Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly

 $Qingju \ Wang^1 \ \ Yonglin \ Hao^2 \ \ Yosuke \ Todo^3 \ \ Chaoyun \ Li^4 \ \ Takanori \ Isobe^5 \ \ Willi \ Meier^6$

¹SnT, University of Luxembourg, LU
 ²State Key Laboratory of Cryptology, Beijing, CN
 ³NTT Secure Platform Laboratories, JP
 ⁴imec-COSIC, KU Leuven, BE
 ⁵University of Hyogo, JP
 ⁶FHNW, CH

August 20, 2018

1 Introduction

- 2 Motivations: TodoIHM17 and Its Limitations
- 3 Our Approach
- 4 Applications
- 5 Conclusions and Future Works

Outline

1 Introduction

- Stream Ciphers
- Cube Attacks
- 2 Motivations: TodoIHM17 and Its Limitations
- 3 Our Approach
- 4 Applications
- 5 Conclusions and Future Works

Why Stream Ciphers?

- Fast in software
 RC4, Chacha
- Efficient in hardware
 - Grain, Trivium
- Low multiplications
 - Trivium, Kreyvium, FLIP, Rasta
- Used as authenticated encryptions
 Acorn

Introduction

Stream Ciphers

Stream Ciphers

- *n*-bit secret variables (key) $\vec{x} = (x_1, x_2, \cdots, x_n)$
- *m*-bit public variables (iv) $\vec{v} = (v_1, v_2, \cdots, v_m)$
- $s^{i+1} = Upd(s^i)$, $0 \le i \le r 1$, where $s^0 = (\vec{x}, \vec{v})$.
- z is the first bit of the key stream.

$$z = f(\vec{x}, \vec{v})$$
$$= \sum_{\vec{u} \in F_2^m} \alpha_{\vec{u}}^f \vec{v}^{\vec{u}},$$

where $\vec{v}^{\vec{u}} = \prod_{i=1}^m v_i^{u_i}$

Improved Division Property Based Cube Attacks

- $I = \{i_1, i_2, \cdots i_{|I|}\}$ is the indices set of active bits of iv.
- C_I is the set of all $2^{|I|}$ values of v_i where $i \in I$.
- $z = f(\vec{x}, \vec{v}) = t_I \cdot p_I(\vec{x}, \vec{v}) + q_I(\vec{x}, \vec{v}),$ q_I has at least one term in t_I missing.
- $\bigoplus_{v \in C_I} z = p_I(\vec{x}, \vec{v})$ is called superpoly of C_I .

- $I = \{i_1, i_2, \cdots i_{|I|}\}$ is the indices set of active bits of iv.
- C_I is the set of all $2^{|I|}$ values of v_i where $i \in I$.
- $z = f(\vec{x}, \vec{v}) = t_I \cdot p_I(\vec{x}, \vec{v}) + q_I(\vec{x}, \vec{v}),$ q_I has at least one term in t_I missing.
- $\bigoplus_{v \in C_I} z = p_I(\vec{x}, \vec{v})$ is called superpoly of C_I .

• Attackers can recover secret information of \vec{x} by analyzing p_I .

- $I = \{i_1, i_2, \cdots i_{|I|}\}$ is the indices set of active bits of iv.
- C_I is the set of all $2^{|I|}$ values of v_i where $i \in I$.
- $z = f(\vec{x}, \vec{v}) = t_I \cdot p_I(\vec{x}, \vec{v}) + q_I(\vec{x}, \vec{v}),$ q_I has at least one term in t_I missing.
- $\bigoplus_{v \in C_I} z = p_I(\vec{x}, \vec{v})$ is called superpoly of C_I .

- Attackers can recover secret information of \vec{x} by analyzing p_I .
- We cannot decompose f in real since stream ciphers are complicated.

Experimental Approach for Classical Cube Attacks

- Stream cipher is regarded as a black box.
- How to recover the ANF of $p_I(\vec{x}, \vec{v})$:
 - **1** Compute $\bigoplus_{\vec{v} \in C_l} f(\vec{x}, \vec{v}) = p_l(\vec{x}, \vec{v})$ for a randomly chosen \vec{x} .
 - 2 Linearity tests are executed many times to see whether

$$p_I(\vec{x},\vec{v})\oplus p_I(\vec{x'},\vec{v})=p_I(\vec{x}\oplus\vec{x'},\vec{v}).$$

- 3 If the test is passed, the ANF of the superpoly can be recovered.
- Drawbacks of this approach:

The size of cube is limited to experimental range: \leq 40.

