GGH15 beyond permutation branching programs proofs, attacks, and candidates

Yilei Chen, Vinod Vaikuntanathan, Hoeteck Wee

$\xrightarrow[\text { Research }]{$| BOSTON |
| :--- |
| UNIVERSITY |$}$

> August 21, 2018, Palo Alto, heavy snow.

> August 21, 2018, Palo Alto, heavy snow.
> Alice finds a public-key encryption scheme based on Schrodinger's equation.

> August 21, 2018, Palo Alto, heavy snow.
> Alice finds a public-key encryption scheme based on Schrodinger's equation.
> Alice missed the NIST PQC round one. But she find it cool to post it on the blockchain, and offers 100 Bitcoins to whoever breaks it.

> Not only does Alice post on the blockchain, she does it cool by encrypting the 100 Bitcoins using Witness encryption.

> Not only does Alice post on the blockchain, she does it cool by encrypting the 100 Bitcoins using Witness encryption.
> WitnessEnc(x, m), $x=$ instance, $m=$ message
Functionality: if $x=$ SAT -----> can use the witness to decrypt the msg. Security: if $x=$ UNSAT -------> msg is hidden.

> WitnessEnc(x = "there is an attack to Alice's PKE scheme", msg $=100$ Bitcoins)
> Current status of witness encryption: there are several candidates (more-or-less based on multilinear maps); none of them are based on established cryptographic assumptions.
$>$ [Garg et al. 13] candidate witness encryption based on GGH13.
> Broken by [Hu, Jia 16]
$>$ [Gentry, Lewko, Waters 14] from multilinear subgroup decision assumption (which is also open)
> Null-iO candidates (there are many) => Witness encryption candidates

GGH15 beyond permutation branching programs

 proofs, attacks, and candidates

「GGH15 beyond permutation branching programs proofs, attacks, and candidates

GGH151beyond permutation branching programs proofs, attacks, and candidates

applications

Private constrained PRFs
Multi party key agreement
Lockable obfuscation (Compute-then-Compare obf.)

General purpose Indistinguishability obfuscation

Private constrained PRFs
Multi party key agreement
Lockable obfuscation (Compute-then-Compare obf.)

Motivation of this work: systematically study GGH15, discover more attacks and safe applications

GGH15 beyond permutation branching programs proofs, attacks, and candidates

(As secure as LWE)

Private constrained PRFs
Multi party key agreement
Lockable obfuscation (Compute-then-Compare obf.)

General purpose Indistinguishability obfuscation

Motivation of this work: systematically study GGH15, discover

 more attacks and safe applications (maybe witness encryption?)
GGH15 beyond permutation branching programs proofs, attacks, and candidates

(As secure as LWE)

Private constrained PRFs

Lockable obfuscation (Compute-then-Compare obf.)

Witness encryption ???

Multi party key agreement
General purpose
Indistinguishability obfuscation

Summary of the results for GGH15 + non-perm branching programs:

- Proofs (focus of the talk):
> Introduce new lattice toolkits;
> New analysis techniques for GGH15.
> Leads to PCPRFs and lockable obfuscation for general BPs.
- Attacks: New attacks on the iO candidates.
- Candidates: Witness encryption and iO.
> Multilinear maps: motivated in [Boneh, Silverberg 2003]

$$
g, \mathrm{~g}^{\mathrm{S}_{1}}, \mathrm{~g}^{S_{2}}, \mathrm{~g}^{S_{3}}, \ldots \rightarrow \mathrm{~g} \sqcap \mathrm{~S}
$$

Multilinear maps

 in a nutshellCan be thought of as homomorphic encryption + public zero-test
> Multilinear maps: motivated in [Boneh, Silverberg 2003]

$$
g, \mathrm{~g}^{S_{1}}, \mathrm{~g}^{S_{2}}, \mathrm{~g}^{S_{3}}, \ldots \rightarrow \mathrm{~g} \Pi \mathrm{~S}
$$

Multilinear maps in a nutshell

Can be thought of as homomorphic encryption + public zero-test
> Bilinear maps from elliptic curves [Miller 1986]
$>$ n-linear maps candidates: (all based on non-standard use of lattices)
>>>> Garg, Gentry, Halevi 2013 [GGH 13]
>>>> Coron, Lepoint, Tibouchi 2013 [CLT 13]
>>>> Gentry, Gorbunov, Halevi 2015 [GGH 15] (LWE-like)
*New: Trilinear maps from abelian varieties [Huang 2018], requires further investigation.
> Multilinear maps: motivated in [Boneh, Silverberg 2003]

