Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Generic Attacks against Beyond-Birthday-Bound MACs

Gaëtan Leurent¹, Mridul Nandi², Ferdinand Sibleyras¹

¹ Inria équipe SECRET, Paris, France

² Indian Statistical Institute, Kolkata, India

CRYPTO 2018

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Introduction

- Symmetric cryptography: Alice and Bob share the same key.
- Active attacker: Eve might intercept and manipulate Alice's messages...
- Authentication: Alice computes and appends

a keyed MAC or tag T.

The plaintext m is padded and split into n-bit blocks.

$$MAC(m) = E_{k_2}(\Sigma(m))$$

Alice sends MAC(m) along with m to guarantee authenticity.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Introduction

- Verifying: Bob verifies the tag with the shared key and only reads the message if it is correct.
- Forgery: Eve cannot modify the message without forging a new and correct tag.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Introduction

- Verifying: Bob verifies the tag with the shared key and only reads the message if it is correct.
- Forgery: Eve cannot modify the message without forging a new and correct tag.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

A security game

Can Eve forge a valid tag for a message that Alice never saw?

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Case of ECBC

Properties of ECBC for all messages m, m', c:

	MAC(m) = MAC(m')
\implies	$E_{k_2}(\Sigma(m)) = E_{k_2}(\Sigma(m'))$
\implies	$\Sigma(m)=\!\Sigma(m')$
\implies	$\Sigma(m c)=\Sigma(m' c)$
\implies	MAC(m c) = MAC(m' c)

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Case of ECBC

Properties of ECBC for all messages m, m', c:

$$\begin{aligned} \mathsf{MAC}(m) &= \mathsf{MAC}(m') \\ \implies & \mathsf{E}_{k_2}\big(\Sigma(m)\big) = \mathsf{E}_{k_2}\big(\Sigma(m')\big) \\ \implies & \Sigma(m) = \Sigma(m') \\ \implies & \Sigma(m||c) = \Sigma(m'||c) \end{aligned}$$

$$\implies$$
 MAC $(m||c) =$ MAC $(m'||c)$

Simple collision approach

Look for a pair of messages X,Y that satisfies:

 $\Sigma(X) = \Sigma(Y) \iff MAC(X) \oplus MAC(Y) = 0$

Looking for collisions

Eve looks for MAC(m_i) = MAC(m_j) for some $i \neq j$. She has $\simeq q_t^2$ pairs for an *n*-bit relationship so chances grow as:

$$\mathsf{Adv}(\mathcal{A})\simeq rac{q_t^2}{2^n}$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property

Collision found: MAC(You must) = MAC(No, don't)

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property $MAC(m) = MAC(m') \implies MAC(m||c) = MAC(m'||c) \forall c$

Tell Bob **he must** come back!

Collision found: MAC(You must) = MAC(No, don't)

Oh you are right!

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property

Collision found: MAC(You must) = MAC(No, don't)

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from collisions

Expansion property

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Going beyond

Problem

How to build a deterministic MAC scheme secure when $q_t > 2^{n/2}$?

Not so easy: This birthday bound attack is generic to all deterministic iterated MAC constructions with an *n*-bit internal state [Preneel, van Oorschot, CRYPTO'95].

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Going beyond

Problem

How to build a deterministic MAC scheme secure when $q_t > 2^{n/2}$?

Not so easy: This birthday bound attack is generic to all deterministic iterated MAC constructions with an *n*-bit internal state [Preneel, van Oorschot, CRYPTO'95].

Idea: Double the size of the internal state to 2n bits.

Double-Block-Hash-Then-Sum Approach

XOR the two half-states at the end to recover an *n*-bit MAC. Important research effort exploring this idea including: SUM-ECBC, PMAC+, 3kf9, LightMAC+, GCM-SIV2, 1kPMAC+

ntroduction	Birthday Bound Attack	Beyond Birthday Bound	SUM-ECBC	Conc
0000	000	0000	000000000	00

Example: SUM-ECBC [Yasuda, CT-RSA'10]

 $MAC(m) = E_{k_2}(\Sigma(m)) \oplus E_{k_4}(\Theta(m))$

Intro	du	ct	ic	n
0000	С			

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

This paper

Problem

Many of those schemes are proven secure when $q_t < 2^{2n/3}$. What happens when $q_t \ge 2^{2n/3}$? Actual attacks or proof artefact?

