
IND-CCA-secure Key Encapsulation Mechanism in the Quantum
Random Oracle Model, Revisited

Haodong Jiang ∗,† Zhenfeng Zhang †,‡ Long Chen †,‡ Hong Wang ∗ Zhi
Ma ∗

∗Chinese State Key Laboratory of Mathematical Engineering and Advanced Computing

†Institute of Software, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences

August 21, 2018



Overview

1 Background

2 Main Contribution

3 Techniques

4 Conclusion



Background

Public Key Cryptography public key encryption (PKE), digital signatures (DS), and
key encapsulation mechanism (KEM)

Current Deployment Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic
curve cryptosystems



Background

Public Key Cryptography public key encryption (PKE), digital signatures (DS), and
key encapsulation mechanism (KEM)

Current Deployment Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic
curve cryptosystems



Background

Public Key Cryptography public key encryption (PKE), digital signatures (DS), and
key encapsulation mechanism (KEM)

Current Deployment Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic
curve cryptosystems



Background

Public Key Cryptography public key encryption (PKE), digital signatures (DS), and
key encapsulation mechanism (KEM)

Current Deployment Diffie-Hellman key exchange, the RSA cryptosystem, and elliptic
curve cryptosystems



NIST Post-Quantum Crypto (PQC) “Competition”

The SHIP HAS SAILED! – Dustin Moody, NIST

Feb 2016 – NIST report on PQC (NISTIR 8105)

Dec 2016 – Submission requirements and evaluation criteria

Nov 2017 – Deadline for Submissions

Dec 2017 – Round-1-submissions

Apr 2018 – The 1st NIST PQC standardization conference



NIST Post-Quantum Crypto (PQC) “Competition”

The SHIP HAS SAILED! – Dustin Moody, NIST

Feb 2016 – NIST report on PQC (NISTIR 8105)

Dec 2016 – Submission requirements and evaluation criteria

Nov 2017 – Deadline for Submissions

Dec 2017 – Round-1-submissions

Apr 2018 – The 1st NIST PQC standardization conference



Key Encapsulation Mechanism (KEM)

Among the 69 Round-1 submissions including PKE, DS and KEM, there are 35
proposals for IND-CCA-secure KEM constructions.

Generic transformation (ROM) [Den03,HHK17] (25/35)

CPA-secure PKE ⇒ CCA-secure KEM

1 Fujisaki-Okamoto (FO) transformations: FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and
QFO⊥m

2 Modular FO transformations: U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m
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Quantum random oracle model

Generic constructions in the ROM have gathered renewed interest in
post-quantum setting, where adversaries are equipped with a quantum computer.

In the real world, quantum adversary can execute hash functions (the instantiation
of RO) on an arbitrary superposition of inputs.

Therefore, for fully evaluating the post-quantum security, the analysis in the
quantum random oracle model (QROM), introduced by [BDF+11], is crucial.

Accordingly, there has been an increased interest in analyzing post-quantum
security of classical cryptosystems in the ROM, see [BDF+11, Zha12, DFG13,
Son14, Unr15, TU16, HRS16, HHK17, Unr17, KLS18, SXY18].



Generic constructions in the QROM

Generally, QROM is quite difficult to deal with, since many proof techniques in the
ROM including adaptive programmability or extractability have no analog in the
QROM [BDF+11].

FO transformations: FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m

Modular FO transformations: U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m

The QROM proofs in [HHK17]

1 require an additional length-preserving hash

2 suffer highly non-tight security reductions
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Motivation

We revisit the security of FO transformations and modular FO transformations in the
QROM with the goal of

1 removing the additional hash

2 making the QROM security reductions tighter



Our results

FO transformations from standard security assumptions

Transformation
Underlying

security
Security
bound

Additional
hash

Perfectly
correct?