$g, g^{S_{1}}, g^{S_{2}}, g^{S_{3}}, \ldots \rightarrow g \Pi S$

$>$ (Ring)LWE analogy:
$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \Pi S A+E \bmod q$
$>$ (Ring)LWE analogy:

$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \prod S A+E \bmod q$

GGH15: "the blockchain in multilinear maps"

(also appear as "cascaded LWE" in [Koppula-Waters 16], [Alamati-Peikert 16])
$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \Pi S A+E \bmod q$
> GGH15: (also appear as "cascaded LWE" in [Koppula-Waters 16], [Alamati-Peikert 16])

$$
A_{0} D_{1}=S_{1} A_{1}+E_{1}, \quad A_{1} D_{2}=S_{2} A_{2}+E_{2} \quad \bmod q
$$

$>$ (Ring)LWE analogy:

GGH15

$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \Pi S A+E \bmod q$
> GGH15: (also appear as "cascaded LWE" in [Koppula-Waters 16], [Alamati-Peikert 16])

$$
A_{0} D_{1}=S_{1} A_{1}+E_{1}, \quad A_{1} D_{2}=S_{2} A_{2}+E_{2} \quad \bmod q
$$

D_{i} is sampled using the trapdoor of A_{i-1}

Lattice trapdoor 101
[Ajtai 99, Alwen, Peikert
09, Micciancio, Peikert 12]

$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \Pi S A+E \bmod q$
> GGH15: (also appear as "cascaded LWE" in [Koppula-Waters 16], [Alamati-Peikert 16])
$A_{0} D_{1}=S_{1} A_{1}+E_{1}, \quad A_{1} D_{2}=S_{2} A_{2}+E_{2} \quad \bmod q$
D_{i} is sampled using the trapdoor of A_{i-1}
Publish A_{0}, D_{1}, D_{2} as the encodings of S_{1}, S_{2}
$>$ (Ring)LWE analogy:

GGH15

$A, S_{1} A+E_{1}, \ldots, S_{k} A+E_{k} \rightarrow \Pi S A+E \bmod q$
> GGH15: (also appear as "cascaded LWE" in [Koppula-Waters 16], [Alamati-Peikert 16])
$A_{0} D_{1}=S_{1} A_{1}+E_{1}, \quad A_{1} D_{2}=S_{2} A_{2}+E_{2} \quad \bmod q$
D_{i} is sampled using the trapdoor of A_{i-1}
Publish A_{0}, D_{1}, D_{2} as the encodings of S_{1}, S_{2}
Eval $=A_{0} D_{1} D_{2}=\left(S_{1} A_{1}+E_{1}\right) D_{2}=S_{1} S_{2} A_{2}+E_{1} D_{2}+S_{1} E_{2} \bmod q$

When witness encryption meets multilinear maps ...

[Gentry, Lewko, Waters 14] witness encryption from mmaps subgroup decision assumption, which is instance independent.

[Gentry, Lewko, Waters 14] a special witness encryption from mmaps.
A strawman implementation of GLW14 in GGH15

$$
A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \ldots, \quad A_{h-1} D_{h, 0}=S_{h, 0} A_{h}+E_{h, 0} \quad \bmod q
$$

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

So far: A witness encryption with special structure that uses GGH15 + low-rank matrix branching program.

So far: A witness encryption with special structure that uses GGH15 + low-rank matrix branching program.

Q: Can we show anything secure for low-rank BP + GGH15?

So far: A witness encryption with special structure that uses GGH15 + low-rank matrix branching program.

Q: Can we show anything secure for low-rank BP + GGH15?

A: Yes! ... In some limited cases

As secure as LWE:
When there is one "slot" that is always random in all the matrices.

$$
A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \cdots, \quad A_{h-1} D_{h, 0}=S_{h, 0} A_{h}+E_{h, 0} \quad \bmod q
$$

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

The "always random" slot

Where can the special type of BP be useful?

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h}, A_{h}+E_{h, 1} \quad \bmod q
$$

The "always random" slot

Where can the special type of BP be useful?

 We don't know how to build a witness encryption or iO from this type of BP :$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h}, 1 A_{h}+E_{h, 1} \quad \bmod q
$$

The "always random" slot

Where can the special type of BP be useful?

