Non-Uniform Bounds in the

Random-Permutation, Ideal-Cipher, and Generic-Group Models

> Sandro Coretti New York University

Joint work with:

Yevgeniy Dodis Siyao Guo New York University

Northeastern University

Fine...

Let's see some crypto!

Back to the Future

Quantum Computing

> Multi-Party Computation

SHA-I Mausoleum

Obfuscation

Back to the Future

Quantum Computing

> Multi-Party Computation

SHA-I Mausoleum

Obfuscation

Why not... I wanna see practical things

Back to the Future

Quantum Computing

> Multi-Party Computation

SHA-I Mausoleum

Obfuscation

Why not... I wanna see practical things

Back to the Future

Quantum Computing

> Multi-Party Computation

SHA-I Mausoleum

Obfuscation

Exhibit A: Merkle-Damgard with Davies-Meyer (SHA-2)

Exhibit A: Merkle-Damgard with Davies-Meyer (SHA-2)

Exhibit 75: Sponge Construction (SHA-3)

Exhibit 75: Sponge Construction (SHA-3)

Item E12: Key-Alternating Ciphers (AES)

Item E12: Key-Alternating Ciphers (AES)

Item E12: Key-Alternating Ciphers (AES)

Symmetric Crytpography

Symmetric Crytpography

 π \rightarrow Random Permutation

Symmetric Crytpography

Idealized-Model Methodology

Security in idealized model =

Security in standard model using best possible instantiation

Idealized-Model Methodology

For "natural" applications:

Security in idealized model =

Security in standard model using best possible instantiation

Random permutation $\pi:[N] \to [N]$

Event BAD:

 $\exists j: x_j = x$

Random permutation $\pi:[N] \to [N]$

Event BAD:

$$\exists j: x_j = x$$

$$P[BAD] \le \frac{T}{N}$$

Toy Example: One-Way Permutations

Random permutation $\pi:[N] \to [N]$

Conclusion:

One-Way Permutations secure up to N queries

Event BAD:

$$\exists j: x_j = x$$

$$P[BAD] \le \frac{T}{N}$$

$$x \leftarrow [N]$$

$$y = \pi(x)$$

$$x' \stackrel{?}{=} x$$

q construction queries $\{u_i, v_i\}_{i=1}^q$

q construction queries $\{u_i, v_i\}_{i=1}^q$

T primitive queries $\{x_j, y_j\}_{j=1}^T$

q construction queries $\{u_i, v_i\}_{i=1}^q$

T primitive queries $\{x_j, y_j\}_{j=1}^T$

 $\exists i, j: u_i \oplus k = x_j \lor v_i \oplus k = y_j$

real world

ideal world

q construction queries $\{u_i, v_i\}_{i=1}^q$

T primitive queries $\{x_j, y_j\}_{j=1}^T$

$$\exists i, j: u_i \oplus k = x_j \lor v_i \oplus k = y_j$$

$$P[BAD] \le \frac{qT}{N}$$

Discrete Logarithms

Rule out generic algorithms via analysis in the

Generic Group Model

Discrete Logarithms

Rule out generic algorithms via analysis in the

Generic Group Model

G represented by random injection

$$\sigma: [N] \to [M]$$

Discrete Logarithms

Rule out generic algorithms via analysis in the

Generic Group Model

G represented by random injection

$$\sigma: [N] \rightarrow [M]$$

Group operation oracle:

$$\mathcal{O}: (\sigma(s), \sigma(s')) \mapsto \sigma(s+s')$$

Random injection $\sigma: [N] \rightarrow [M]$

Random injection $\sigma: [N] \rightarrow [M]$

Random injection $\sigma:[N] \to [M]$

Shoup '97 $0, \sigma$ $x \leftarrow [N]$ $y = \sigma(x)$ $x' \stackrel{?}{=} x$

Random injection $\sigma: [N] \rightarrow [M]$

By making queries to 0:

Shoup '97

 ${\mathscr A}$ "generates" degree-l polynomials in X

Random injection $\sigma:[N] \to [M]$

By making queries to 0:

Shoup '97

 ${\mathscr A}$ "generates" degree-l polynomials in X

Event BAD: two polynomials collide at X = x

Random injection $\sigma: [N] \rightarrow [M]$

By making queries to 0:

Shoup '97

 ${\mathscr A}$ "generates" degree-l polynomials in X

Event BAD: two polynomials collide at X = x

$$P[BAD] \le \frac{T^2}{N}$$

Random injection $\sigma: [N] \rightarrow [M]$

I "generates" degree-

Event BAD: two polynom

Conclusion:

Discrete logarithm secure up to birthday bound in GGM.

$$P[BAD] \le \frac{T^2}{N}$$

In practice:

- security parameter fixed
- dedicated attacker may perform precomputation to speed up online attack

In practice:

- security parameter fixed
- dedicated attacker may perform precomputation to speed up online attack

S-bit "advice"

In practice:

- security parameter fixed
- dedicated attacker may perform precomputation to speed up online attack
- models non-uniformity

S-bit "advice"

Hellman '80

Permutation $\pi:[N] \to [N]$

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Advice:
$$z = (x_1, ..., x_S)$$

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Advice:
$$z = (x_1, ..., x_S)$$

$$\begin{array}{c}
y \\
x \leftarrow [N] \\
y = \pi(x)
\end{array}$$

$$x' \stackrel{?}{=} x$$

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Advice:
$$z = (x_1, ..., x_S)$$

Start at y and apply π until hit x_j ,

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Advice:
$$z = (x_1, ..., x_S)$$

Start at y and apply π until hit x_j , start at x_{j-1} and apply π until hit y,

$$x \leftarrow [N]$$

$$y = \pi(x)$$

$$x' \stackrel{?}{=} x$$

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S, store points x_i at distance N/S

Start at y and apply π until hit x_j , start at x_{j-1} and apply π until hit y, x': value just before y

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least S

store

Space complexity: S

Time complexity: T = N/S

Advice:

Total complexity for $S = T = \sqrt{N}$: \sqrt{N}

Start at y and apply π until hit x_j ,

start at x_{j-1} and apply π until hit y,

x': value just before y

y

$$x \leftarrow [N]$$
$$y = \pi(x)$$

$$x' \stackrel{?}{=} x$$

Hellman '80

Permutation $\pi:[N] \to [N]$

For every cycle of length at least 5

store

Space complexity: S

Time complexity: T = N/S

Advice:

Total complexity for $S = T = \sqrt{N}$: \sqrt{N}

Start at y and apply π until hit x_j , start at x_{j-1} and apply π until hit y, x': value just before y

Analysis in RPM: security up to N queries

More Preprocessing Attacks

S: Space

T:Time

Bound Preprocessing Attack Reference

S: Space

	Bound	Preprocessing Attack	Reference
OVVP	T/N	ST/N	Hellman

S: Space

	Bound	Preprocessing Attack	Reference
OVVP	T/N	ST/N	Hellman
Discrete Logarithms	T2/N	ST2/N	Bernstein, Lange; Corrigan-Gibbs, Kogan

S: Space

	Bound	Preprocessing Attack	Reference
OVVP	T/N	ST/N	Hellman
Discrete Logarithms	T2/N	ST2/N	Bernstein, Lange; Corrigan-Gibbs, Kogan
Even Mansour	T2/N	ST2/N	Fouque, Joux, Mavromati

S: Space

Idealized-Model Methodology

For "natural" applications:

Security in idealized model

Security in standard model using best possible instantiation

Idealized-Model Methodology

For "natural" applications:

Security in idealized model

Security in standard model using best possible instantiation

Auxiliary-Input (Al) Model

Unruh '07

Auxiliary-Input (AI) Model

Auxiliary-Input Idealized-Model Methodology

For "natural" applications:

Security in Al idealized model =

Security in **standard model** against preprocessing attacks using best possible instantiation

Auxiliary-Input Idealized-Model Methodology

For "natural" applications:

Security in Al idealized model

Security in **standard model** against preprocessing attacks using best possible instantiation

Toy Example: One-Way Permutations

Random permutation $\pi:[N] \to [N]$

Toy Example: One-Way Permutations

Random permutation $\pi:[N] \to [N]$

Toy Example: One-Way Permutations

Random permutation $\pi:[N] \to [N]$

Conditioned on z, distribution of π may be ugly:

- Distribution of coordinates unclear
- Dependence of coordinates unclear

Security analysis with auxiliary information seems hard...