Contributions of TodoIHM17

- Introduce division property to cube attacks for the first time: analyze the ANF of the superpoly.
- The first theoretical attack: exploit very large cubes: e.g. 72 for 832-round Trivium.
- Provide upper bounds to recover the ANF of the superpoly.

Outline

1 Introduction

- 2 Motivations: TodoIHM17 and Its Limitations
 - Division Property and Division Trails
 - Cube Attacks Based on Division Property
 - Limitations of TodolHM17

3 Our Approach

4 Applications

Conclusions and Future Works

(Bit-Based) Division Property, Todo Eurocrypt'15

Let $\mathbb{X} \in \mathbb{F}_2^n$ be a multiset, and $\mathbb{K} = \{\vec{k} | \vec{k} \in \mathbb{F}_2^n\}$. When \mathbb{X} has the division property $\mathcal{D}_{\mathbb{K}}^n$, it fulfills

$$\bigoplus_{\vec{x} \in \mathbb{X}} \vec{x}^{\vec{u}} = \begin{cases} \text{unknown} & \text{if there exist } \vec{k} \in \mathbb{K} \text{ s.t. } \vec{u} \succeq \vec{k}, \\ 0 & \text{otherwise}, \end{cases}$$

where $\vec{u} \succeq \vec{k}$ if $u_i \ge k_i$ for all *i*.

Division Trail, Xiang et al. Asiacrypt'16

Assume the initial division property of a cipher be $\mathbb{K}_0 \triangleq \mathcal{D}_{\mathbb{K}_0}$, and the division property after the *i*-th round function R is $\mathbb{K}_i \triangleq \mathcal{D}_{\mathbb{K}_i}$. We have a trail of r rounds division property propagations

$$\mathbb{K}_0 \xrightarrow{R} \mathbb{K}_1 \xrightarrow{R} \cdots \xrightarrow{R} \mathbb{K}_r.$$

For $(\vec{k_0}, \vec{k_1}, \cdots, \vec{k_r}) \in (\mathbb{K}_0, \mathbb{K}_1, \cdots, \mathbb{K}_r)$, if $\vec{k_i} \to \vec{k_{i+1}}$, for all $0 \le i \le r-1$, then $(\vec{k_0}, \vec{k_1}, \cdots, \vec{k_r})$ is called an *r*-round division trail.

Evaluation of Division Trials

Ask for CP-based solver's help (Xiang et al., Asiacrypt'16)

- \blacksquare Create a MILP model ${\mathcal M}$ for the propagation of division property.
 - MILP, SAT/SMT, constraint programming etc.
 - $\vec{k_0} \xrightarrow{Upd} \cdots \vec{k_i} \xrightarrow{Upd} \vec{k_{i+1}} \xrightarrow{Upd} \cdots \xrightarrow{Upd} \vec{k_r}.$
 - Entries of $\vec{k_0}, \cdots, \vec{k_r}$ are binary variables of $\mathcal{M}.var$.
 - $Upd(\cdot)$ is described by some constraints $\mathcal{M}.con$.
- Solvers can efficiently evaluate the feasibility of division trails.
- If $\vec{k}_0 \rightarrow \vec{e_j}$ is infeasible, the *j*th bit is balanced (the sum is always 0).

Evaluate ANF Coefficients of Superpoly by Division Property

- Check division trail $(\vec{e_j}, \vec{k}) \xrightarrow{?} 1$, where $(\vec{e_j}, \vec{k}) \in F_2^n \times F_2^m$ and $\vec{v}^{\vec{k}} = t_I$.
- If no division trail $(\vec{e_j}, \vec{k}) \rightarrow 1 \Rightarrow x_j$ is not involved in superpoly.

Evaluate ANF Coefficients of Superpoly by Division Property

- Check division trail $(\vec{e_j}, \vec{k}) \xrightarrow{?} 1$, where $(\vec{e_j}, \vec{k}) \in F_2^n \times F_2^m$ and $\vec{v}^{\vec{k}} = t_I$.
- If no division trail $(\vec{e_j}, \vec{k}) \rightarrow 1 \Rightarrow x_j$ is not involved in superpoly.
- By repeating this procedure, all the secret variables of x involved in the superpoly can be determined and denoted as J = {x_{j1}, x_{j2}, · · · , x_{j|J|}}.