We don't know how to build a witness encryption or iO from this type of BP :(We can simplify the private constrained PRF, Lockable obfuscation :)
E.g. Instantiate the private puncturable PRF from [Boneh, Lewi, Wu 17] described under the multilinear subgroup decision assumption:

Where can the special type of BP be useful?

We don't know how to build a witness encryption or iO from this type of BP :(We can simplify the private constrained PRF, Lockable obfuscation :)
E.g. Instantiate the private puncturable PRF from [Boneh, Lewi, Wu 17] described under the multilinear subgroup decision assumption:

$$
\begin{aligned}
& A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \cdots, \quad A_{h-1} D_{h, 0}=S_{h, 0} A_{h}+E_{h, 0} \quad \bmod q \\
& A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
\end{aligned}
$$

How to prove security for GGH15 + low-rank BPs?

How to prove security for GGH15 + low-rank BPs?
Semantic security:
$\begin{array}{ll}A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \cdots, & A_{h-1} D_{h, 0}=S_{h, 0} A_{h}+E_{h, 0} \quad \bmod q \\ A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \cdots, & A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q\end{array}$
\approx computational
$\begin{array}{lll}A_{0} D_{1,0}= & U_{1,0}, \ldots, A_{h-1} D_{h, 0}= & U_{h, 0}, \\ & \bmod q \\ A_{0} D_{1,1}= & U_{1,1}, \ldots, & A_{h-1} D_{h, 1}=U_{h, 1},\end{array}$
"A" matrices: using trapdoors; not using trapdoors

Replay: the proof for GGH15 + permutation BP

 [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]

Replay: the proof for GGH15 + permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors

LWE 101 [Regev 05]

\approx
computational

\square

LWE 101 [Regev 05]

Permutation - LWE:

computational

$A(1)$
$A(2)$
$A(3)$

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors
$A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \cdots, \quad A_{h-1} D_{h, 0}=S_{h, 0} A_{h}+E_{h, 0} \quad \bmod q$

[Step 1] LWE: $A_{h}, S_{h, 0} A_{h}+E_{h, 0}, S_{h, 1} A_{h}+E_{h, 1} \approx A_{h}, U_{h, 0}, U_{h, 1}$

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors

[Step 1] LWE: $A_{h}, S_{h, 0} A_{h}+E_{h, 0}, S_{h, 1} A_{h}+E_{h, 1} \approx A_{h}, U_{h, 0}, U_{h, 1}$

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors

[Step 2] GPV: close the trapdoor of A_{h-1}

[Gentry, Peikert, Vaikuntanathan 08]

U is uniform
A trapdoor is used
[Gentry, Peikert, Vaikuntanathan 08]

U is uniform

A trapdoor is used

close the trapdoor of A

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors

[Step 2] GPV: close the trapdoor of A_{h-1}

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors

[Step 2] GPV: close the trapdoor of A_{h-1}

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors
$A_{0} D_{1,0}=S_{1,0} A_{1}+E_{1,0}, \cdots, \quad A_{h-1} D_{h, 0}=U_{h, 0} \quad 0 \quad \bmod q$
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=U_{h, 1} \quad 1 \bmod q$
[Step ...] LWE GPV: close the trapdoor of A_{1}

Goal: prove semantic security
For permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]: " A " matrices: using trapdoors; not using trapdoors
$A_{0} D_{1,0}=U_{1,0}, \ldots, A_{h-1} D_{h, 0}=U_{h, 0} \quad 0 \quad \operatorname{modq}$
$A_{0} D_{1,1}=$
$U_{1,1}, \ldots$,
$A_{h-1} D_{h, 1}=U_{h, 1} \quad 1 \quad \operatorname{modq}$
[Final Steps] Another LWE + GPV

VAR END

Replay: the proof for GGH15 + permutation BP [Canetti, Chen 17], [Goyal, Koppula, Waters 17], [Wichs, Zirdelis 17]

What is the difference for low-rank matrices?

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

Observation: $Y_{h-1}(1)$ is not random The problem: How to close the trapdoor of A_{h-1} ?

Lattice trapdoor Lemma 1:

Z is arbitrary
U is uniform
A trapdoor is used

Lattice trapdoor Lemma 1:

Z is arbitrary
U is uniform
A trapdoor is used

close the trapdoor of $A(2)$

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

Use Lemma $1+$ use S as public matrix: can close the lower trapdoor all the way back

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

Use Lemma $1+$ use S as public matrix: can close the lower trapdoor all the way back

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q$

Use Lemma $1+$ use S as public matrix: can close the lower trapdoor all the way back

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q$

Use Lemma $1+$ use S as public matrix: can close the lower trapdoor all the way back Problem: Now how to deal with the upper matrices?