Intro	du	ct	ic	n
0000	С			

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

This paper

Problem

Many of those schemes are proven secure when $q_t < 2^{2n/3}$. What happens when $q_t \ge 2^{2n/3}$? Actual attacks or proof artefact?

Results

A generic approach leading to an attack on all cited schemes using $q_v = 1$ and $q_t \simeq 2^{3n/4}$.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

4-way collision for double-hash-then-sum schemes

Look for a quadruple of messages X, Y, Z, T that satisfies:

$$\mathcal{R}(X, Y, Z, T) := \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \\ \Theta(T) = \Theta(X) \end{cases}$$

 $\mathcal{R}(X, Y, Z, T) \implies \mathsf{MAC}(X) \oplus \mathsf{MAC}(Y) \oplus \mathsf{MAC}(Z) \oplus \mathsf{MAC}(T) = 0$

$$MAC(X) = E(\Sigma(X)) \oplus E'(\Theta(X)) = E'(\Theta(T)) \oplus E(\Sigma(T)) = MAC(T)$$

$$\| MAC(Y) = E(\Sigma(Y)) \oplus E'(\Theta(Y)) = E'(\Theta(Z)) \oplus E(\Sigma(Z)) = MAC(Z)$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X, Y, Z, T:

$$\begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases} \implies \Theta(T) = \Theta(X). \end{cases}$$

Thus
$$\mathcal{R}(X, Y, Z, T) \iff \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases}$$
 a 3*n*-bit condition.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

4-way collision for double-hash-then-sum schemes

With carefully crafted sets of messages for X, Y, Z, T:

$$\begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases} \implies \Theta(T) = \Theta(X). \end{cases}$$

Thus
$$\mathcal{R}(X, Y, Z, T) \iff \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \end{cases}$$
 a 3*n*-bit condition.

Query complexity

There are $\simeq q_t^4$ quadruples for a 3*n*-bit condition. A good one with high probability after $q_t \simeq 2^{3n/4}$ queries.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Attack on SUM-ECBC

 $MAC(m) = E_{k_2}(\Sigma(m)) \oplus E_{k_4}(\Theta(m))$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Crafting the messages

$$X = 0 ||x;$$
 $Y = 1 ||y;$ $Z = 0 ||z;$ $T = 1 ||t;$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Crafting the messages

$$X = 0 ||x;$$
 $Y = 1 ||y;$ $Z = 0 ||z;$ $T = 1 ||t;$

$$\mathcal{R} := \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \\ \Theta(T) = \Theta(X) \end{cases} \iff \begin{cases} E_{k_1}(x \oplus E_{k_1}(0)) = E_{k_1}(y \oplus E_{k_1}(1)) \\ E_{k_3}(y \oplus E_{k_3}(1)) = E_{k_3}(z \oplus E_{k_3}(0)) \\ E_{k_1}(z \oplus E_{k_1}(0)) = E_{k_1}(t \oplus E_{k_1}(1)) \\ E_{k_3}(t \oplus E_{k_3}(1)) = E_{k_3}(x \oplus E_{k_3}(0)) \end{cases}$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Crafting the messages

$$X = 0 ||x;$$
 $Y = 1 ||y;$ $Z = 0 ||z;$ $T = 1 ||t;$

$$\mathcal{R} := \begin{cases} \Sigma(X) = \Sigma(Y) \\ \Theta(Y) = \Theta(Z) \\ \Sigma(Z) = \Sigma(T) \\ \Theta(T) = \Theta(X) \end{cases} \iff \begin{cases} \frac{E_{k_1}(x \oplus E_{k_1}(0)) = \frac{E_{k_1}(y \oplus E_{k_1}(1))}{E_{k_3}(y \oplus E_{k_3}(1))} = \frac{E_{k_1}(x \oplus E_{k_3}(0))}{E_{k_1}(x \oplus E_{k_1}(0))} = \frac{E_{k_1}(x \oplus E_{k_3}(0))}{E_{k_3}(x \oplus E_{k_3}(0))} \end{cases}$$

