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Summary of Bounds

» Basic: OWE Even-Mansour; ideal cipher as block cipher, Davies-Meyer
as a PRF, CRHF based on Davies-Meyer

* Symmetric: Merkle-Damgard with Davies-Meyer and sponges (as
L PREMAC), ...

* Generic group model: DL, CDH, DDH, OM-DL, KEA, ...

» Computational: Full-domain permutation encryption
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