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q$

Use Lemma 1 + use S as public matrix: can close the lower trapdoor all the way back Problem: Now how to deal with the upper matrices? Solution: In the real construction, give out $A_{0}(1)+A_{0}(2)$.

Lattice trapdoor Lemma 2:

For any Z, for a uniformly random A, D is the preimage of $Z+E$.

Lattice trapdoor Lemma 2:

For any Z, for a uniformly random A, D is the preimage of $Z+E$. If $A \& Z+E$ is hidden,

Lattice trapdoor Lemma 2:

For any Z, for a uniformly random A, D is the preimage of $Z+E$. If $A \& Z+E$ is hidden, then D is indistinguishable from random Gaussian.

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q$

Use Lemma 1 + use S as public matrix: can close the lower trapdoor all the way back Problem: Now how to deal with the upper matrices? Solution: In the real construction, give out $A_{0}(1)+A_{0}(2),+$ Lemma 2

For possibly low-rank secret matrices: helpful to separate the matrices into (1) and (2)
$A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q$

Use Lemma $1+$ use S as public matrix: can close the lower trapdoor all the way back Problem: Now how to deal with the upper matrices? Solution: In the real construction, give out $A_{0}(1)+A_{0}(2),+$ Lemma 2

Replay: the proof for GGH15 + low-rank BP

Replay: the proof for GGH15 + low-rank BP

First use the lower level random matrices to come left (need new lemma 1)

Replay: the proof for GGH15 + low-rank BP

$$
A_{0} D_{1,1}=S_{1,1} A_{1}+E_{1,1}, \ldots, \quad A_{h-1} D_{h, 1}=S_{h, 1} A_{h}+E_{h, 1} \quad \bmod q
$$

First use the lower level random matrices to come left (need new lemma 1) Then use the upper level "hidden A at the left" to go right (need new lemma 2)

No more VAR

BOSTON
UNIVERSITY

BOSTON UNIVERSITY

VISA Research

Q: What about the other cases without a proof from LWE?
A: Hmm ... some of them can be broken.

New attack on iO candidates based on GGH15.

With a very simple attack algorithm

New attack on iO candidates based on GGH15.

With a very simple attack algorithm:
First compute a matrix,

$W_{1,1} \ldots W_{1, k}$

$=\quad$ Results on many inputs that eval to small

New attack on iO candidates based on GGH15.
With a very simple attack algorithm:
First compute a matrix, then compute the rank of the matrix.

New attack on iO candidates based on GGH15.

With a very simple attack algorithm:
First compute a matrix, then compute the rank of the matrix.

The analysis is quite involved, especially for the extension to non-input-partitioning BPs.
[code] https://github.com/wildstrawberry/cryptanalysesBPobfuscators/blob/master/ggh15analysis.sage

Almost done ...

- Proofs: Introducing new lattice toolkits; leads to new PCPRFs and lockable obfuscation for non-perm BPs.
- Attacks: New attacks on the iO candidates.

Almost done ...

- Proofs: Introducing new lattice toolkits; leads to new PCPRFs and lockable obfuscation for non-perm BPs.
- Attacks: New attacks on the iO candidates.
- Candidates:
> Witness encryption: read-once BP, the simplest instantiation of GLW14 on GGH15 (removing all the unnecessary parts), "a stone throw" from the provable case.

Almost done ...

- Proofs: Introducing new lattice toolkits; leads to new PCPRFs and lockable obfuscation for non-perm BPs.
- Attacks: New attacks on the iO candidates.
- Candidates:
> Witness encryption: read-once BP, the simplest instantiation of GLW14 on GGH15 (removing all the unnecessary parts), "a stone throw" from the provable case.
> iO: read super-constant time BP (merely a demonstration of what is not covered by the attack).

Other related works \& Implications

The lattice lemmas appear in the concurrent work of [Goyal, Koppula, Waters 18] that builds traitor tracing from LWE.
[Bartusek, Guan, Ma, Zhandry] limitation of the attacks on GGH15-based iO candidates.

One of the future direction: Build applications from multilinear maps with "slots" => instantiate using GGH15 with diagonal matrices, see if there is a chance of proving from LWE

Thanks for your time!

GGH15 Beyond Permutation Branching Programs:
Proofs, Attacks, and Candidates
https://eprint.iacr.org/2018/360