$$\iff \begin{cases} x \oplus E_{k_1}(0) = y \oplus E_{k_1}(1) \\ y \oplus E_{k_3}(1) = z \oplus E_{k_3}(0) \\ z \oplus E_{k_1}(0) = t \oplus E_{k_1}(1) \\ t \oplus E_{k_3}(1) = x \oplus E_{k_3}(0) \end{cases} \iff \begin{cases} x \oplus y \oplus z \oplus t = 0 \\ x \oplus y = E_{k_1}(0) \oplus E_{k_1}(1) \\ x \oplus t = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

 $\mathcal{R}(X, Y, Z, T)$ is indeed a <u>3n-bit</u> condition on the quadruple.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Filtering quadruples

$$\mathcal{R} \iff \begin{cases} x \oplus y \oplus z \oplus t = 0\\ x \oplus y = E_{k_1}(0) \oplus E_{k_1}(1)\\ x \oplus t = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

Observable Filters

The first equation of ${\mathcal R}$ in addition to the sum of MACs:

$$\begin{cases} x \oplus y \oplus z \oplus t = 0 \\ MAC(0||x) \oplus MAC(1||y) \oplus MAC(0||z) \oplus MAC(1||t) = 0 \end{cases}$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Filtering quadruples

$$\mathcal{R} \iff \begin{cases} x \oplus y \oplus z \oplus t = 0\\ x \oplus y = E_{k_1}(0) \oplus E_{k_1}(1)\\ x \oplus t = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

Observable Filters

The first equation of ${\mathcal R}$ in addition to the sum of MACs:

$$\begin{cases} x \oplus y \oplus z \oplus t = 0 \\ \mathsf{MAC}(0||x) \oplus \mathsf{MAC}(1||y) \oplus \mathsf{MAC}(0||z) \oplus \mathsf{MAC}(1||t) = 0 \end{cases}$$

Not enough

It is a 2*n*-bit filter for $q_t^4 \simeq 2^{3n}$ quadruples. 2^{*n*} quadruples to randomly pass the filter for only 1 respecting \mathcal{R} .

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Amplifying the filter

$$\mathcal{R}\big((0||x),(1||y),(0||z),(1||t)\big) \iff \begin{cases} x \oplus y \oplus z \oplus t = 0\\ x \oplus y = E_{k_1}(0) \oplus E_{k_1}(1)\\ x \oplus t = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

$$\mathcal{R} \iff \begin{cases} (x \oplus 1) \oplus (y \oplus 1) \oplus (z \oplus 1) \oplus (t \oplus 1) = 0\\ (x \oplus 1) \oplus (y \oplus 1) = E_{k_1}(0) \oplus E_{k_1}(1)\\ (x \oplus 1) \oplus (t \oplus 1) = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Amplifying the filter

$$\mathcal{R}\big((0||x),(1||y),(0||z),(1||t)\big) \iff \begin{cases} x \oplus y \oplus z \oplus t = 0\\ x \oplus y = E_{k_1}(0) \oplus E_{k_1}(1)\\ x \oplus t = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

$$\mathcal{R} \iff \begin{cases} (x \oplus 1) \oplus (y \oplus 1) \oplus (z \oplus 1) \oplus (t \oplus 1) = 0\\ (x \oplus 1) \oplus (y \oplus 1) = E_{k_1}(0) \oplus E_{k_1}(1)\\ (x \oplus 1) \oplus (t \oplus 1) = E_{k_3}(0) \oplus E_{k_3}(1) \end{cases}$$

Related solutions

 $\begin{array}{l} \mathcal{R}\big((0||x), (1||y), (0||z), (1||t)\big) \iff \\ \mathcal{R}\big((0||x \oplus 1), (1||y \oplus 1), (0||z \oplus 1), (1||t \oplus 1)\big) \end{array}$

In particular if we have a good solution x, y, z, t then it verifies: MAC(0|| $x \oplus 1$) \oplus MAC(1|| $y \oplus 1$) \oplus MAC(0|| $z \oplus 1$) \oplus MAC(1|| $t \oplus 1$) = 0

ntroduction	Birthday Bound Attack	Beyond Birthday Bound	SUM-ECBC	Conclusion
0000	000	00000	000000000	00

