

Non-Malleable Codes for Partial Functions with Manipulation Detection

Aggelos Kiayias Feng-Hao Liu

Yiannis Tselekounis

Edin. & FAU

CRYPTO 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Outline

- Introduction to non-malleable codes
- Adversarial model, motivation
- Results, constructions
- Intuition

Encoding schemes

An encoding scheme is a pair of algorithms (Enc, Dec), satisfying correctness:

for any message $s, \, \mathsf{Dec}(\mathsf{Enc}(s)) = s$

Encoding schemes

An *encoding scheme* is a pair of algorithms (Enc, Dec), satisfying *correctness*:

for any message $s, \, \mathsf{Dec}(\mathsf{Enc}(s)) = s$

Error-correction codes: guarantee correctness in the presence of faults

Non-malleable codes [DPW10,18]

Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related to/different from, the original

Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related to/different from, the original

cEnc c'Dec s- $\rightarrow s'$ |s'|

Real

Real

Real

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application of NMC

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\label{eq:Application} \mbox{Application of NMC}$

Application of NMC

Assuming (Enc, Dec) is a non-malleable code w.r.t. \mathcal{F} .

Non-malleability: for any $f \in \mathcal{F}$, $f(\hat{s})$ is simulatable and independent of s

Non-malleability is impossible against arbitrary tampering function classes

・ロト・日本・ヨト・ヨー うへぐ

Non-malleability is impossible against arbitrary tampering function classes

For instance, consider a class containing the function f(c) := Enc(Dec(c) + 1)

<ロト < 回 > < 三 > < 三 > < 三 > の < @

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12, AAG⁺16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM⁺15a, AGM⁺15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits [BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering [CKM11,CGM⁺15], AC0 circuits, bounded-depth decision trees and streaming adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12, AAG⁺16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM⁺15a, AGM⁺15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits [BDKM16], space-bounded tampering [FHMV17,BDKM18], block-wise tampering [CKM11,CGM⁺15], AC0 circuits, bounded-depth decision trees and streaming adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

This work: Partial functions

NMC for Partial Functions

We allow read/write access to arbitrary subsets of codeword locations, with bounded cardinality.

<ロト < 回 > < 三 > < 三 > < 三 > の < @

Basic definitions

Basic definitions

• Information rate: the ratio of message to codeword, length, as the message length goes to infinity.

Basic definitions

- Information rate: the ratio of message to codeword, length, as the message length goes to infinity.
- Access rate: the fraction of the number of bits (symbols) the attacker is allowed to access over, the total codeword length.

Main Goal

Is it possible to construct efficient (high information rate) non-malleable codes for partial functions, while allowing the attacker to access almost the entire codeword (high access rate)?

• Attackers with high access rate could still create correlated codewords

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications

• Constant functions are excluded from the model, thus it potentially allows stronger primitives

\bullet Stronger notion: Non-malleability with manipulation detection (MD-NMC),

 $\mathsf{Dec}(f(c)) \in \{s, \bot\}$

\bullet Stronger notion: Non-malleability with manipulation detection (MD-NMC),

 $\mathsf{Dec}(f(c)) \in \{s, \bot\} \pmod{\mathsf{MD}} \implies \mathsf{MD}\operatorname{-NMC}$

• Stronger notion: Non-malleability with manipulation detection (MD-NMC),

 $\mathsf{Dec}(f(c)) \in \{s, \bot\} \pmod{\mathsf{MD}} \implies \mathsf{MD}\text{-}\mathsf{NMC}$

• Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate $1-1/\Omega(\log k)$

• Stronger notion: Non-malleability with manipulation detection (MD-NMC),

 $\mathsf{Dec}(f(c)) \in \{s, \bot\} \pmod{\mathsf{MD}} \implies \mathsf{MD}\text{-}\mathsf{NMC}$

- Assuming OWF, we construct $\rm MD-NMC$ in the $\rm CRS$ model, with information rate 1 and access rate $1-1/\Omega(\log k)$
- Assuming OWF, we construct MD-NMC in the standard model, with information rate $1 1/\Omega(\log k)$ and access rate $1 1/\Omega(\log k)$ (alphabet size: $O(\log k)$)

• Stronger notion: Non-malleability with manipulation detection (MD-NMC),

 $\mathsf{Dec}(f(c)) \in \{s, \bot\} \pmod{\mathsf{MD}} \implies \mathsf{MD}\text{-}\mathsf{NMC}$

- Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate $1-1/\Omega(\log k)$
- Assuming OWF, we construct MD-NMC in the standard model, with information rate $1 1/\Omega(\log k)$ and access rate $1 1/\Omega(\log k)$ (alphabet size: $O(\log k)$)
- Our results imply efficient All-Or-Nothing-Transforms under standard assumptions

Challenges

Challenges

• Non-malleability for partial functions with concrete access rate 1 is impossible

- Non-malleability for partial functions with concrete access rate 1 is impossible
- Impossibility on the information-theoretic setting [CG14]: assuming constant access/information rate, security is achievable only with constant probability

Towards an encryption-based solution:

Towards an encryption-based solution:

Towards an encryption-based solution:

Security breaks by accessing O(|sk|/|s|) codewords bits

Towards an encryption-based solution:

Security breaks by accessing O(|sk|/|s|) codewords bits

Towards an encryption-based solution:

Question: Is it possible to achieve access rate greater than O(|sk|/|c|)?

Question: Is it possible to achieve access rate greater than O(|sk|/|c|)?

More generally: Can we achieve access rate greater than what our weakest primitive sustains?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Main observation: the structure of the codeword is fixed and known to the attacker

Main observation: the structure of the codeword is fixed and known to the attacker

Idea: hide the structure via randomization

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Due to the shuffling, the attacker learns nothing about sk, sk^3 . Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$

Locations defined by the CRS

- Due to the shuffling, the attacker learns nothing about sk, sk^3 . Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$
- If $(sk, sk^3) \neq (sk', sk'')$, then $\Pr[sk'^3 = sk''] \leq \text{negl}$, otherwise we can recover sk

Locations defined by the CRS

- Due to the shuffling, the attacker learns nothing about sk, sk^3 . Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$
- If $(sk, sk^3) \neq (sk', sk'')$, then $\Pr[sk'^3 = sk''] \leq \text{negl}$, otherwise we can recover sk
- Thus, if $sk \neq sk'$ or $sk^3 \neq sk''$, the simulator outputs \perp , otherwise, security follows by the authenticity property of the encryption scheme

Removing the CRS

Block size: log(k)

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Conclusions

• Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

Conclusions

• Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

 \bullet Constructions: efficient $\mathrm{MD}\text{-}\mathrm{NMC}$ for partial functions

Conclusions

• Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

- \bullet Constructions: efficient $\mathrm{MD}\text{-}\mathrm{NMC}$ for partial functions
- **Applications**: tamper-resilient cryptography (boolen/aritmetic circuits), secure communication over adversarial channels (Wire-Tap channels), AONTs

Thank you!

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