
Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Generic Attacks against
Beyond-Birthday-Bound MACs

Gaëtan Leurent1, Mridul Nandi2, Ferdinand Sibleyras1

1 Inria équipe SECRET, Paris, France

2 Indian Statistical Institute, Kolkata, India

CRYPTO 2018

1 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Introduction
• Symmetric cryptography: Alice and Bob share the same key.
• Active attacker: Eve might intercept and manipulate

Alice’s messages...
• Authentication: Alice computes and appends

a keyed MAC or tag T .

Plz come back!||T

Correct tag.
Will read.

2 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

ECBC-MAC

m1

Ek1

0

m2

Ek1 • • •

m`−1

Ek1

m`

Ek1

Ek2
Σ(m)

MAC(m)

The plaintext m is padded and split into n-bit blocks.

MAC(m) = Ek2

(
Σ(m)

)
Alice sends MAC(m) along with m to guarantee authenticity.

3 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Introduction

• Verifying: Bob verifies the tag with the shared key and
only reads the message if it is correct.

• Forgery: Eve cannot modify the message without forging
a new and correct tag.

Plz come back!||T

Plz stay away!||T

Incorrect tag.
Won’t read.

Direct attacks won’t work but is it secure?
Can Eve still mount an attack?

4 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Introduction

• Verifying: Bob verifies the tag with the shared key and
only reads the message if it is correct.

• Forgery: Eve cannot modify the message without forging
a new and correct tag.

Plz come back!||T

Plz stay away!||T

Incorrect tag.
Won’t read.

Direct attacks won’t work but is it secure?
Can Eve still mount an attack?

4 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

A security game

m
MAC(m)

m
||T

Va
lid
/In

val
id

qt = the number
of tagging queries.

qv = the number of
verification queries.

Can Eve forge a valid tag for a
message that Alice never saw?

5 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Case of ECBC

Properties of ECBC for all
messages m,m′, c :

MAC(m) =MAC(m′)

=⇒ Ek2

(
Σ(m)

)
=Ek2

(
Σ(m′)

)
=⇒ Σ(m) =Σ(m′)

=⇒ Σ(m||c) =Σ(m′||c)

=⇒ MAC(m||c) =MAC(m′||c)

ECBC mode

m1

Ek1

m2

Ek1
...

m`

Ek1 Ek2

Σ(m)

MAC(m)

Simple collision approach
Look for a pair of messages X,Y that satisfies:

Σ(X ) = Σ(Y ) ⇐⇒ MAC(X )⊕MAC(Y ) = 0

6 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Case of ECBC

Properties of ECBC for all
messages m,m′, c :

MAC(m) =MAC(m′)

=⇒ Ek2

(
Σ(m)

)
=Ek2

(
Σ(m′)

)
=⇒ Σ(m) =Σ(m′)

=⇒ Σ(m||c) =Σ(m′||c)

=⇒ MAC(m||c) =MAC(m′||c)

ECBC mode

m1

Ek1

m2

Ek1
...

m`

Ek1 Ek2

Σ(m)

MAC(m)

Simple collision approach
Look for a pair of messages X,Y that satisfies:

Σ(X ) = Σ(Y ) ⇐⇒ MAC(X )⊕MAC(Y ) = 0

6 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Birthday Bound Attack

Eve Alice

m1

m2

m3

m4

m5

m6

MAC(m1)
MAC(m2)
MAC(m3)
...

Looking for collisions
Eve looks for MAC(mi ) = MAC(mj) for some i 6= j .
She has ' q2

t pairs for an n-bit relationship so chances grow as:

Adv(A) ' q2
t

2n

7 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from collisions
Expansion property
MAC(m) = MAC(m′) =⇒ MAC(m||c) = MAC(m′||c) ∀c

Collision found:
MAC(You must) =
MAC(No, don’t)

Can you come back?||T0

Correct tag.
Will read.

Tell Bob he must
come back!

Oh you are right!

You must come back!||T

No, don’t come back!||T

Correct tag.
Will read.

Forgery requires qt ' 2n/2 and qv = 1.
Not secure beyond birthday bound (2n/2)

8 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Going beyond

Problem

How to build a deterministic MAC scheme secure when qt > 2n/2?