Finding a good quadruple

Find a quadruple (x, y, z, t) such that:

x	\oplus y	$\oplus z$	$\oplus t$	= 0
MAC(0 x)	$\oplus MAC(1 y)$	$\oplus MAC(0 z)$	$\oplus MAC(1 t)$	= 0
$MAC(0 x \oplus 1)$	$\oplus MAC(1 y \oplus 1)$	$\oplus MAC(0 z \oplus 1)$	$\oplus MAC(1 t \oplus 1)$	= 0

ntroduction	Birthday Bound Attack	Beyond Birthday Bound	SUM-ECBC	Conclusion
0000	000	00000	000000000	00

Finding a good quadruple

Find a quadruple (x, y, z, t) such that:

x \oplus y \oplus z \oplus t= 0MAC(0||x) \oplus MAC(1||y) \oplus MAC(0||z) \oplus MAC(1||t)= 0MAC(0||x \oplus 1) \oplus MAC(1||y \oplus 1) \oplus MAC(0||z \oplus 1) \oplus MAC(1||t \oplus 1)= 0

1. Query and build the following 4 lists of size $2^{3n/4}$:

$$L_{1} = \{x || MAC(0||x)|| MAC(0||x \oplus 1)\}$$

$$L_{2} = \{y || MAC(1||y)|| MAC(1||y \oplus 1)\}$$

$$L_{3} = \{z || MAC(0||z)|| MAC(0||z \oplus 1)\}$$

$$L_{4} = \{t || MAC(1||t)|| MAC(1||t \oplus 1)\}$$

ntroduction	Birthday Bound Attack	Beyond Birthday Bound	SUM-ECBC	Conclusion
0000	000	00000	000000000	00

Finding a good quadruple

Find a quadruple (x, y, z, t) such that:

x \oplus y \oplus z \oplus t= 0MAC(0||x) \oplus MAC(1||y) \oplus MAC(0||z) \oplus MAC(1||t)= 0MAC(0||x \oplus 1) \oplus MAC(1||y \oplus 1) \oplus MAC(0||z \oplus 1) \oplus MAC(1||t \oplus 1)= 0

1. Query and build the following 4 lists of size $2^{3n/4}$:

$$L_{1} = \{x || MAC(0||x)|| MAC(0||x \oplus 1)\}$$

$$L_{2} = \{y || MAC(1||y)|| MAC(1||y \oplus 1)\}$$

$$L_{3} = \{z || MAC(0||z)|| MAC(0||z \oplus 1)\}$$

$$L_{4} = \{t || MAC(1||t)|| MAC(1||t \oplus 1)\}$$

2. Find $\ell_1, \ell_2, \ell_3, \ell_4$ in L_1, L_2, L_3, L_4 respectively such that $\ell_1 \oplus \ell_2 \oplus \ell_3 \oplus \ell_4 = 0$.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Finding a good quadruple

- 1. Query and build L_1, L_2, L_3, L_4 of size $2^{3n/4}$.
- 2. Find $\ell_1, \ell_2, \ell_3, \ell_4$ in L_1, L_2, L_3, L_4 respectively such that $\ell_1 \oplus \ell_2 \oplus \ell_3 \oplus \ell_4 = 0$.

Algorithm cost

Step 1 costs $q_t = \mathcal{O}(2^{3n/4})$ queries and as much memory.

Step 2 is about solving an instance of the 4-XOR problem. Solve it in $\mathcal{O}(2^{3n/4})$ memory and $\mathcal{O}(2^{3n/2})$ time.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

 $\mathsf{SUM}\text{-}\mathsf{ECBC}$ and $\mathsf{GCM}\text{-}\mathsf{SIV2}:$ optimize the time complexity at the cost of queries.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

SUM-ECBC and GCM-SIV2: optimize the time complexity at the cost of queries.