Overview of Attack Strategy in TodoIHM17

1 Evaluation phase.

- Construct a random set *I*.
- Determine the key bits J involved in the corresponding superpoly p_I .

This phase is feasible: several hours by using Gurobi.

- 2 Off-line phase.
 - Sum the output over the given cube (C_l) and construct the whole truth table of the superpoly p_l .

This phase is not practical, but time & memory complexity is bounded by $2^{|I|+|J|}$ and $2^{|J|}$.

3 On-line phase.

- Query encryption oracle to attain the exact value of the superpoly.
- Check the precomputed truth table and recover secret variables.

Time & data complexity is $2^{|I|}$.

Limitation 1: Finding Proper \vec{IV} s May Require Multiple Trials In The 2nd Phase.

- Assumptions on the existence of IVs that can guarantee $p_I(\vec{x}, \vec{lV}) \neq 0$ are proposed.
- When |I| + |J| is small, practical experiments can be executed to find a specific IV.
- The rationality of assumptions is hard to be proved, especially when |I| + |J| is close to *n*.

Limitation 1: Finding Proper \vec{IV} s May Require Multiple Trials In The 2nd Phase.

- Assumptions on the existence of IVs that can guarantee $p_I(\vec{x}, \vec{lV}) \neq 0$ are proposed.
- When |I| + |J| is small, practical experiments can be executed to find a specific IV.
- The rationality of assumptions is hard to be proved, especially when |I| + |J| is close to *n*.

We will provide a solution "flag technique" to determine a proper IV in the MILP model before implementing the attack.

Limitation 2: |I| + |J| < n

- After obtaining *J*, the attackers construct the whole truth table for the superpoly in the off-line phase, then the complexity of the off-line phase is about 2^{|*I*|+|*J*|}.
- The restriction of |I| + |J| < n barricades the adversary from exploiting larger cubes or mounting more rounds (where |J| may expand).

Limitation 2: |I| + |J| < n

- After obtaining *J*, the attackers construct the whole truth table for the superpoly in the off-line phase, then the complexity of the off-line phase is about 2^{|*I*|+|*J*|}.
- The restriction of |I| + |J| < n barricades the adversary from exploiting larger cubes or mounting more rounds (where |J| may expand).

- The restriction can be removed if the whole truth table construction can be avoided in the off-line phase.
- We will provide solutions to lower the bound of complexity:
 - Degree evaluation for the superpoly.
 - Terms enumeration for the superpoly.

Outline

1 Introduction

2 Motivations: TodoIHM17 and Its Limitations

3 Our Approach

- Flag Technique in MILP Division Property
- Degree Evaluation for Superpoly
- Terms Enumeration for Superpoly

4 Applications

Conclusions and Future Works

Features cannot be Captured by the Previous MILP Models

• *COPY* + *AND* operation:

$$(s_1, s_2) \rightarrow (s_1, s_2, s_1 \wedge s_2).$$

Division property propagation (previous):

$$(x_1, x_2) \xrightarrow{COPY+AND} (y_1, y_2, a)$$

$$(1,0) \xrightarrow{COPY+AND} \{(0,0,1),(1,0,0)\}$$

Features cannot be Captured by the Previous MILP Models

• *COPY* + *AND* operation:

$$(s_1, s_2) \rightarrow (s_1, s_2, s_1 \wedge s_2).$$

Division property propagation (previous):

$$(x_1, x_2) \xrightarrow{COPY + AND} (y_1, y_2, a)$$
$$(1, 0) \xrightarrow{COPY + AND} \{(0, 0, 1), (1, 0, 0)\}$$

If $s_2 = 0$, then $s_1 \wedge s_2 = 0$ should have division property value a = 0. The following division trail should be disabled

$$(1,0) \xrightarrow{COPY+AND} (0,0,1).$$

Flag Technique

Each division property value x is not only a binary variable of the MILP model

 $\mathcal{M}.var \leftarrow x$

It has an additional flag value

 $x.F \in \{0_c, 1_c, \delta\},\$

where

 0_c : constant 0 bit 1_c : constant 1 bit δ : variable bit

Rules for Flag Value operation: =, \oplus , ×.

