
Non-Malleable Codes for Partial Functions with Manipulation
Detection

Aggelos Kiayias Feng-Hao Liu

Yiannis Tselekounis

Edin. & FAU

CRYPTO 2018

Outline

Introduction to non-malleable codes

Adversarial model, motivation

Results, constructions

Intuition

Encoding schemes

An encoding scheme is a pair of algorithms (Enc,Dec), satisfying correctness:

for any message s, Dec(Enc(s)) = s

Error-correction codes: guarantee correctness in the presence of faults

Encoding schemes

An encoding scheme is a pair of algorithms (Enc,Dec), satisfying correctness:

for any message s, Dec(Enc(s)) = s

Error-correction codes: guarantee correctness in the presence of faults

Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related
to/different from, the original

s c DecEnc f c′
s

s′ (unrelated to s)

⊥

f

Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related
to/different from, the original

s c DecEnc f c′
s

s′ (unrelated to s)

⊥

f

Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related
to/different from, the original

s c DecEnc f c′
s

s′ (unrelated to s)

⊥

f

Non-malleability [DPW10,18]

s c
DecEnc f c′

s′

s′f

Real

Non-malleability [DPW10,18]

s c
DecEnc f c′

s′

s′f

Simulator

Real

Non-malleability [DPW10,18]

s c
DecEnc f c′

s′

s′f

Simulator

Real

f

s′

Ideal

Non-malleability [DPW10,18]

s c
DecEnc f c′

s′

s′f

Simulator

Real

f

s′

Ideal

Real ≈ Ideal

Application of NMC

Black-box adversary Smart-card computing Gs(·)

x

Gs(x)

Tampering adversary Smart-card computing Gs(·)

f, x

Gf(s)(x)

Application of NMC

Black-box adversary Smart-card computing Gs(·)

x

Gs(x)

Tampering adversary Smart-card computing Gs(·)

f, x

Gf(s)(x)

Application of NMC

Assuming (Enc,Dec) is a non-malleable code w.r.t. F .

Gs

x

y

ŝ := Enc(s)

Dec(ŝ)Gs(x)

y

x

Original circuit: Gs Compiled circuit: Ĝŝ

s

ŝ

Non-malleability: for any f ∈ F , f(ŝ) is simulatable and independent of s

Admissible function classes

Non-malleability is impossible against arbitrary tampering function classes

For instance, consider a class containing the function f(c) := Enc(Dec(c) + 1)

Admissible function classes

Non-malleability is impossible against arbitrary tampering function classes

For instance, consider a class containing the function f(c) := Enc(Dec(c) + 1)

Admissible function classes

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12,
AAG+16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM+15a,
AGM+15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits
[BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering
[CKM11,CGM+15], AC0 circuits, bounded-depth decision trees and streaming
adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

This work: Partial functions

Admissible function classes

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12,
AAG+16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM+15a,
AGM+15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits
[BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering
[CKM11,CGM+15], AC0 circuits, bounded-depth decision trees and streaming
adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

This work: Partial functions

NMC for Partial Functions

We allow read/write access to arbitrary subsets of codeword locations, with bounded cardinality.

Basic definitions

Information rate: the ratio of message to codeword, length, as the message
length goes to infinity.

Access rate: the fraction of the number of bits (symbols) the attacker is allowed
to access over, the total codeword length.

Basic definitions

Information rate: the ratio of message to codeword, length, as the message
length goes to infinity.

Access rate: the fraction of the number of bits (symbols) the attacker is allowed
to access over, the total codeword length.

Basic definitions

Information rate: the ratio of message to codeword, length, as the message
length goes to infinity.

Access rate: the fraction of the number of bits (symbols) the attacker is allowed
to access over, the total codeword length.

Main Goal

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword (high access rate)?

Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives

Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives

Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives

Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives

Motivation

Attackers with high access rate could still create correlated codewords

Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications

Constant functions are excluded from the model, thus it potentially allows
stronger primitives

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥}

(MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) ∈ {s,⊥} (MD 6=⇒ MD-NMC)

Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1− 1/Ω(log k)

Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k) (alphabet size: O(log k))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Challenges

Non-malleability for partial functions with concrete access rate 1 is impossible

Impossibility on the information-theoretic setting [CG14]: assuming constant
access/information rate, security is achievable only with constant probability

Challenges

Non-malleability for partial functions with concrete access rate 1 is impossible

Impossibility on the information-theoretic setting [CG14]: assuming constant
access/information rate, security is achievable only with constant probability

Challenges

Non-malleability for partial functions with concrete access rate 1 is impossible

Impossibility on the information-theoretic setting [CG14]: assuming constant
access/information rate, security is achievable only with constant probability

Challenges

Towards an encryption-based solution:

(Bits)

sk

e ← Encryptsk(s)Secret key: sk

Message: s

Security breaks by accessing O(|sk|/|s|) codewords bits

Challenges

Towards an encryption-based solution:

(Bits)

sk

e ← Encryptsk(s)Secret key: sk

Message: s

Security breaks by accessing O(|sk|/|s|) codewords bits

Challenges

Towards an encryption-based solution:

(Bits)

sk

e ← Encryptsk(s)Secret key: sk

Message: s

Security breaks by accessing O(|sk|/|s|) codewords bits

Challenges

Towards an encryption-based solution:

(Bits)

InnerEnc(sk)

e ← Encryptsk(s)Secret key: sk

Message: s

Security breaks by accessing O(|sk|/|s|) codewords bits

Challenges

Towards an encryption-based solution:

(Bits)

sk

InnerEnc(e)← Encryptsk(s)Secret key: sk

Message: s

Challenges

Question: Is it possible to achieve access rate greater than O(|sk|/|c|)?

More generally: Can we achieve access rate greater than what our weakest primitive
sustains?

Challenges

Question: Is it possible to achieve access rate greater than O(|sk|/|c|)?

More generally: Can we achieve access rate greater than what our weakest primitive
sustains?

Challenges

Main observation: the structure of the codeword is fixed and known to the attacker

Idea: hide the structure via randomization

Challenges

Main observation: the structure of the codeword is fixed and known to the attacker

Idea: hide the structure via randomization

Construction in the CRS model

(Bits)

z

e ← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk3)
f→ (sk′, sk′′)

If (sk, sk3) 6= (sk′, sk′′), then Pr[sk′3 = sk′′] ≤ negl, otherwise we can recover sk

Thus, if sk 6= sk′ or sk3 6= sk′′, the simulator outputs ⊥, otherwise, security follows by the
authenticity property of the encryption scheme

Construction in the CRS model

(Bits)

z

e ← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk3)
f→ (sk′, sk′′)

If (sk, sk3) 6= (sk′, sk′′), then Pr[sk′3 = sk′′] ≤ negl, otherwise we can recover sk

Thus, if sk 6= sk′ or sk3 6= sk′′, the simulator outputs ⊥, otherwise, security follows by the
authenticity property of the encryption scheme

Construction in the CRS model

(Bits)

z

e ← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk3)
f→ (sk′, sk′′)

If (sk, sk3) 6= (sk′, sk′′), then Pr[sk′3 = sk′′] ≤ negl, otherwise we can recover sk

Thus, if sk 6= sk′ or sk3 6= sk′′, the simulator outputs ⊥, otherwise, security follows by the
authenticity property of the encryption scheme

Construction in the CRS model

(Bits)

z

e ← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk3)
f→ (sk′, sk′′)

If (sk, sk3) 6= (sk′, sk′′), then Pr[sk′3 = sk′′] ≤ negl, otherwise we can recover sk

Thus, if sk 6= sk′ or sk3 6= sk′′, the simulator outputs ⊥, otherwise, security follows by the
authenticity property of the encryption scheme

Removing the CRS

z

e← AuthEncryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Block size: log(k)

1||index||z[index]

Randomly chosen blocks

0||epart

(Blocks) (Contents)

Conclusions

Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

Constructions: efficient MD-NMC for partial functions

Applications: tamper-resilient cryptography (boolen/aritmetic circuits), secure
communication over adversarial channels (Wire-Tap channels), AONTs

Conclusions

Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

Constructions: efficient MD-NMC for partial functions

Applications: tamper-resilient cryptography (boolen/aritmetic circuits), secure
communication over adversarial channels (Wire-Tap channels), AONTs

Conclusions

Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

Constructions: efficient MD-NMC for partial functions

Applications: tamper-resilient cryptography (boolen/aritmetic circuits), secure
communication over adversarial channels (Wire-Tap channels), AONTs

Thank you!