Related solutions $\mathcal{R}((0||x), (1||y), (0||z), (1||t)) \iff$ $\mathcal{R}((0||x \oplus c), (1||y \oplus c), (0||z \oplus c), (1||t \oplus c)) \forall c$

So $\mathcal{R} \implies \forall c$: MAC(0|| $x \oplus c$) \oplus MAC(1|| $y \oplus c$) \oplus MAC(0|| $z \oplus c$) \oplus MAC(1|| $t \oplus c$) = 0

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $C = \{c : c < 2^{3n/7}\}$ we sum the relations:

 $\bigoplus \begin{cases}
\mathsf{MAC}(0||x \oplus 0) \oplus \mathsf{MAC}(1||y \oplus 0) \oplus \mathsf{MAC}(0||z \oplus 0) \oplus \mathsf{MAC}(1||t \oplus 0) = 0 \\
\mathsf{MAC}(0||x \oplus 1) \oplus \mathsf{MAC}(1||y \oplus 1) \oplus \mathsf{MAC}(0||z \oplus 1) \oplus \mathsf{MAC}(1||t \oplus 1) = 0 \\
\mathsf{MAC}(0||x \oplus 2) \oplus \mathsf{MAC}(1||y \oplus 2) \oplus \mathsf{MAC}(0||z \oplus 2) \oplus \mathsf{MAC}(1||t \oplus 2) = 0 \\
\mathsf{MAC}(0||x \oplus 3) \oplus \mathsf{MAC}(1||y \oplus 3) \oplus \mathsf{MAC}(0||z \oplus 3) \oplus \mathsf{MAC}(1||t \oplus 3) = 0 \\
\mathsf{MAC}(0||x \oplus 4) \oplus \mathsf{MAC}(1||y \oplus 4) \oplus \mathsf{MAC}(0||z \oplus 4) \oplus \mathsf{MAC}(1||t \oplus 4) = 0
\end{cases}$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $C = \{c : c < 2^{3n/7}\}$ we sum the relations:

 $\bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c) \oplus \mathsf{MAC}(1||y \oplus c) \oplus \mathsf{MAC}(0||z \oplus c) \oplus \mathsf{MAC}(1||t \oplus c) = 0$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $C = \{c : c < 2^{3n/7}\}$ we sum the relations:

$$\bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||y \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||z \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||t \oplus c) = 0$$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $\mathcal{C} = \{c : c < 2^{3n/7}\}$ we sum the relations:

 $\bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||y \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||z \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||t \oplus c) = 0$

Only the most significant $\frac{4n}{7}$ bits of x, y, z, t are meaningful and must respect a $3 \cdot \frac{4n}{7} = \frac{12n}{7}$ -bit relationship.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $\mathcal{C} = \{c : c < 2^{3n/7}\}$ we sum the relations:

 $\bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||y \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||z \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||t \oplus c) = 0$

Only the most significant $\frac{4n}{7}$ bits of x, y, z, t are meaningful and must respect a $3 \cdot \frac{4n}{7} = \frac{12n}{7}$ -bit relationship.

$$L_1 = \left\{ x_{[3n/7:n]} || \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c)|| \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||(x \oplus \delta) \oplus c) \right\}$$

For $|L| = 2^{3n/7}$ the 4-XOR problem takes $\mathcal{O}(2^{6n/7})$ time. One element requires $2^{3n/7}$ queries, a total of $\mathcal{O}(2^{6n/7})$ queries.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Optimizing time complexity

Let $\mathcal{C} = \{c : c < 2^{3n/7}\}$ we sum the relations:

 $\bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||y \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||z \oplus c) \oplus \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(1||t \oplus c) = 0$

Only the most significant $\frac{4n}{7}$ bits of x, y, z, t are meaningful and must respect a $3 \cdot \frac{4n}{7} = \frac{12n}{7}$ -bit relationship.

$$L_1 = \left\{ x_{[3n/7:n]} || \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||x \oplus c)|| \bigoplus_{c \in \mathcal{C}} \mathsf{MAC}(0||(x \oplus \delta) \oplus c) \right\}$$

For $|L| = 2^{3n/7}$ the 4-XOR problem takes $\mathcal{O}(2^{6n/7})$ time. One element requires $2^{3n/7}$ queries, a total of $\mathcal{O}(2^{6n/7})$ queries. Previously we used $\mathcal{O}(2^{3n/2})$ time and $\mathcal{O}(2^{3n/4})$ queries. Thus this optimization uses less time but more queries.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

 $\Sigma(m)$ and $\Theta(m)$ are built the same way as simple ECBC's $\Sigma(m)$. In particular for all suffixes *c*:

$$\Sigma(m) = \Sigma(m') \implies \Sigma(m||c) = \Sigma(m'||c)$$

The same holds for Θ .

