Non-Malleable Codes for Partial Functions with Manipulation Detection

Aggelos Kiayias Feng-Hao Liu

Yiannis Tselekounis

Edin. & FAU

CRYPTO 2018
Outline

- Introduction to non-malleable codes
- Adversarial model, motivation
- Results, constructions
- Intuition
An *encoding scheme* is a pair of algorithms (Enc, Dec), satisfying *correctness*:

for any message s, $\text{Dec}(\text{Enc}(s)) = s$
Encoding schemes

An *encoding scheme* is a pair of algorithms \((\text{Enc}, \text{Dec})\), satisfying *correctness*:

\[
\text{for any message } s, \text{ Dec}(\text{Enc}(s)) = s
\]

Error-correction codes: guarantee correctness in the presence of faults
Non-malleable codes [DPW10,18]
Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related to/different from, the original
Non-malleable codes [DPW10,18]

Non-malleability: any modified codeword does not decode to a message related to/different from, the original
Non-malleability $[\text{DPW10,18}]$

\[s \xrightarrow{c} \text{Enc} \xrightarrow{c'} f \xrightarrow{s'} \text{Dec} \]

Real

\[f \quad s' \]
Non-malleability [DPW10,18]
Non-malleability [DPW10,18]
Non-malleability [DPW10,18]
Application of NMC

Black-box adversary

\[x \]

\[G_s(x) \]

Smart-card computing \(G_s(\cdot) \)
Application of NMC

Black-box adversary

\[\begin{align*}
\text{Smart-card computing } G_s(\cdot) \\
G_s(x) & \rightarrow x \\
& \leftarrow G_s(x)
\end{align*} \]

Tampering adversary

\[\begin{align*}
\text{Smart-card computing } G_s(\cdot) \\
G_{f(s)}(x) & \rightarrow f, x \\
& \leftarrow G_{f(s)}(x)
\end{align*} \]
Application of NMC

Assuming \((Enc, Dec)\) is a non-malleable code w.r.t. \(\mathcal{F}\).

Non-malleability: for any \(f \in \mathcal{F}\), \(f(\hat{s})\) is simulatable and independent of \(s\)
Admissible function classes

Non-malleability is impossible against arbitrary tampering function classes

\[f(c) := \text{Enc} (\text{Dec}(c) + 1) \]
Admissible function classes

Non-malleability is impossible against arbitrary tampering function classes

For instance, consider a class containing the function $f(c) := \text{Enc}(\text{Dec}(c) + 1)$
Admissible function classes

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12, AAG+16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM+15a, AGM+15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits [BDKM16], space-bounded tampering [FHMV17, BDKM18], block-wise tampering [CKM11, CGM+15], AC0 circuits, bounded-depth decision trees and streaming adversaries [BDKM18], small-depth circuits [BDGMT18], and others.
Admissible function classes

Proposed function classes: Split-state functions [ADL14, DKO13, ADKO15, LL12, AAG$^+$16, DPW10, KLT16], bit-wise tampering and permutations [DPW10, AGM$^+$15a, AGM$^+$15b], bounded-size function classes [FMVW14], bounded depth/fan-in circuits [BDKM16], space-bounded tampering [FHMV17, BDKM18], block-wise tampering [CKM11, CGM$^+$15], AC0 circuits, bounded-depth decision trees and streaming adversaries [BDKM18], small-depth circuits [BDGMT18], and others.

This work: Partial functions
We allow read/write access to arbitrary subsets of codeword locations, with bounded cardinality.
Basic definitions

- **Information rate**: the ratio of message to codeword, length, as the message length goes to infinity.
- **Access rate**: the fraction of the number of bits (symbols) the attacker is allowed to access over the total codeword length.
Basic definitions

• **Information rate**: the ratio of message to codeword, length, as the message length goes to infinity.
Basic definitions

- **Information rate**: the ratio of message to codeword, length, as the message length goes to infinity.

