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Background

Motivation is Long-term security for lattice-based crypto.
* NIST will publish PQ standard draft around 2025 and standardized
scheme(s) will be used for several decades

* Need to assess performance of core attacking algorithms for setting
parameters

* Majority of candidates are lattice-based.
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Two-sided estimation for attacks cost
Limit of algorithm efﬁciency< Attack Cost < Algorithm efficiency at now

Limit of computing power Computing power at now

* Lots of efforts have been made to find upper bounds
e How about lower bounds?

Algorithms since 70-80’s: ..«-"f"
ENUM, BKZ, Sieve, hybrids, == - T et
et Top attacker can usé
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Lower bounds
Limit of algorithm efﬁuencyS Attack Cost

Limit of computing power

* Proving limit of efficiency of any attacking algorithm is very useful
for crypto, though it is extremely hard problem (e.g. P#NP)

» Efforts to find lower bounds for major algorithms
e Sieve: 0(29222") in classical and 0(2°-2°" ) in quantum
(heuristic)
* Pruned ENUM: non-trivial lower bound open
We have solved this problem
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Technical result
* Lower bounds for cost of pruned lattice enumeration[GNR@EC10]

used to solve SVP/BDD and related hard lattice problems

Pros * Easy to compute (<10 ms in practice)
* Meaningful: close to upper bounds

* (Can also be applied to quantum enumeration [A.-Nguyen-
Shen@AC18 and ePrint 2018/546]

Cons and Future work
- Non trivial to adapt to other algorithms such as

discrete pruning ENUM, Sieve, etc.



Applications

* Comparing our lower bound vs sieve lower bound to solve SVP-3

e State-of-the-art: current algorithms
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* Conservative setting: anticipating progress in lattice reduction
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* In quantum setting, the lower bound used in several NIST
submissions is not as conservative as previously believed
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ENUM: Lattice vector enumeration

* A core subroutine of BKZ-type lattice algorithms
e G@Given a basis B=(bs,...,bn) of lattice L, enumerate short lattice points

Depth-first search of a tree depending on the input basis

.. —Q Leaves at depth n
correspond to short vecs.

o<

root

Huge speed-up with pruned ENUM [SH@EC95,GNR@EC10]:
tradeoff with success probability.
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Gaussian heuristic assumption
* For a lattice L and a “normal” shaped SSR", we have

i1

* This approximates # nodes by the volume of searching area at each
depth

root




Pruned ENUM and cost estimation 3/6

. Under GH, cost of tree enumeration

— Z(#nodes at depth k) =

k=1

D

- VO](Ok)

vol(7m, 1 (B))

* Ckisthe cylinder-intersection defined by enumeration parameters

O<Ri<R2=<...<Rn [GNR@EClO]
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* The cost of pruned ENUM is the minimum of optimization problem

Given: basis B=(bs1,...,bn); target probability po; radius Rn
Find: minimum Cost(R4,...,Rn)
Subject to: Prob(Rzy,...,Rn)=po

where
. vol(Cy)
Cost(R1,...,Rn) 2 Z vol(7m,_x(B))

vol(C),)

Prob(R1,...,Rn)&
( K vol(L)

Note: we have to optimize n-variables Ri,...,Rn
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Pros of GNR pruned ENUM: speedups

Cost of pruned enumeration with success probability p is much
smaller than p-(Cost of enumeration without pruning)
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Cons of GNR pruned ENUM

1: No efficient method to find optimal radii: many parameters to opt.
- We propose a variant of the cross-entropy method
- Graph of (Ry,...,Rn) looks good, but no theoretical guarantee of
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2: Non-trivial cost bounds for arbitrary po unknown
- Naive lower bound is useless
- We prove the first lower bound result for Cost(R4,...,Rn)
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Isoperimetry: our key tool from math.

[Isoperimetry] If an n-dim. object C & Balln(1) has an orthogonal
projection onto RK whose volume is bounded by M,

Then, for the ball-cylinder intersection C’:={(a:1q, o) €B,(1) 3 a2 < 'rQ}
vol(C)<vol(C’)
~where ris taken so that the projection volume =M.

