrow \rho^i(c_0)$ and $d'_k \leftarrow \rho^i(d_k)$ for each k

C) Key Switching, part 2 – apply key switching matrix (cheap):
exactly the same as above: compute $(c'_0 + c''_0, c''_1)$, where $c''_j = \sum_k d'_k A_{jk}$

Why is this better? ... we can perform step (A’) just once for many rotations ρ^i
The idea: re-factor this three step process

- Basically, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much.

A’) Key Switching, part 1 – break into digits (expensive):

decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B’) Raw automorphism step (cheap):

$c_0' \leftarrow \rho^i(c_0)$ and $d_k' \leftarrow \rho^i(d_k)$ for each k

C) Key Switching, part 2 – apply key switching matrix (cheap):

exactly the same as above: compute $(c_0' + c_0'', c_1'')$, where $c_j'' = \sum_k d'_k A_{jk}$

Why is this better? ... we can perform step (A’) just once for many rotations ρ^i.
The idea: re-factor this three step process

Basicallly, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much.

A') Key Switching, part 1 – break into digits (expensive): decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B') Raw automorphism step (cheap): $c_0' \leftarrow \rho^i(c_0)$ and $d_k' \leftarrow \rho^i(d_k)$ for each k

C) Key Switching, part 2 – apply key switching matrix (cheap): exactly the same as above: compute $(c_0' + c_0'', c_1'')$, where $c_j'' = \sum_k d_k' A_{jk}$

Why is this better? ... we can perform step (A') just once for many rotations ρ^i.
The idea: re-factor this three step process

* Basically, just swap steps (A) and (B), using the fact that ρ^i is an automorphism that does not change the norm by very much

A’) Key Switching, part 1 – break into digits (expensive):
 decompose the original c_1 as $c_1 = \sum_k d_k R_k$

B’) Raw automorphism step (cheap): $c_0' \leftarrow \rho^i(c_0)$ and $d_k' \leftarrow \rho^i(d_k)$
 for each k

C) Key Switching, part 2 – apply key switching matrix (cheap):
 exactly the same as above: compute $(c_0' + c_0'', c_1'')$, where
 $c_j'' = \sum_k d_k' A_{jk}$

Why is this better? . . . we can perform step (A’) just once for many rotations ρ^i
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So . . . given an encryption of v we can compute an encryption of $\rho^i(v)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

on the one hand . . . faster than the basic method (which takes h rotations)

on the other hand . . . may be slower than the BS/GS method for large h

but on the other hand . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $v_j \leftarrow \rho^i(v)$

hoist out these rotations

save a factor of 2 \(2\sqrt{h} \rightarrow \sqrt{h} \text{ rotations}\)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So . . . given an encryption of v we can compute an encryption of $\rho^i(v)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

on the one hand . . . faster than the basic method (which takes h rotations)

on the other hand . . . may be slower than the BS/GS method for large h

but on the other hand . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $v_j \leftarrow \rho^i(v)$

hoist out these rotations

save a factor of 2 $\ (2^{\frac{1}{2}}h \rightarrow \sqrt{h}$ rotations)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So ... given an encryption of \(v \) we can compute an encryption of \(\rho^i(v) \) for \(i \in [h] \) with just one expensive step and \(h \) cheap steps

Application to matrix multiplication:

on the one hand ... faster than the basic method (which takes \(h \) rotations)

on the other hand ... may be slower than the BS/GS method for large \(h \)

but on the other hand ... we can combine hoisting and BS/GS baby steps: for each \(j \in [f] \) compute \(v_j \leftarrow \rho^j(v) \)

hoist out these rotations

save a factor of 2 \((2 \sqrt{h} \rightarrow \sqrt{h} \text{ rotations}) \)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop).

So... given an encryption of \(v \) we can compute an encryption of \(\rho^i(v) \) for \(i \in [h] \) with just one expensive step and \(h \) cheap steps.

Application to matrix multiplication:

on the one hand... faster than the basic method (which takes \(h \) rotations)

on the other hand... may be slower than the BS/GS method for large \(h \)

but on the other hand... we can combine hoisting and BS/GS baby steps: for each \(j \in [f] \) compute \(v_j \leftarrow \rho^i(v) \)

hoist out these rotations

save a factor of 2 \((2\sqrt{h} \rightarrow \sqrt{h} \text{ rotations})\)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So . . . given an encryption of ν we can compute an encryption of $\rho^i(\nu)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

- **on the one hand** . . . faster than the basic method (which takes h rotations)

- **on the other hand** . . . may be slower than the BS/GS method for large h

- **but on the other hand** . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $\nu_j \leftarrow \rho^j(\nu)$

hoist out these rotations

save a factor of 2 ($2\sqrt{h} \rightarrow \sqrt{h}$ rotations)
We call this idea "hoisting" (optimizing compilers are said to "hoist" invariant computations out of a loop)

So ... given an encryption of ν we can compute an encryption of $\rho^i(\nu)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

on the one hand ... faster than the basic method (which takes h rotations)

on the other hand ... may be slower than the BS/GS method for large h

but on the other hand ... we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $\nu_j \leftarrow \rho^j(\nu)$

hoist out these rotations

save a factor of 2 \(2\sqrt{h} \rightarrow \sqrt{h} \text{ rotations}\)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So . . . given an encryption of ν we can compute an encryption of $\rho^i(\nu)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

- on the one hand . . . faster than the basic method (which takes h rotations)
- on the other hand . . . may be slower than the BS/GS method for large h
- but on the other hand . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $\nu_j \leftarrow \rho^i(\nu)$
 - hoist out these rotations
 - save a factor of 2 ($2\sqrt{h} \rightarrow \sqrt{h}$ rotations)
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop).

So . . . given an encryption of ν we can compute an encryption of $\rho^i(\nu)$ for $i \in [h]$ with just one expensive step and h cheap steps.

Application to matrix multiplication:

- **on the one hand** . . . faster than the basic method (which takes h rotations).

- **on the other hand** . . . may be slower than the BS/GS method for large h.

- **but on the other hand** . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $\nu_j \leftarrow \rho^j(\nu)$.

 hoist out these rotations

 save a factor of 2 ($2\sqrt{h} \rightarrow \sqrt{h}$ rotations).
We call this idea “hoisting” (optimizing compilers are said to “hoist” invariant computations out of a loop)

So . . . given an encryption of ν we can compute an encryption of $\rho^i(\nu)$ for $i \in [h]$ with just one expensive step and h cheap steps

Application to matrix multiplication:

on the one hand . . . faster than the basic method (which takes h rotations)

on the other hand . . . may be slower than the BS/GS method for large h

but on the other hand . . . we can combine hoisting and BS/GS baby steps: for each $j \in [f]$ compute $\nu_j \leftarrow \rho^j(\nu)$

hoist out these rotations

save a factor of 2 ($2 \sqrt{h} \longrightarrow \sqrt{h}$ rotations)
See paper for more details and other improvements:

- More efficient handling of “problematic” dimensions in the hypercube
- Saving space: drastic reduction in the number of “key switching matrices” without too much loss in speed

Questions?
See paper for more details and other improvements:

- More efficient handling of “problematic” dimensions in the hypercube
- Saving space: drastic reduction in the number of “key switching matrices” without too much loss in speed

Questions?
See paper for more details and other improvements:

- More efficient handling of “problematic” dimensions in the hypercube
- Saving space: drastic reduction in the number of “key switching matrices” without too much loss in speed

Questions?
See paper for more details and other improvements:

- More efficient handling of “problematic” dimensions in the hypercube
- Saving space: drastic reduction in the number of “key switching matrices” without too much loss in speed

Questions?