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Error-correction codes: guarantee correctness in the presence of faults
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Application of NMC

Assuming (Enc, Dec) is a non-malleable code w.r.t. F.

Original circuit: Gy Compiled circuit: G
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Non-malleability: for any f € F, f(8) is simulatable and independent of s
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Admissible function classes

Non-malleability is impossible against arbitrary tampering function classes

For instance, consider a class containing the function f(c) := Enc(Dec(c) + 1)



Admissible function classes
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Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12,
AAGT16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM™15a,
AGMT15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits
[BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering
[CKM11,CGMT15], ACO circuits, bounded-depth decision trees and streaming
adversaries [BDKM18], small-depth circuits [BDGMT18], and others.
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Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12,
AAGT16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM™15a,
AGMT15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits
[BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering
[CKM11,CGMT15], ACO circuits, bounded-depth decision trees and streaming
adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

This work: Partial functions



NMC for Partial Functions
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We allow read/write access to arbitrary subsets of codeword locations, with bounded cardinality.
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o Information rate: the ratio of message to codeword, length, as the message
length goes to infinity.

@ Access rate: the fraction of the number of bits (symbols) the attacker is allowed
to access over, the total codeword length.
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Main Goal

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword (high access rate)?
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Motivation

Attackers with high access rate could still create correlated codewords

e Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97],
having numerous applications
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Constant functions are excluded from the model, thus it potentially allows
stronger primitives
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Results

e Stronger notion: Non-malleability with manipulation detection (MD-NMC),

Dec(f(c)) € {s,L} (MD =& MD-NMC)

@ Assuming OWF, we construct MD-NMC in the CRS model, with information
rate 1 and access rate 1 — 1/Q(log k)

@ Assuming OWF, we construct MD-NMC in the standard model, with information
rate 1 — 1/Q(log k) and access rate 1 — 1/Q(log k) (alphabet size: O(log k))

@ Our results imply efficient All-Or-Nothing-Transforms under standard assumptions
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Challenges

@ Non-malleability for partial functions with concrete access rate 1 is impossible

e Impossibility on the information-theoretic setting [CG14]: assuming constant
access/information rate, security is achievable only with constant probability
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Challenges

Towards an encryption-based solution:

Message: s
Secret key: sk

e < Encrypt,(s)
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Challenges

Towards an encryption-based solution:

Message: s

Secret key: sk

InnerEnc(e) < Encrypt,;(s)

(Bits) | V000
sk
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Challenges

Question: Is it possible to achieve access rate greater than O(|sk|/|c|)?

More generally: Can we achieve access rate greater than what our weakest primitive
sustains?
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Challenges

Main observation: the structure of the codeword is fixed and known to the attacker

Idea: hide the structure via randomization
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Construction in the CRS model

Message: s

Secret key: sk e & AuthEncrypt,(s)

(Bits)

* 24~ SecretShare (sk|[sk®)

Locations defined by the CRS

@ Due to the shuffling, the attacker learns nothing about sk, sk3. Let (sk, sk®) EN (sk', sk
@ If (sk, sk®) # (sk’, sk”), then Pr[sk’® = sk”] < negl, otherwise we can recover sk

@ Thus, if sk # sk’ or sk® # sk, the simulator outputs L, otherwise, security follows by the
authenticity property of the encryption scheme




Removing the CRS

Message: s
Secret key

. sk

(Blocks) (Contents)
T

Fv 1||index]| z[index]

Randomly chosen blocks

AuthEncrypt(s)

24— SecretShare (sk||sk®)

Block size: log(k)
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Conclusions

e Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

o Constructions: efficient MD-NMC for partial functions

e Applications: tamper-resilient cryptography (boolen/aritmetic circuits), secure
communication over adversarial channels (Wire-Tap channels), AONTs
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