Example: k=2 and n=3
@ . vol(C)<vol(C’)

| .
Projection is a bar [

C|rcle of equivalent area to bar
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Observation on pruned ENUM
 Under GH,

A vol(Ch) d Prob(Ri,...,Rn)2 vol(Chn)
COSt(R].; ;Rn) Z VOI 7Tn k(B)) an ( VALY n)_ VOI(L)
* Observation:
Each Ck is the orthogonal projection of Ch C Ball(Rn) Ch

* Isoperimetry implies that
vol(Cn)<vol(Cn’)
where Cn’ is the intersection of ball and cylinder

g
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Analytic formula of the maximum volume

* [soperimetry connects vol(Cn) with vol(Ck):

k n—k
vol(C,,) < vol(Ball-cylinder intersection) = V,,(R,,) - [ (R, /Rp)? (5 1+ > )

\ J

Incomplete beta function

where R, is the radius satisfying Vk(R})=vol(Ck)

* This formula gives a lower bound for vol(Ck) if p=vol(Cn)/vol(L) is
bounded

 The inverse incomplete beta function is implemented by the boost
library
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Advantages in implementation boost
e About 10 lines in C++ with the boost library ce+ Limnr
* Less than 10 ms on a standard desktop computer
e Deterministic algorithm

blkzfloat cost,lcost;

for (int i=iend;i==istart+2;i--) {
bkzfloat 1f;
1f = ibeta inv wrapper<bkzfloat=(0.5%(iend-i+1}), 0.5*(i-istart),prob);
1f = pow(lf,0.5%(iend-1i+1));
Tcost *= radius / c[i]:
bkzfloat localcost = lcost * bkzconstants::vol unit ball(iend-i+1) * 1f;
cost += localcost;

R A RIES

1

return @.5%cost;

In contrast: our optimizing subroutine to find upper bounds is
e About 900 lines in C++, =1-10 seconds to compute
e Qutputis not stable because it uses randomness
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Experiment 1: Tightness of radii
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* Numerical experiments to compare upper vs lower bound (R,’c)2
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Experiment 2: Tightness of # nodes at depth k

Number of nodes
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- Numerical experiments to compare upper vs lower bound
- ENUM with (R=1.1GH, Dim=120, p=10'6) for a BKZ reduced basis
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Lower bounds on randomizing strategy

* [Extreme pruning of GNR10] If we have many random bases
Bi,...,.Bm, do ENUM with tiny probabilities pzi,...,pm

M

e The total cost Z Cost(Basis B;, success prob. = p;) + Time(Randomization)

=1

is much smaller than single ENUM with probability P = Z?ﬁl pi
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Linear lower bound on randomizing strategy

 We proved that for a basis B and radius R, there is a constant C(B,R)
(Cost of ENUM with probability p) = p-C(B,R)
* Also, we have showed

(LHS)

— C(B,R) if p—0

* Gives limitations of randomization even with infinitely many bases:
Cost(Extreme prunmg with global probability 1)

>sz (Bi, R) > C(Buin, R)

where Bmin is the ba5|s achlevmg best lower bound
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Two scenarios for C(Bmin,R)

* A basis achieving C(Bmin,R) gives us the limitation of extreme pruning
and useful for security estimation of lattice crypto
* We give two scenarios for the type of bases that attackers in the
future can efficiently generate
e State-of-the-art scenario:
 HKZis the best basis in practice
e Strong BKZ-type algorithms try to approximate HKZ
* Conservative scenario:
e Approximating Rankin problems can be done efficiently
e Qut of reach today
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Application to hardness of SVP-/3

 Comparing our lower bound vs. sieve lower bound to solve SVP-3
* State-of-the-art scenario: HKZ will be the practical best basis
* Conservative scenario: Rankin basis will be efficiently computable
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* From the graphs for Quantum, a conservative designer needs to
change their parameters



Conclusion

Conclusion

1. Proving lower-bound costs for Gama-Nguyen-Regev’s extreme
pruning
2. First use of isoperimetry to (lattice) cryptography
3. Impact on parameters of lattice crypto
* Provides lower bound costs on solving SVP-B by using extreme
pruning
* For typical dimensions,
- Classical setting: ENUM is slower than Sieve
- Quantum setting: ENUM is faster than Sieve
* Thus, conservative designers need to update parameters
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Open problems

* On [GNR10]’s extreme pruning ENUM
* Tighter upper/lower bounds

* Adapt to other algorithms such as Discrete pruning ENUM, Sieve:
unified lower bounds ?
- Only trivial bound is known for discrete pruning ENUM [AN17]
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Full-version: https://eprint.iacr.org/2018/586