QFO�⊥m and QFO⊥m [HHK17] OW-CPA q
√

q2δ + q
√
ε Y N

FO′�
⊥
m [SXY18] IND-CPA q

√
ε N Y

FO�⊥ and FO�⊥m Our work OW-CPA q
√
δ + q

√
ε N N



Our results

Modular FO transformations from non-standard security assumptions

Transformation
Underlying

security
Security
bound

Additional
hash

DPKE
Perfectly
correct?

QU⊥m [HHK17] OW-PCA q
√
ε Y N N

QU�⊥m [HHK17] OW-PCA q
√
ε Y N N

U�⊥m [SXY18] DS ε N Y Y

U�⊥ Our work OW-qPCA q
√
ε N N N

U⊥ Our work OW-qPVCA q
√
ε N N N

U�⊥m Our work OW-CPA q
√
δ + q

√
ε N Y N

U�⊥m Our work DS q
√
δ + ε N Y N

U⊥m Our work OW-VA q
√
δ + q

√
ε N Y N



List of NIST KEM submissions

List of KEM submissions based on (modular) FO transformations

Proposals Transformations
Correctness

error
DPKE?

QROM
consideration?

CRYSTALS-Kyber FO�⊥ Y N Y

EMBLEM and R.EMBLEM QFO⊥ Y N Y

FrodoKEM QFO�⊥ Y N Y

KINDI QFO�⊥m Y N Y

LAC FO�⊥ Y N N

Lepton QFO⊥ Y N Y

LIMA FO⊥m N N Y

Lizard QFO�⊥ Y N Y

NewHope QFO�⊥ Y N Y

NTRU-HRSS-KEM QFO⊥m N N Y
Odd Manhattan U⊥m N N N

OKCN-AKCN-CNKE QFO�⊥ Y N Y

Round2 QFO�⊥ Y N Y



List of NIST KEM submissions

List of KEM submissions based on (modular) FO transformations

Proposals Transformations
Correctness

error
DPKE?

QROM
consideration?

SABER FO�⊥ Y N Y

ThreeBears FO⊥m Y N Y

Titanium QFO�⊥ Y N Y

BIG QUAKE QFO⊥ N N Y

Classic McEliece U�⊥ N Y Y

DAGS QFO⊥m N N Y

HQC QFO⊥ Y N Y

LEDAkem U�⊥m Y Y N

LOCKER QFO⊥ Y N Y

QC-MDPC QFO⊥m Y N Y

RQC QFO⊥ N N Y

SIKE FO�⊥ N N N



The application of our results

1 16 KEM constructions including FrodoKEM etc., can be simplified by cutting off
the additional hash and improved in performance with respect to speed and sizes.

2 Provide a solid post-quantum security guarantee for LAC and SIKE without any
additional ciphertext overhead.

3 Modular QROM security analyses not only provide post-quantum security
guarantees for Odd Manhattan, Classic McEliece and LEDAkem, but also can help
to obtain a variety of combined transformations with different requirements and
properties.
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Generic Construction FO�⊥

Gen′

1 : (pk , sk)← Gen

2 : s
$←M

3 : sk ′ := (sk , s)

4 : return (pk, sk ′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk ,m;G (m))

3 : K := H(m, c)

4 : return (K , c)

Decaps(sk ′, c)

1 : Parse sk ′ = (sk , s)

2 : m′ := Dec(sk , c)

3 : if Enc(pk ,m′;G (m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Figure: IND-CCA-secure KEM-I=FO�⊥[PKE,G ,H]



Theorem 3.1

Theorem 3.1 (PKE OW-CPA
QROM⇒ KEM-I IND-CCA).

If PKE is δ-correct, for any IND-CCA B against KEM-I, issuing at most qD queries to
the decapsulation oracle Decaps, at most qG queries to the random oracle G and at
most qH queries to the random oracle H, there exists a OW-CPA adversary A against
PKE such that

AdvIND-CCA
KEM-I (B) ≤ 2qH

1√
|M|

+ 4qG
√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE (A)

and the running time of A is about that of B.