• Naturally,
$$1_c = 1_c, 0_c = 0_c, \delta = \delta$$
.

• The \oplus operation follows the rules:

$$\begin{cases} \mathbf{1}_{c} \oplus \mathbf{1}_{c} = \mathbf{0}_{c} \\ \mathbf{0}_{c} \oplus x = x \oplus \mathbf{0}_{c} = x \text{ for arbitrary } x \in \{\mathbf{1}_{c}, \mathbf{0}_{c}, \delta\} \\ \delta \oplus x = x \oplus \delta = \delta \end{cases}$$

• The \times operation follows the rules:

$$\begin{cases} 1_c \times x = x \times 1_c = x \\ 0_c \times x = x \times 0_c = 0_c & \text{for arbitrary } x \in \{1_c, 0_c, \delta\} \\ \delta \times \delta = \delta \end{cases}$$

MILP Model for Operations with Flag: The Example of AND

Let $(a_1, a_2, \ldots, a_m) \xrightarrow{AND} b$ be a division trail of AND. The following inequalities are sufficient to describe the propagation of the division property for and f.

$$\begin{cases} \mathcal{M}.var \leftarrow a_1, a_2, \dots, a_m, b \text{ as binary.} \\ \mathcal{M}.con \leftarrow b \ge a_i \text{ for all } i \in \{1, 2, \dots, m\} \\ b.F = a_1.F \times a_2.F \times \cdots a_m.F \\ \mathcal{M}.con \leftarrow b = 0 \quad \text{if } b.F = 0_c \end{cases}$$

We denote this process as $(\mathcal{M}, b) \leftarrow \operatorname{andf}(\mathcal{M}, a_1, \ldots, a_m)$.

Find Proper IVs to Guarantee Non-constant Superpoly and Determine J

Evaluate J by MILP with Flags for I and $\vec{V} = \text{NULL}$

- 1 $\mathcal{M}.con \leftarrow \sum_{i=1}^{n} x_i = 1$ and assign $x_i.F = \delta$ for all $i \in \{1, \dots, n\}$
- 2 $\mathcal{M}.con \leftarrow v_i = 1$ and assign $v_i.F = \delta$ for all $i \in I$

3
$$\mathcal{M}.con \leftarrow v_i = 0$$
 for all $i \in \{1, 2, \dots, n\} \setminus I$

- **5** Update \mathcal{M} with Upd() and f
- **6** Solve \mathcal{M} and return J.

Find Proper IVs to Guarantee Non-constant Superpoly and Determine J

Evaluate J by MILP with Flags for I and $\vec{V} = \text{NULL}$

1
$$\mathcal{M}.con \leftarrow \sum_{i=1}^{n} x_i = 1$$

and assign $x_i.F = \delta$ for all $i \in \{1, \dots, n\}$

2
$$\mathcal{M}.con \leftarrow v_i = 1$$

and assign $v_i.F = \delta$ for all $i \in I$

3
$$\mathcal{M}.con \leftarrow v_i = 0$$
 for all $i \in \{1, 2, \ldots, n\} \setminus I$

 $v_i.F = \delta, \text{ for all } i \in \{1, 2, \dots, m\} \setminus I$

- **5** Update \mathcal{M} with Upd() and f
- **6** Solve \mathcal{M} and return J.

Evaluate J with I and some random specific assignments to the non-cube IVs until the same J is found.

$$v_i.F = \begin{cases} 1_c & \text{if } I\vec{V}[i] = 1\\ 0_c & \text{if } I\vec{V}[i] = 0 \end{cases}$$

Degree Evaluation for Superpoly

Degree Evaluation for Superpoly

- Check division trail $(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$, where $\vec{x}^{\vec{k}_{\Lambda}} = x_{\Lambda}$ and $\vec{v}^{\vec{k}} = t_I$.
- No division trail $\Rightarrow \vec{x}_{\Lambda} = x_{j_1}x_{j_2}\cdots x_{j_d}$ is not involved in superpoly.

Degree Evaluation for Superpoly

Degree Evaluation for Superpoly

- Check division trail $(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$, where $\vec{x}^{\vec{k}_{\Lambda}} = x_{\Lambda}$ and $\vec{v}^{\vec{k}} = t_I$.
- No division trail $\Rightarrow \vec{x}_{\Lambda} = x_{j_1} x_{j_2} \cdots x_{j_d}$ is not involved in superpoly.