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Unruh '07	Presampling	Easy	Generic	Loose	Limited

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Unruh '07	Presampling	Easy	Generic	Loose	Limited
Dodis, Guo, Katz '17	Compression	Hard	OWF, PRG, PRF, CRHF, MAC	Tight	No

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Unruh '07	Presampling	Easy	Generic	Loose	Limited
Dodis, Guo, Katz '17	Compression	Hard	OWF, PRG, PRF, CRHF, MAC	Tight	No
C, Dodis, Guo, Steinberger '18		Easy	Generic	Tight	Yes

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Tessaro 'II	Presampling	Easy	Generic	Loose	Limited

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Tessaro 'II	Presampling	Easy	Generic	Loose	Limited
De, Trevisan, Tulsiani '10	Compression	Hard	OWP	Tight	No

Reference	Technique	Difficulty	Applicability	Bounds	Computational
Tessaro 'II	Presampling	Easy	Generic	Loose	Limited
De, Trevisan, Tulsiani '10	Compression	Hard	OWP	Tight	No
This work	Presampling++	Easy	Generic	Tight	Yes

Al and the Generic-Group Model

Al and the Generic-Group Model

Al and the Generic-Group Model

Reference	Technique	Difficulty	Applicability	Bounds
Corrigan-Gibbs, Kogan '18	Compression	Hard	DL, CDH, DDH,	Tight
This work	Presampling++	Easy	Generic	Tight

Presampling Technique

- Analyze constructions in much simpler so-called
 Bit-Fixing (BF) Model
- Use **generic connection** between Al model and BF model to get Al model bound

Bit-Fixing: Random Permutations

 $\pi:[N]\to[N]$

Al-RPM: Leak arbitrary S-bit advice about entire function table

Bit-Fixing: Random Permutations

$$\pi:[N]\to[N]$$

Al-RPM: Leak arbitrary S-bit advice about entire function table

BF-RPM: Prefix arbitrary P coordinates (no collisions)

Bit-Fixing: Ideal Ciphers

 $E: [K] \times [N] \rightarrow [N]$

Al-ICM: Leak arbitrary S-bit advice about entire function table

Bit-Fixing: Ideal Ciphers

 $E: [K] \times [N] \rightarrow [N]$

Al-ICM: Leak arbitrary S-bit advice about entire function table

BF-ICM: Prefix arbitrary P coordinates (no collisions for each key)

Bit-Fixing: Generic Groups

 $\sigma: [N] \rightarrow [M]$

Al-GGM: Leak arbitrary S-bit advice about entire function table of σ

Bit-Fixing: Generic Groups

 $\sigma: [N] \rightarrow [M]$

Al-GGM: Leak arbitrary S-bit advice about entire function table of σ

BF-GGM: Prefix arbitrary P coordinates of σ (no collisions)

Bit-Fixing to Auxiliary Input

Theorem:

Bit-Fixing to Auxiliary Input

Theorem:

 (S, T, ε) -secure

Bit-Fixing to Auxiliary Input

Theorem:

$$(S, T, \varepsilon)$$
-secure \Longrightarrow (S, T, ε') -secure

Theorem:

$$(S, T, \varepsilon)$$
-secure \Longrightarrow (S, T, ε') -secure

where
$$\varepsilon' \leq \varepsilon + \frac{ST}{P}$$

Theorem:

$$(S, T, \varepsilon)$$
-secure \Longrightarrow (S, T, ε') -secure

where
$$\varepsilon' \leq \varepsilon + \frac{ST}{P}$$

Theorem:

$$(S, T, \varepsilon)$$
-secure \Longrightarrow (S, T, ε') -secure

where
$$\varepsilon' \leq \varepsilon + \frac{ST}{P}$$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

q construction queries $\{u_i, v_i\}_{i=1}^q$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

q construction queries

$$\{u_i, v_i\}_{i=1}^q$$

T primitive queries $\{x_j, y_j\}_{j=1}^T$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

q construction queries

$$\{u_i, v_i\}_{i=1}^q$$

T primitive queries

$$\{x_j, y_j\}_{j=1}^T$$

$$\exists i, j: u_i \oplus k = x_j \lor v_i \oplus k = y_j$$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

q construction queries

$$\{u_i, v_i\}_{i=1}^q$$

T primitive queries

$$\{x_j, y_j\}_{j=1}^T$$

$$\exists i, j: u_i \oplus k = x_j \lor v_i \oplus k = y_j$$

$$\exists i, j: u_i \oplus k = \tilde{x}_j \lor v_i \oplus k = \tilde{y}_j$$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