- **Access rate**: the fraction of the number of bits (symbols) the attacker is allowed to access over, the total codeword length.
Main Goal

Is it possible to construct efficient (high information rate) non-malleable codes for partial functions, while allowing the attacker to access almost the entire codeword (high access rate)?
Motivation

- Attackers with high access rate could still create correlated codewords
Motivation

- Attackers with high access rate could still create correlated codewords

- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
Motivation

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications
Motivation

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications
Motivation

- Attackers with high access rate could still create correlated codewords
- Partial functions comply with existing attacks, e.g., [BDL97, BDL01, BS97]
- The passive analog of the primitive implies All-Or-Nothing-Transforms [Riv97], having numerous applications
- Constant functions are excluded from the model, thus it potentially allows stronger primitives
Results

Stronger notion: Non-malleability with manipulation detection (MD-NMC),
\[\text{Dec}(f(c)) \in \{s, \perp\} \iff \text{MD} \neq \Rightarrow \text{MD-NMC} \]

Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate \(1 - \frac{1}{\Omega(\log k)}\).

Assuming OWF, we construct MD-NMC in the standard model, with information rate \(1 - \frac{1}{\Omega(\log k)}\) and access rate \(1 - \frac{1}{\Omega(\log k)}\) (alphabet size: \(O(\log k)\)).

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions.
Results

- **Stronger notion:** Non-malleability with manipulation detection (MD-NMC),

\[
\text{Dec}(f(c)) \in \{s, \bot\}
\]
Results

- **Stronger notion:** Non-malleability with manipulation detection (MD-NMC),

\[\text{Dec}(f(c)) \in \{s, \perp\} \quad (\text{MD} \nRightarrow \text{MD-NMC}') \]
Results

- **Stronger notion**: Non-malleability with manipulation detection (MD-NMC),

 \[\text{Dec}(f(c)) \in \{s, \bot\} \quad (\text{MD} \nRightarrow \text{MD-NMC'}) \]

- Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate \(1 - 1/\Omega(\log k)\)
Results

- **Stronger notion**: Non-malleability with manipulation detection (MD-NMC),
 \[\text{Dec}(f(c)) \in \{ s, \bot \} \quad (\text{MD} \nRightarrow \text{MD-NMC}) \]

- Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate \(1 - 1/\Omega(\log k) \)

- Assuming OWF, we construct MD-NMC in the standard model, with information rate \(1 - 1/\Omega(\log k) \) and access rate \(1 - 1/\Omega(\log k) \) (alphabet size: \(O(\log k) \))

Our results imply efficient All-Or-Nothing-Transforms under standard assumptions.
Results

- **Stronger notion:** Non-malleability with manipulation detection (MD-NMC),

 \[\text{Dec}(f(c)) \in \{s, \perp\} \quad (\text{MD} \not\Rightarrow \text{MD-NMC}) \]

- Assuming OWF, we construct MD-NMC in the CRS model, with information rate 1 and access rate \(1 - 1/\Omega(\log k)\)

- Assuming OWF, we construct MD-NMC in the standard model, with information rate \(1 - 1/\Omega(\log k)\) and access rate \(1 - 1/\Omega(\log k)\) (alphabet size: \(O(\log k)\))

- Our results imply efficient All-Or-Nothing-Transforms under standard assumptions
Challenges

Non-malleability for partial functions with concrete access rate 1 is impossible

Impossibility on the information-theoretic setting [CG14]: assuming constant
access/information rate, security is achievable only with constant probability
Challenges

- Non-malleability for partial functions with concrete access rate 1 is impossible
Challenges

- Non-malleability for partial functions with concrete access rate 1 is impossible

- **Impossibility on the information-theoretic setting** [CG14]: assuming constant access/information rate, security is achievable only with constant probability
Challenges

Towards an encryption-based solution:
Challenges

Towards an encryption-based solution:

Message: s
Secret key: sk

$e \leftarrow \text{Encrypt}_{sk}(s)$

(Bits)
Towards an encryption-based solution:

Message: s
Secret key: sk

Security breaks by accessing $O(|sk|/|s|)$ codewords bits
Challenges

Towards an encryption-based solution:

Message: s
Secret key: sk

$e \leftarrow \text{Encrypt}_{sk}(s)$

Security breaks by accessing $O(|sk|/|s|)$ codewords bits
Challenges

Towards an encryption-based solution:

Message: s
Secret key: sk

InnerEnc(e) ← Encrypt$_{sk}$(s)
Challenges

Question: Is it possible to achieve access rate greater than $O(|sk|/|c|)$?