Not so easy: This birthday bound attack is generic to all
deterministic iterated MAC constructions with an n-bit internal
state [Preneel, van Oorschot, CRYPTO’95].

Idea: Double the size of the internal state to 2n bits.

Double-Block-Hash-Then-Sum Approach
XOR the two half-states at the end to recover an n-bit MAC.
Important research effort exploring this idea including:
SUM-ECBC, PMAC+, 3kf9, LightMAC+, GCM-SIV2, 1kPMAC+

9 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Going beyond

Problem

How to build a deterministic MAC scheme secure when qt > 2n/2?

Not so easy: This birthday bound attack is generic to all
deterministic iterated MAC constructions with an n-bit internal
state [Preneel, van Oorschot, CRYPTO’95].

Idea: Double the size of the internal state to 2n bits.

Double-Block-Hash-Then-Sum Approach
XOR the two half-states at the end to recover an n-bit MAC.
Important research effort exploring this idea including:
SUM-ECBC, PMAC+, 3kf9, LightMAC+, GCM-SIV2, 1kPMAC+

9 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Example: SUM-ECBC [Yasuda, CT-RSA’10]

m1

Ek1

m1

Ek3

m2

Ek1

m2

Ek3

m`−1

Ek1

...

m`−1

Ek3

...

m`

Ek1

m`

Ek3

Ek2

Ek4

MAC(m)

Σ(m)

Θ(m)

MAC(m) = Ek2

(
Σ(m)

)
⊕ Ek4

(
Θ(m)

)
10 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

This paper

Problem

Many of those schemes are proven secure when qt < 22n/3.
What happens when qt ≥ 22n/3?
Actual attacks or proof artefact?

Results
A generic approach leading to an attack on all cited schemes
using qv = 1 and qt ' 23n/4.

11 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

This paper

Problem

Many of those schemes are proven secure when qt < 22n/3.
What happens when qt ≥ 22n/3?
Actual attacks or proof artefact?

Results
A generic approach leading to an attack on all cited schemes
using qv = 1 and qt ' 23n/4.

11 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

4-way collision for double-hash-then-sum schemes
Look for a quadruple of messages X ,Y ,Z ,T that satisfies:

R(X ,Y ,Z ,T ) :=


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

Θ(T ) = Θ(X )

R(X ,Y ,Z ,T ) =⇒ MAC(X )⊕MAC(Y )⊕MAC(Z )⊕MAC(T ) = 0

MAC(X ) = E (Σ(X ))⊕ E ′(Θ(X )) E ′(Θ(T ))⊕ E (Σ(T )) = MAC(T )

MAC(Y ) = E (Σ(Y ))⊕ E ′(Θ(Y )) E ′(Θ(Z ))⊕ E (Σ(Z )) = MAC(Z )

=

=
= =

12 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X ,Y ,Z ,T :
Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

=⇒ Θ(T ) = Θ(X ).

Thus R(X ,Y ,Z ,T ) ⇐⇒


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

a 3n-bit condition.

Query complexity

There are ' q4
t quadruples for a 3n-bit condition.

A good one with high probability after qt ' 23n/4 queries.

13 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X ,Y ,Z ,T :
Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

=⇒ Θ(T ) = Θ(X ).

Thus R(X ,Y ,Z ,T ) ⇐⇒


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

a 3n-bit condition.

Query complexity

There are ' q4
t quadruples for a 3n-bit condition.

A good one with high probability after qt ' 23n/4 queries.

13 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Attack on SUM-ECBC

m1

Ek1

m1

Ek3

m2

Ek1

m2

Ek3

m`−1

Ek1

...

m`−1

Ek3

...

m`

Ek1

m`

Ek3

Ek2

Ek4

MAC(m)

Σ(m)

Θ(m)

MAC(m) = Ek2

(
Σ(m)

)
⊕ Ek4

(
Θ(m)

)
14 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Crafting the messages

X = 0||x ; Y = 1||y ; Z = 0||z ; T = 1||t;

R :=


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

Θ(T ) = Θ(X )

⇐⇒


Ek1(x ⊕ Ek1(0)) = Ek1(y ⊕ Ek1(1))