For all $\Lambda \subseteq \{1, 2, \dots, n\}$ of size d + 1, evaluate division trail $(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$. If not, the degree of the superpoly is bounded by d.

Wang, Hao, Todo, Li, Isobe, Meier Improved Division Property Based Cube Attacks

• Check division trail
$$(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$$
, where $\vec{x}^{\vec{k}_{\Lambda}} = x_{\Lambda}$ and $\vec{v}^{\vec{k}} = t_{I}$.

• No division trail
$$\Rightarrow \vec{x}_{\Lambda} = x_{j_1}x_{j_2}\cdots x_{j_d}$$
 is not involved in superpoly.

For all $\Lambda \subseteq \{1, 2, \dots, n\}$ of size d + 1, evaluate division trail $(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$. If not, degree of the superpoly is bounded by d.

• Check division trail
$$(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$$
, where $\vec{x}^{\vec{k}_{\Lambda}} = x_{\Lambda}$ and $\vec{v}^{\vec{k}} = t_{I}$.

No division trail $\Rightarrow \vec{x}_{\Lambda} = x_{j_1} x_{j_2} \cdots x_{j_d}$ is not involved in superpoly.

For all $\Lambda \subseteq \{1, 2, \dots, n\}$ of size d + 1, evaluate division trail $(\vec{k}_{\Lambda}, \vec{k}) \xrightarrow{?} 1$. If not, degree of the superpoly is bounded by d.

MILP description

$$\mathcal{M}.var \leftarrow x_1, \cdots, x_n$$
$$\mathcal{M}.var \leftarrow v_1, \cdots, v_m$$
$$\mathcal{M}.var \leftarrow z$$
$$\mathcal{M}.con \leftarrow v_i = \begin{cases} 1, \text{ if } i \in I \\ 0, \text{ otherwise} \end{cases}$$
$$\mathcal{M}.con \leftarrow x_i = \begin{cases} 1, \text{ if } i \in \Lambda \\ 0, \text{ otherwise} \end{cases}$$
$$\mathcal{M}.con \leftarrow Upd()$$
$$\mathcal{M}.con \leftarrow z = 1$$
$$\mathcal{M}.obj \leftarrow max \sum_{i=1}^n x_i$$
$$\mathcal{M} \text{ is feasible and } \mathcal{M}.obj = d$$

Our Attack Strategy: 1st Phase – Evaluation phase.

- Construct a random set *I*.
- Determine the key bits *J* involved in the corresponding superpoly.
- Use Flag Technique to find a proper IV.
- Use Degree Evaluation to determine *d*.

Our Attack Strategy: 2nd Phase - Off-line Phase.

• There are at most $\binom{|J|}{\leq d} = \sum_{i=0}^{d} \binom{|J|}{i}$ monomials have non-zero coefficients s.t.

$$p_I(x, IV) = \bigoplus_{\vec{u} \in F_2^{|J|}, hw(\vec{u}) \le d} \alpha_{\vec{u}} \vec{x}^{\vec{u}}$$

Pick $\binom{|J|}{\leq d}$ different \vec{x} 's and sum over the cube C_I to generate a linear system of the coefficients $\alpha_{\vec{u}}$ and store the solution.

The time complexity of this phase is $2^{|I|} \times {|J| \choose \leq d}$ ($\leftarrow 2^{|I|} \times 2^{|J|}$ TodolHM17). The memory complexity is ${|J| \choose \leq d}$ ($\leftarrow 2^{|J|}$ TodolHM17).

Our Attack Strategy: 3rd Phase – Online Phase

1 Access encryption oracle under chosen iv setting and compute the exact value of the superpoly with a cube summation:

$$\lambda = p_I(\vec{x}, \vec{v}) = \bigoplus_{\vec{v} \in C_I} f(\vec{x}, \vec{v}).$$

2 With the knowledge of coefficient $\alpha_{\vec{u}}$'s, reconstruct the truth table T: If $T[i] = \lambda$, then *i* is a candidate value of $(x_{j_1}, x_{j_2}, \dots, x_{j_{|J|}})$. Otherwise, *i* is a wrong guess.