q construction queries

$$\{u_i, v_i\}_{i=1}^q$$

T primitive queries

$$\{x_j, y_j\}_{j=1}^T$$

$$\exists i, j: u_i \oplus k = x_j \lor v_i \oplus k = y_j$$

$$\exists i, j: \ u_i \oplus k = \tilde{x}_j \ \lor \ v_i \oplus k = \tilde{y}_j$$

$$\mathsf{P}[\mathsf{BAD}] \leq \frac{qT}{2^n} + \frac{qP}{2^n}$$

Bound in BF-RPM:

$$\frac{qT}{2^n} + \frac{qP}{2^n}$$

Bound in BF-RPM:

$$\frac{qT}{2^n} + \frac{qP}{2^n}$$

$$\frac{qT}{2^n} + \frac{qP}{2^n} + \frac{ST}{P}$$

Bound in BF-RPM:

$$\frac{qT}{2^n} + \frac{qP}{2^n}$$

$$\frac{qT}{2^n} + \frac{qP}{2^n} + \frac{ST}{P}$$

Bound in BF-RPM:

$$\frac{qT}{2^n} + \frac{qP}{2^n}$$

$$\frac{qT}{2^n} + \left[\frac{qP}{2^n} + \frac{ST}{P}\right] \longrightarrow P \approx \sqrt{\frac{STN}{q}}$$

Bound in BF-RPM:

$$\frac{qT}{2^n} + \frac{qP}{2^n}$$

$$\frac{qT}{2^n} + \left(\frac{qP}{2^n} + \frac{ST}{P}\right) \longrightarrow P \approx \sqrt{\frac{STN}{q}}$$

$$=\frac{qT}{2^n}+\sqrt{\frac{STq}{N}}$$

Random permutation $\pi:[N] \to [N]$

Prefixed random permutation $\pi_L:[N] \to [N]$

Event BAD:

 $\exists j: x_j = x$

Prefixed random permutation $\pi_L: [N] \to [N]$

 $\exists j: x_j = x$

 $\exists \ell: \ \tilde{x}_{\ell} = x$

Prefixed random permutation $\pi_L:[N] \to [N]$

 $\exists j: \quad x_j = x$

 $\exists \ell: \ \tilde{x}_{\ell} = x$

$$P[BAD] \le \frac{T}{N} + \frac{P}{N}$$

Theorem:

$$(S, T, \varepsilon)$$
-secure \Longrightarrow (S, T, ε') -secure

where $\varepsilon' \leq 2\varepsilon$ and $P \approx ST$

For unpredictability applications

Bound in BF-GGM:

$$\frac{T}{N} + \frac{P}{N}$$

$$\longrightarrow$$
 $P \approx ST$

Bound in Al-GGM:

$$\frac{T}{N} + \frac{ST}{N}$$

Bound in Al-GGM (compression proof):

$$\frac{ST}{N}$$

De, Trevisan, Tulsiani '10

Random injection $\sigma:[N] \to [M]$

Prefixed random injection $\sigma_L:[N] \to [M]$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

By making queries to 0:

 ${\mathscr A}$ "generates" degree-l polynomials in X

Event BAD: two polynomials collide at X = x

Prefixed random injection $\sigma_L:[N] \to [M]$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

By making queries to 0:

 ${\mathscr A}$ "generates" degree-l polynomials in X

Event BAD: two polynomials collide at X = x

 $\exists i, j$: some polynomial evaluates to \tilde{x}_j at X = x

Prefixed random injection $\sigma_L:[N] \to [M]$

P prefixed coordinates $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

By making queries to 0:

 ${\mathscr A}$ "generates" degree-l polynomials in X

Event BAD: two polynomials collide at X = x

 $\exists i, j$: some polynomial evaluates to \tilde{x}_j at X = x

$$P[BAD] \le \frac{T^2}{N} + \frac{PT}{N}$$

Bound in BF-GGM:

$$\frac{T^2}{N} + \frac{PT}{N} \longrightarrow P \approx ST$$

Bound in Al-GGM:

$$\frac{T^2}{N} + \frac{ST^2}{N}$$

Bound in BF-GGM:

$$\frac{T^2}{N} + \frac{PT}{N} \longrightarrow P \approx ST$$

Bound in Al-GGM:

$$\frac{T^2}{N} + \frac{ST^2}{N}$$

Bound in Al-GGM (compression proof):

$$\frac{ST^2}{N}$$

Corrigan-Gibbs, Kogan '18

Summary of Bounds

- Basic: OWP, Even-Mansour, ideal cipher as block cipher, Davies-Meyer as a PRF, CRHF based on Davies-Meyer
- Symmetric: Merkle-Damgard with Davies-Meyer and sponges (as CRHF, PRF, MAC), ...
- · Generic group model: DL, CDH, DDH, OM-DL, KEA, ...
- · Computational: Full-domain permutation encryption