Introduction

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

 $\Sigma(m)$ and $\Theta(m)$ are built the same way as simple ECBC's $\Sigma(m)$. In particular for all suffixes *c*:

$$\Sigma(m) = \Sigma(m') \implies \Sigma(m||c) = \Sigma(m'||c)$$

The same holds for Θ .

Expansion property SUM-ECBC $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \forall c$

Therefore Eve can forge in a very similar manner.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder)

 $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \ \forall c$

Tell Bob he **should** come back!

 T_1

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder) $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \forall c$

Birthday Bound Attack

Beyond Birthday Bound

Plz help tell Bob to

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder)

 $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \, \forall c$

Quadruple found: MAC(You should) MAC(Plz help) MAC(You must) MAC(Plz never)

come back!

T₁, **T**₂

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder) $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \forall c$

Birthday Bound Attack

Beyond Birthday Bound

Tell Bob he must

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder)

 $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \,\forall c$

come back!

 T_1, T_2, T_3 $T_4 = T_1 \oplus T_2 \oplus T_3$

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Forgery from quadruples

Expansion property SUM-ECBC (reminder) $\mathcal{R}(X, Y, Z, T) \implies \mathcal{R}(X||c, Y||c, Z||c, T||c) \forall c$

Intro	du	ct	ic	n
0000	С			

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Conclusion

Main results:

- Most of our attacks use $2^{3n/4}$ queries and $2^{3n/2}$ time.
- Variant for SUM-ECBC & GCM-SIV2: 2^{6n/7} queries and time.

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Conclusion

Main results:

- Most of our attacks use $2^{3n/4}$ queries and $2^{3n/2}$ time.
- Variant for SUM-ECBC & GCM-SIV2: 2^{6n/7} queries and time.

Additionally:

- Withdrawn 1kf9 shown to allow Birthday Bound Attacks and therefore is not a BBB scheme.
- Recent results on security of LightMAC+ [Naito, CT-RSA'18] proved wrong by our attack.

Intro	du	cti	on
0000	С		

Birthday Bound Attack

Beyond Birthday Bound

SUM-ECBC

Conclusion

Conclusion

	Attacks (this work)			
Mode	Queries	Time	Туре	
SUM-ECBC	$\mathcal{O}(2^{3n/4})$	$\tilde{\mathcal{O}}(2^{3n/2})$	Universal	
	$O(2^{6n/7})$	$ ilde{\mathcal{O}}(2^{6n/7})$	Universal	
GCM-SIV2	$O(2^{3n/4})$	$ ilde{\mathcal{O}}(2^{3n/2})$	Universal	
	$O(2^{6n/7})$	$ ilde{\mathcal{O}}(2^{6n/7})$	Universal	
PMAC+	$O(2^{3n/4})$	$\tilde{\mathcal{O}}(2^{3n/2})$	Existential	
LightMAC+	$O(2^{3n/4})$	$ ilde{\mathcal{O}}(2^{3n/2})$	Existential	
1kPMAC+	$\mathcal{O}(2^{3n/4})$	$ ilde{\mathcal{O}}(2^{3n/2})$	Existential	
3kf9	$\mathcal{O}(\sqrt[4]{n}\cdot 2^{3n/4})$	$ ilde{\mathcal{O}}(2^{5n/4})$	Universal	
1kf9	$\mathcal{O}(2^{n/2})$	$ ilde{\mathcal{O}}(2^{n/2})$	Universal	

Except 1kf9, all above schemes have a proof that they are secure while $q_t < 2^{2n/3}$. We showed they are not secure when $q_t \ge 2^{3n/4}$. Open question: What happens when $2^{2n/3} \le q_t < 2^{3n/4}$?