Ek3(y ⊕ Ek3(1)) = Ek3(z ⊕ Ek3(0))

Ek1(z ⊕ Ek1(0)) = Ek1(t ⊕ Ek1(1))

Ek3(t ⊕ Ek3(1)) = Ek3(x ⊕ Ek3(0))

⇐⇒


x ⊕ Ek1(0) = y ⊕ Ek1(1)

y ⊕ Ek3(1) = z ⊕ Ek3(0)

z ⊕ Ek1(0) = t ⊕ Ek1(1)

t ⊕ Ek3(1) = x ⊕ Ek3(0)

⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

R(X ,Y ,Z ,T ) is indeed a 3n-bit condition on the quadruple.

15 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Crafting the messages

X = 0||x ; Y = 1||y ; Z = 0||z ; T = 1||t;

R :=


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

Θ(T ) = Θ(X )

⇐⇒


Ek1(x ⊕ Ek1(0)) = Ek1(y ⊕ Ek1(1))

Ek3(y ⊕ Ek3(1)) = Ek3(z ⊕ Ek3(0))

Ek1(z ⊕ Ek1(0)) = Ek1(t ⊕ Ek1(1))

Ek3(t ⊕ Ek3(1)) = Ek3(x ⊕ Ek3(0))

⇐⇒


x ⊕ Ek1(0) = y ⊕ Ek1(1)

y ⊕ Ek3(1) = z ⊕ Ek3(0)

z ⊕ Ek1(0) = t ⊕ Ek1(1)

t ⊕ Ek3(1) = x ⊕ Ek3(0)

⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

R(X ,Y ,Z ,T ) is indeed a 3n-bit condition on the quadruple.

15 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Crafting the messages

X = 0||x ; Y = 1||y ; Z = 0||z ; T = 1||t;

R :=


Σ(X ) = Σ(Y )

Θ(Y ) = Θ(Z )

Σ(Z ) = Σ(T )

Θ(T ) = Θ(X )

⇐⇒


Ek1(x ⊕ Ek1(0)) = Ek1(y ⊕ Ek1(1))

Ek3(y ⊕ Ek3(1)) = Ek3(z ⊕ Ek3(0))

Ek1(z ⊕ Ek1(0)) = Ek1(t ⊕ Ek1(1))

Ek3(t ⊕ Ek3(1)) = Ek3(x ⊕ Ek3(0))

⇐⇒


x ⊕ Ek1(0) = y ⊕ Ek1(1)

y ⊕ Ek3(1) = z ⊕ Ek3(0)

z ⊕ Ek1(0) = t ⊕ Ek1(1)

t ⊕ Ek3(1) = x ⊕ Ek3(0)

⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

R(X ,Y ,Z ,T ) is indeed a 3n-bit condition on the quadruple.

15 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Filtering quadruples

R ⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

Observable Filters
The first equation of R in addition to the sum of MACs:{

x ⊕ y ⊕ z ⊕ t = 0
MAC(0||x)⊕MAC(1||y)⊕MAC(0||z)⊕MAC(1||t) = 0

Not enough

It is a 2n-bit filter for q4
t ' 23n quadruples.

2n quadruples to randomly pass the filter for only 1 respecting R.

16 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Filtering quadruples

R ⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

Observable Filters
The first equation of R in addition to the sum of MACs:{

x ⊕ y ⊕ z ⊕ t = 0
MAC(0||x)⊕MAC(1||y)⊕MAC(0||z)⊕MAC(1||t) = 0

Not enough

It is a 2n-bit filter for q4
t ' 23n quadruples.

2n quadruples to randomly pass the filter for only 1 respecting R.