Some Future Work

Close gaps:

• EM: bound:
$$\sqrt{\frac{ST^2}{N}}$$
 attack: $\frac{ST^2}{N}$

• DDH: bound:
$$\sqrt{\frac{ST^2}{N}}$$
 attack: $\frac{ST^2}{N}$, $\sqrt{\frac{S}{N}}$

• Tight bounds for other primitives (e.g., KAC)

Thank you!

eprint.iacr.org/2018/226

Proof of Presampling

Göös, Lovett, Meka '16

C, Dodis, Guo, Steinberger '18

Proof of Presampling

Göös, Lovett, Meka '16

C, Dodis, Guo, Steinberger '18

Before leakage: $H_{\infty}(\pi) = \log N!$

Proof of Presampling

$$z=z(\pi)$$

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

Proof of Presampling

 $z = z(\pi)$

Before leakage:

After leakage: $H_{\infty}(\pi)$

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

1. Decompose $\pi' := \pi | z$ into dense sources

C, Dodis, Guo,

Steinberger '18

Proof of Presampling

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi | z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$

C, Dodis, Guo, Steinberger '18

Proof of Presampling

Before leakage:

 $H_{\infty}(\pi) = \log N!$

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi | z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$
 - (b) $\forall Q \subseteq [N] \backslash L$:

C, Dodis, Guo, Steinberger '18

Proof of Presampling

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi | z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$
 - (b) $\forall Q \subseteq [N] \backslash L : H_{\infty}(\pi'_Q)$

C, Dodis, Guo, Steinberger '18

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi | z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$
 - (b) $\forall Q \subseteq [N] \backslash L : H_{\infty}(\pi'_Q) \ge (1 \delta)$.

C, Dodis, Guo,

Steinberger '18

Proof of Presampling

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi \mid z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$

(b)
$$\forall Q \subseteq [N] \backslash L : H_{\infty}(\pi'_{Q}) \ge (1 - \delta) \cdot \log \frac{(N - P)!}{(N - P - |Q|)!}$$

C, Dodis, Guo,

Steinberger '18

Proof of Presampling

Before leakage:

$$H_{\infty}(\pi) = \log N!$$

After leakage:

$$H_{\infty}(\pi | z) = \log N! - S$$

- 1. Decompose $\pi' := \pi \mid z$ into dense sources
 - (a) Fixed on P coordinates $L \subseteq [N]$

(b)
$$\forall Q \subseteq [N] \backslash L : H_{\infty}(\pi'_Q) \ge (1 - \delta) \cdot \log \frac{(N - P)!}{(N - P - |Q|)!}$$

2. Show dense is indistinguishable from uniform

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

T queries

$$\{x_j, y_j\}_{j=1}^T$$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

T queries

P prefixed coordinates

 $\{x_j, y_j\}_{j=1}^T$

 $\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$

Queries: graph starting at $(0^r, IV)$

T queries

 $\{x_j, y_j\}_{j=1}^T$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

Queries: graph starting at $(0^r, IV)$

T queries

 $\{x_j, y_j\}_{j=1}^T$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

Queries: graph starting at $(0^r, IV)$

$$P[BAD] \le \frac{T^2}{2^c} + \frac{TP}{2^c}$$

T queries

 $\{x_j, y_j\}_{j=1}^T$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

Queries: graph starting at $(0^r, IV)$

$$\mathsf{P}[\mathsf{BAD}] \leq \frac{T^2}{2^c} + \frac{TP}{2^c}$$

$$P[COLL \mid BAD] \leq \frac{T^2}{2^r}$$

T queries

$$\{x_j, y_j\}_{j=1}^T$$

P prefixed coordinates

$$\{\tilde{x}_{\ell}, \tilde{y}_{\ell}\}_{\ell=1}^{L}$$

$$P[BAD] \le \frac{T^2}{2^c} + \frac{TP}{2^c}$$

$$P[COLL \mid BAD] \le \frac{T^2}{2^r}$$