Proof Skeleton of Theorem 3.1

A(1λ, pk, c)

G

H

Decaps

Challenge

� BG ,H,Decaps(pk, c∗, k∗b)



Main Techniques

Removing the additional hash

In the security proof of FO in the ROM, a RO-query list is used to simulate the
decryption oracle.

In the QROM, such a RO-query list does not exist due to the fact that there is no
way to learn the actual content of adversarial RO queries.

Targhi and Unruh [TU16] circumvented this issue by adding an additional
length-preserving hash to the ciphertext.

When considering the KEM version of FO, [HHK17] followed the Targhi-Unruh
technique to simulate the decapsulation oracle.
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Main Techniques

Removing the additional hash
We use a novel method to simulate the decapsulation oracle by associating the RO H
(KDF) with a secret RO H ′ by

H = H ′ ◦ g

such that

1 g is indistinguishable from an injective function.

2 H ′(·) = Decaps(sk , ·)

In this way, we circumvent the decryption computation. Thereby, there is no need to
read the content of adversarial RO queries!
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Main Techniques

Tighten the security bound

In [HHK17], OW-CPA PKE ⇒ OW-PCA PKE′ ⇒ IND-CCA KEM.

Two instances of the OW2H lemma are required, and lead to quartic security loss.

We choose to directly reduce OW-CPA PKE ⇒ IND-CCA KEM.

There will be an obstacle for simulator to keep guarantee the consistency of RO
and the decapsulation oracle.

We overcome this by developing the OW2H lemma to the case with redundant
oracle.
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Conclusion

1 We present QROM security reductions for two widely used generic transformations
without suffering any ciphertext overhead, with tighter security reduction.

2 Our results can directly apply to NIST Round-1 KEM submissions, and simplify
the constructions.

3 Modular security reductions can help to obtain a variety of combined
transformations with different requirements and properties.

4 The new technique for proving quantum security will likely be a common method
of proving quantum security for certain types of schemes.



Open Problem

1 Tightness: Whether can one develop a novel proof technique to obtain a tight
reduction in the QROM for FO�⊥ and FO�⊥m with the standard IND-CPA security
assumption of the underlying PKE?

2 Explicit Rejection: How can we prove the QROM security of the transformations
FO�⊥ and FO�⊥m with explicit rejection?
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Thanks for your attention!



Cryptographic Primitives

Definition 4.1 (Public-key encryption).

A public-key encryption scheme PKE = (Gen,Enc ,Dec)

Gen(1λ)→ (pk, sk)

Enc(pk ,m; r)→ c

Dec(sk , c)→ m

Definition 4.2 (Key Encapsulation).

A key encapsulation mechanism KEM consists of three algorithms Gen, Encaps and
Decaps.

Gen(1λ)→ (pk, sk)

Encaps(pk)→ (K , c)

Decaps(sk , c)→ K
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Cryptographic Primitives

Definition 4.3 (Correctness [HHK17]).

A PKE is δ-correct if E [max
m∈M

Pr[Dec(sk , c) 6= m : c ← Enc(pk,m)]] ≤ δ, where the

expectation is taken over (pk, sk)← Gen.

Game OW-CPA

1 : (pk , sk)← Gen

2 : m∗
$←M

3 : c∗ ← Enc(pk,m∗)

4 : m′ ← A(pk, c∗)

5 : return m′ =?m∗

Figure: Game OW-CPA for PKE.
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Cryptographic Primitives

Game IND-CCA

1 : (pk , sk)← Gen

2 : b
$← {0, 1}

3 : (K∗0 , c
∗)← Encaps(pk)

4 : K∗1
$← K

5 : b′ ← ADecaps(pk, c∗,K∗b )

6 : return b′ =?b

Decaps(sk , c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk , c)

Figure: IND-CCA game for KEM.
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