More generally: Can we achieve access rate greater than what our weakest primitives sustain?
Challenges

Question: Is it possible to achieve access rate greater than $O(|sk|/|c|)$?

More generally: Can we achieve access rate greater than what our weakest primitive sustains?
Challenges

Main observation: the structure of the codeword is fixed and known to the attacker
Challenges

Main observation: the structure of the codeword is fixed and known to the attacker

Idea: hide the structure via randomization
Construction in the CRS model

Message: s
Secret key: sk

$e \leftarrow \text{AuthEncrypt}_{sk}(s)$

$z \leftarrow \text{SecretShare}(sk||sk^3)$

Locations defined by the CRS

Due to the shuffling, the attacker learns nothing about sk, sk^3. Let $(sk, sk^3) \rightarrow (sk', sk'')$, if $(sk, sk^3) \neq (sk', sk'')$, then $\Pr[sk^3 = sk''] \leq \text{negl}$, otherwise we can recover sk

Thus, if $sk \neq sk'$ or $sk^3 \neq sk''$, the simulator outputs \bot, otherwise, security follows by the authenticity property of the encryption scheme.
Construction in the CRS model

Message: s
Secret key: sk

$e \leftarrow \text{AuthEncrypt}_{sk}(s)$

(Bits)

$z \leftarrow \text{SecretShare}(sk||sk^3)$

Locations defined by the CRS

- Due to the shuffling, the attacker learns nothing about sk, sk^3. Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$
Construction in the CRS model

Message: s
Secret key: sk

$e \leftarrow \text{AuthEncrypt}_{sk}(s)$

(Bits)

$z \leftarrow \text{SecretShare}(sk || sk^3)$

Locations defined by the CRS

- Due to the shuffling, the attacker learns nothing about sk, sk^3. Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$
- If $(sk, sk^3) \neq (sk', sk'')$, then $\Pr[sk'^3 = sk''] \leq \text{negl}$, otherwise we can recover sk
Construction in the CRS model

Message: s
Secret key: sk

\[e \leftarrow \text{AuthEncrypt}_{sk}(s) \]

\[z \leftarrow \text{SecretShare}(sk||sk^3) \]

Locations defined by the CRS

- Due to the shuffling, the attacker learns nothing about sk, sk^3. Let $(sk, sk^3) \xrightarrow{f} (sk', sk'')$
- If $(sk, sk^3) \neq (sk', sk'')$, then $\Pr[sk^3 = sk''] \leq \text{negl}$, otherwise we can recover sk
- Thus, if $sk \neq sk'$ or $sk^3 \neq sk''$, the simulator outputs ⊥, otherwise, security follows by the authenticity property of the encryption scheme
Removing the CRS

Message: \(s \)
Secret key: \(sk \)

\[e \leftarrow \text{AuthEncrypt}_{sk}(s) \]

\[z \leftarrow \text{SecretShare}(sk||sk^3) \]

Randomly chosen blocks

Block size: \(\log(k) \)
Conclusions

- **Stronger notion**: Non-malleable codes with manipulation detection (MD-NMC)
Conclusions

- **Stronger notion**: Non-malleable codes with manipulation detection (MD-NMC)

- **Constructions**: efficient MD-NMC for partial functions
Stronger notion: Non-malleable codes with manipulation detection (MD-NMC)

Constructions: efficient MD-NMC for partial functions

Applications: tamper-resilient cryptography (boolean/arithmetic circuits), secure communication over adversarial channels (Wire-Tap channels), AONTs
Thank you!