16 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Amplifying the filter

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

R ⇐⇒


(x ⊕ 1)⊕ (y ⊕ 1)⊕ (z ⊕ 1)⊕ (t ⊕ 1) = 0
(x ⊕ 1)⊕ (y ⊕ 1) = Ek1(0)⊕ Ek1(1)

(x ⊕ 1)⊕ (t ⊕ 1) = Ek3(0)⊕ Ek3(1)

Related solutions

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒

R
(
(0||x ⊕ 1), (1||y ⊕ 1), (0||z ⊕ 1), (1||t ⊕ 1)

)
In particular if we have a good solution x , y , z , t then it verifies:

MAC(0||x⊕1)⊕MAC(1||y⊕1)⊕MAC(0||z⊕1)⊕MAC(1||t⊕1) = 0

17 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Amplifying the filter

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒


x ⊕ y ⊕ z ⊕ t = 0
x ⊕ y = Ek1(0)⊕ Ek1(1)

x ⊕ t = Ek3(0)⊕ Ek3(1)

R ⇐⇒


(x ⊕ 1)⊕ (y ⊕ 1)⊕ (z ⊕ 1)⊕ (t ⊕ 1) = 0
(x ⊕ 1)⊕ (y ⊕ 1) = Ek1(0)⊕ Ek1(1)

(x ⊕ 1)⊕ (t ⊕ 1) = Ek3(0)⊕ Ek3(1)

Related solutions

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒

R
(
(0||x ⊕ 1), (1||y ⊕ 1), (0||z ⊕ 1), (1||t ⊕ 1)

)
In particular if we have a good solution x , y , z , t then it verifies:

MAC(0||x⊕1)⊕MAC(1||y⊕1)⊕MAC(0||z⊕1)⊕MAC(1||t⊕1) = 0
17 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Finding a good quadruple
Find a quadruple (x , y , z , t) such that:

x ⊕ y ⊕ z ⊕ t = 0

MAC(0||x) ⊕MAC(1||y) ⊕MAC(0||z) ⊕MAC(1||t) = 0

MAC(0||x ⊕ 1) ⊕MAC(1||y ⊕ 1) ⊕MAC(0||z ⊕ 1) ⊕MAC(1||t ⊕ 1) = 0

1. Query and build the following 4 lists of size 23n/4:

L1 = {x ||MAC(0||x)||MAC(0||x ⊕ 1)}
L2 = {y ||MAC(1||y)||MAC(1||y ⊕ 1)}
L3 = {z ||MAC(0||z)||MAC(0||z ⊕ 1)}
L4 = {t||MAC(1||t)||MAC(1||t ⊕ 1)}

2. Find `1, `2, `3, `4 in L1, L2, L3, L4 respectively
such that `1 ⊕ `2 ⊕ `3 ⊕ `4 = 0.

18 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Finding a good quadruple
Find a quadruple (x , y , z , t) such that:

x ⊕ y ⊕ z ⊕ t = 0

MAC(0||x) ⊕MAC(1||y) ⊕MAC(0||z) ⊕MAC(1||t) = 0

MAC(0||x ⊕ 1) ⊕MAC(1||y ⊕ 1) ⊕MAC(0||z ⊕ 1) ⊕MAC(1||t ⊕ 1) = 0

1. Query and build the following 4 lists of size 23n/4:

L1 = {x ||MAC(0||x)||MAC(0||x ⊕ 1)}
L2 = {y ||MAC(1||y)||MAC(1||y ⊕ 1)}
L3 = {z ||MAC(0||z)||MAC(0||z ⊕ 1)}
L4 = {t||MAC(1||t)||MAC(1||t ⊕ 1)}

2. Find `1, `2, `3, `4 in L1, L2, L3, L4 respectively
such that `1 ⊕ `2 ⊕ `3 ⊕ `4 = 0.

18 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Finding a good quadruple
Find a quadruple (x , y , z , t) such that:

x ⊕ y ⊕ z ⊕ t = 0

MAC(0||x) ⊕MAC(1||y) ⊕MAC(0||z) ⊕MAC(1||t) = 0

MAC(0||x ⊕ 1) ⊕MAC(1||y ⊕ 1) ⊕MAC(0||z ⊕ 1) ⊕MAC(1||t ⊕ 1) = 0

1. Query and build the following 4 lists of size 23n/4:

L1 = {x ||MAC(0||x)||MAC(0||x ⊕ 1)}
L2 = {y ||MAC(1||y)||MAC(1||y ⊕ 1)}
L3 = {z ||MAC(0||z)||MAC(0||z ⊕ 1)}
L4 = {t||MAC(1||t)||MAC(1||t ⊕ 1)}

2. Find `1, `2, `3, `4 in L1, L2, L3, L4 respectively
such that `1 ⊕ `2 ⊕ `3 ⊕ `4 = 0.

18 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Finding a good quadruple

1. Query and build L1, L2, L3, L4 of size 23n/4.
2. Find `1, `2, `3, `4 in L1, L2, L3, L4 respectively

such that `1 ⊕ `2 ⊕ `3 ⊕ `4 = 0.