The data complexity is $2^{|I|}$ (same as TodoIHM). The time complexity is $2^{|I|} + 2^{|J|} \times {|J| \choose < d}$ ($2^{|I|}$ in TodoIHM17).

The total time complexity of the attack

$$\max\left\{2^{|I|} \times \binom{|J|}{\leq d}, 2^{|I|} + 2^{|J|} \times \binom{|J|}{\leq d}\right\}.$$

Terms Enumeration for Superpoly

- Based on the MILP model for Degree Evaluation.
- Update the model by adding the constraint: $\mathcal{M}.con \leftarrow \sum_{i \in \Lambda} x_i = t \text{ for } 1 \le t \le d-1.$
- Obtain set J_t $(1 \le t \le d)$: all possible terms of degree t involved in the superpoly

 $2^{|I|} \times \left(\sum_{t=0}^{d} |J_t|\right) \le 2^{|I|} \times {|J| \choose \le d}.$

Outline

1 Introduction

- 2 Motivations: TodoIHM17 and Its Limitations
- 3 Our Approach

4 Applications

5 Conclusions and Future Works

Applications

Trivium

Improved Division Property Based Cube Attacks

Application to Trivium: Experimental Verification

Active IVs	Involved keys	Round	Complexity
$I = \{1, 11, 21, 31, 41, 51, 61, 71\}$	$J = \{23, 24, 25, 66, 67\}$	591	2^{13}
I = 8	J = 5		

- d = 3, $IV = 0 \times cc 2e487b$, $0 \times 78f99a93$, $0 \times beae p_1(\vec{x}, \vec{v}) = x_{66}(x_{23}x_{24} \oplus x_{25} \oplus x_{67} \oplus 1)$
- d = 2, $IV = 0 \times 61 fbe5 da$, $0 \times 19 f 5972c$, $0 \times 65c1$ $p_I(\vec{x}, \vec{v}) = x_{23} x_{24} \oplus x_{25} \oplus x_{67} \oplus 1$
- d = 0, $IV = 0 \times 5b942db1$, $0 \times 83ce1016$, $0 \times 6ce$ $p_I(\vec{x}, \vec{v}) = 0$

Application to Trivium: Theoretical Key Recoveries

Active IVs	d	Involved keys	Round	Complexity
$I = \{1, 2,, 65, 67, 69,, 79\}$	3	$J = \{34, 58, 59, 60, 61\}$	832	2 ^{76.7} (Degree)
I = 72		$ J = 5, J_2 = 5, J_3 = 1$		2 ^{75.58} (Term)
$I = \{1, 2,, 67, 69, 71,, 79\}$	3	$J = \{49, 58, 60, 74, 75, 76\}$	833	2 ⁷⁹ (Degree)
<i>I</i> = 73		$ J = 7, J_2 = 5, J_3 = 1$		2 ^{76.9} (Term)
$I = \{1, \dots, 33, 35, \dots, 46, 48, \dots, 80\}$	1	$J= \{61\}$	839	2 ⁷⁹
I = 78		J =1		
IV[47] = 1				

Summary of Our Improved Results

Ciphers	Round	Complexity	Source
Trivium	832	277	TodolHM17
	839	2 ⁷⁹	Ours
Kreyvium	872	2 ¹²⁴	TodolHM17
	891	$2^{120.73}$	Ours
Grain-128a	183	2 ¹⁰⁸	TodolHM17
	184	$2^{109.61}$	Ours
Acorn	704	2 ¹²²	TodolHM17
	750	$2^{120.92}$	Ours

Outline

1 Introduction

- 2 Motivations: TodoIHM17 and Its Limitations
- 3 Our Approach
- 4 Applications

5 Conclusions and Future Works

Conclusions

- Division property based cube attack is an effective tool for conducting partial key recoveries on stream ciphers.
- We exploit algebraic structures of the superpoly: upper bound degree, non-zero coefficients of ANF.

Conclusions

- Division property based cube attack is an effective tool for conducting partial key recoveries on stream ciphers.
- We exploit algebraic structures of the superpoly: upper bound degree, non-zero coefficients of ANF.
- Future works
 - Other targets for launching division property based cube attacks (block ciphers?).
 - Further modifying the MILP modeling is also meaningful.
 - Links among division property based cube attack with other cube attack variants (dynamic, correlation etc.)

Thanks