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Application of NMC

Black-box adversary Smart-card computing Gs(·)

x

Gs(x)

Tampering adversary Smart-card computing Gs(·)

f, x

Gf(s)(x)



Application of NMC

Black-box adversary Smart-card computing Gs(·)

x

Gs(x)

Tampering adversary Smart-card computing Gs(·)

f, x

Gf(s)(x)



Application of NMC

Assuming (Enc,Dec) is a non-malleable code w.r.t. F .

Gs

x

y

ŝ := Enc(s)

Dec(ŝ)Gs(x)

y

x

Original circuit: Gs Compiled circuit: Ĝŝ

s

ŝ

Non-malleability: for any f ∈ F , f(ŝ) is simulatable and independent of s
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NMC for Partial Functions

We allow read/write access to arbitrary subsets of codeword locations, with bounded cardinality.
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Access rate: the fraction of the number of bits (symbols) the attacker is allowed
to access over, the total codeword length.
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Main Goal

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword (high access rate)?



Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives
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Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions
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Construction in the CRS model

(Bits)

z

e ← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk3)
f→ (sk′, sk′′)

If (sk, sk3) 6= (sk′, sk′′), then Pr[sk′3 = sk′′] ≤ negl, otherwise we can recover sk

Thus, if sk 6= sk′ or sk3 6= sk′′, the simulator outputs ⊥, otherwise, security follows by the
authenticity property of the encryption scheme
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Removing the CRS

z

e← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Block size: log(k)

1||index||z[index]

Randomly chosen blocks

0||epart

(Blocks) (Contents)
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Thank you!