Algorithm cost

Step 1 costs qt = O(23n/4) queries and as much memory.

Step 2 is about solving an instance of the 4-XOR problem.
Solve it in O(23n/4) memory and O(23n/2) time.

19 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity

SUM-ECBC and GCM-SIV2: optimize the time complexity at the
cost of queries.

Related solutions

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒

R
(
(0||x ⊕ c), (1||y ⊕ c), (0||z ⊕ c), (1||t ⊕ c)

)
∀c

So R =⇒ ∀c :
MAC(0||x⊕c)⊕MAC(1||y⊕c)⊕MAC(0||z⊕c)⊕MAC(1||t⊕c) = 0

20 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity

SUM-ECBC and GCM-SIV2: optimize the time complexity at the
cost of queries.

Related solutions

R
(
(0||x), (1||y), (0||z), (1||t)

)
⇐⇒

R
(
(0||x ⊕ c), (1||y ⊕ c), (0||z ⊕ c), (1||t ⊕ c)

)
∀c

So R =⇒ ∀c :
MAC(0||x⊕c)⊕MAC(1||y⊕c)⊕MAC(0||z⊕c)⊕MAC(1||t⊕c) = 0

20 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕


MAC(0||x ⊕ 0)⊕MAC(1||y ⊕ 0)⊕MAC(0||z ⊕ 0)⊕MAC(1||t ⊕ 0) = 0
MAC(0||x ⊕ 1)⊕MAC(1||y ⊕ 1)⊕MAC(0||z ⊕ 1)⊕MAC(1||t ⊕ 1) = 0
MAC(0||x ⊕ 2)⊕MAC(1||y ⊕ 2)⊕MAC(0||z ⊕ 2)⊕MAC(1||t ⊕ 2) = 0
MAC(0||x ⊕ 3)⊕MAC(1||y ⊕ 3)⊕MAC(0||z ⊕ 3)⊕MAC(1||t ⊕ 3) = 0
MAC(0||x ⊕ 4)⊕MAC(1||y ⊕ 4)⊕MAC(0||z ⊕ 4)⊕MAC(1||t ⊕ 4) = 0
...

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}
For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.
Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕
c∈C

MAC(0||x ⊕ c)⊕MAC(1||y ⊕ c)⊕MAC(0||z ⊕ c)⊕MAC(1||t ⊕ c) = 0

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}

For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.
Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕
c∈C

MAC(0||x⊕c)⊕
⊕
c∈C

MAC(1||y⊕c)⊕
⊕
c∈C

MAC(0||z⊕c)⊕
⊕
c∈C

MAC(1||t⊕c) = 0

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}

For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.
Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕
c∈C

MAC(0||x⊕c)⊕
⊕
c∈C

MAC(1||y⊕c)⊕
⊕
c∈C

MAC(0||z⊕c)⊕
⊕
c∈C

MAC(1||t⊕c) = 0

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}

For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.
Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕
c∈C

MAC(0||x⊕c)⊕
⊕
c∈C

MAC(1||y⊕c)⊕
⊕
c∈C

MAC(0||z⊕c)⊕
⊕
c∈C

MAC(1||t⊕c) = 0

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}

For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.

Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Optimizing time complexity
Let C = {c : c < 23n/7} we sum the relations:

⊕
c∈C

MAC(0||x⊕c)⊕
⊕
c∈C

MAC(1||y⊕c)⊕
⊕
c∈C

MAC(0||z⊕c)⊕
⊕
c∈C

MAC(1||t⊕c) = 0

Only the most significant 4n/7 bits of x , y , z , t are meaningful
and must respect a 3 · 4n/7 = 12n/7-bit relationship.

L1 =

{
x[3n/7:n]||

⊕
c∈C

MAC(0||x ⊕ c)||
⊕
c∈C

MAC(0||(x ⊕ δ)⊕ c)

}

For |L| = 23n/7 the 4-XOR problem takes O(26n/7) time.
One element requires 23n/7 queries, a total of O(26n/7) queries.
Previously we used O(23n/2) time and O(23n/4) queries.
Thus this optimization uses less time but more queries.

21 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples

Σ(m) and Θ(m) are built the same way as simple ECBC’s Σ(m).
In particular for all suffixes c :

Σ(m) = Σ(m′) =⇒ Σ(m||c) = Σ(m′||c)

The same holds for Θ.

Expansion property SUM-ECBC
R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Therefore Eve can forge in a very similar manner.

22 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples

Σ(m) and Θ(m) are built the same way as simple ECBC’s Σ(m).
In particular for all suffixes c :

Σ(m) = Σ(m′) =⇒ Σ(m||c) = Σ(m′||c)

The same holds for Θ.

Expansion property SUM-ECBC
R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Therefore Eve can forge in a very similar manner.

22 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1

Plz help come back!||T2You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!

Plz help tell Bob to
come back!
Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1

Plz help come back!||T2You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!
Plz help tell Bob to
come back!
Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1

Plz help come back!||T2

You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!

Plz help tell Bob to
come back!

Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1

Plz help come back!||T2

You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!
Plz help tell Bob to
come back!
Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1Plz help come back!||T2

You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!
Plz help tell Bob to
come back!

Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Forgery from quadruples
Expansion property SUM-ECBC (reminder)

R(X ,Y ,Z ,T ) =⇒ R(X ||c ,Y ||c ,Z ||c,T ||c) ∀c

Quadruple found:
MAC(You should)
MAC(Plz help)
MAC(You must)
MAC(Plz never)

T1
T3

T1, T2
T3

T1, T2, T3
T4 = T1 ⊕ T2 ⊕ T3

You should come back!||T1Plz help come back!||T2

You must come back!||T3

Plz never come back!||T
4

Correct tag.
Will read.

Tell Bob he should
come back!
Plz help tell Bob to
come back!
Tell Bob he must
come back!

23 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Conclusion

Main results:
• Most of our attacks use 23n/4 queries and 23n/2 time.
• Variant for SUM-ECBC & GCM-SIV2: 26n/7 queries and time.

Additionally:
• Withdrawn 1kf9 shown to allow Birthday Bound Attacks and
therefore is not a BBB scheme.

• Recent results on security of LightMAC+ [Naito, CT-RSA’18]
proved wrong by our attack.

24 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Conclusion

Main results:
• Most of our attacks use 23n/4 queries and 23n/2 time.
• Variant for SUM-ECBC & GCM-SIV2: 26n/7 queries and time.

Additionally:
• Withdrawn 1kf9 shown to allow Birthday Bound Attacks and
therefore is not a BBB scheme.

• Recent results on security of LightMAC+ [Naito, CT-RSA’18]
proved wrong by our attack.

24 / 25



Introduction Birthday Bound Attack Beyond Birthday Bound SUM-ECBC Conclusion

Conclusion
Attacks (this work)

Mode Queries Time Type
SUM-ECBC O(23n/4) Õ(23n/2) Universal

O(26n/7) Õ(26n/7) Universal
GCM-SIV2 O(23n/4) Õ(23n/2) Universal

O(26n/7) Õ(26n/7) Universal
PMAC+ O(23n/4) Õ(23n/2) Existential

LightMAC+ O(23n/4) Õ(23n/2) Existential
1kPMAC+ O(23n/4) Õ(23n/2) Existential

3kf9 O( 4
√
n · 23n/4) Õ(25n/4) Universal

1kf9 O(2n/2) Õ(2n/2) Universal

Except 1kf9, all above schemes have a proof that they are secure
while qt < 22n/3. We showed they are not secure when qt ≥ 23n/4.
Open question: What happens when 22n/3 ≤ qt < 23n/4 ?

25 / 25


	Introduction
	Birthday Bound Attack
	Beyond Birthday Bound
	SUM-ECBC
	Conclusion

