On Tightly Secure Non-Interactive Key Exchange

Julia Hesse (Technische Universität Darmstadt) Dennis Hofheinz (Karlsruhe Institute of Technology) Lisa Kohl (Karlsruhe Institute of Technology)

TIDC fi Arazi School HERZLIYA of Computer Science * . . .

Non-Interactive Key Exchange (NIKE)

 $\begin{array}{ll} (\mathsf{pk}_1,\mathsf{sk}_1) \leftarrow \texttt{KeyGen} & (\mathsf{pk}_2,\mathsf{sk}_2) \leftarrow \texttt{KeyGen} \\ \\ \mathcal{K}_{21} = \texttt{SharedKey}(\mathsf{pk}_2,\mathsf{sk}_1) & = & \mathcal{K}_{12} = \texttt{SharedKey}(\mathsf{pk}_1,\mathsf{sk}_2) \end{array}$

Tight security

► Asymptotic security: *L* ≤ polynomial

Tight security

- ► Asymptotic security: *L* ≤ polynomial
- **Tight security:** *L* small (e.g. small constant)

Tight security

- ► Asymptotic security: *L* ≤ polynomial
- **Tight security:** *L* small (e.g. small constant)

Why do we care?

- \blacktriangleright Theory: closer relation between ${\cal P}$ and ${\cal S}$
- **Practice:** smaller keys \Rightarrow more efficient instantiations

(Simplified) Security model

(Simplified) Security model

(Simplified) Security model $\mathsf{pk}_1, \cdots, \mathsf{pk}_n$ 0.00.0100 -

(Simplified) Security of NIKE w/ extractions

$$\mathsf{Advantage}^{\mathsf{nike}}_\mathcal{A} := |\operatorname{\mathsf{Pr}}[b^\star = b] - 1/2|$$

Recap: DH Key Exchange - Security w/ extractions

Idea: $i^{\star}, j^{\star} \leftarrow_{R} \{1, \dots, n\}$, embed DDH-challenge in $\mathsf{pk}_{i^{\star}}, \mathsf{pk}_{i^{\star}}$

Recap: DH Key Exchange - Security w/ extractions

Idea: $i^{\star}, j^{\star} \leftarrow_{R} \{1, \ldots, n\}$, embed DDH-challenge in $pk_{i^{\star}}, pk_{j^{\star}}$

 \rightsquigarrow security loss of $\approx n^2$

Reduction knows sk_i $i \notin \{i^*, j^*\}$ Reduction doesn't know ski

 $i \in \{i^\star, j^\star\}$

Recap: DH Key Exchange - Security w/ extractions

Idea: $i^{\star}, j^{\star} \leftarrow_{R} \{1, \dots, n\}$, embed DDH-challenge in $\mathsf{pk}_{i^{\star}}, \mathsf{pk}_{j^{\star}}$

 \rightsquigarrow security loss of $\approx n^2$

Reduction knows sk_i $i \notin \{i^\star, j^\star\}$ Reduction doesn't know sk_i $i \in \{i^*, j^*\}$

[BJLS16]: This loss is inherent!

7

Can we do better?

Can we do better?

▶ Yes! First NIKE with security loss *n* (in the standard model).

Can we do better?

▶ Yes! First NIKE with security loss *n* (in the standard model).

Can we do even better?

Can we do better?

▶ Yes! First NIKE with security loss *n* (in the standard model).

Can we do even better?

Seems hard! Lower bound of security loss *n* for broad class of NIKEs.

Can we do better?

▶ Yes! First NIKE with security loss *n* (in the standard model).

Can we do even better?

- **Seems hard!** Lower bound of security loss *n* for broad class of NIKEs.
- + Generic transformation with tight instantiation:
 - ► NIKE with passive security ~ NIKE with active security

- ► applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ► applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

▶ Idea: simulate A by computing $K_{i^*j^*}$

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})
- ▶ \exists run \neq (*i*^{*}, *j*^{*}) on which \mathcal{B} does not abort

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})
- ▶ $\exists run \neq (i^{\star}, j^{\star})$ on which \mathcal{B} does not abort \Rightarrow problem \mathcal{P} easy

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})
- ▶ \exists run \neq (i^{\star}, j^{\star}) on which $\mathcal B$ does not abort \Rightarrow problem $\mathcal P$ easy ℓ
- \Rightarrow security loss of at least $\Omega(n^2)$

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})
- ▶ $\exists run \neq (i^{\star}, j^{\star})$ on which \mathcal{B} does not abort \Rightarrow problem \mathcal{P} easy \pounds
- \Rightarrow security loss of at least $\Omega(n^2)$

- applies to all NIKEs w/ unique secret keys
- rules out tight simple black-box reductions

- ▶ Idea: simulate A by computing $K_{i^*j^*}$ with *extracted* sk_{j^*} (or sk_{i^*})
- ▶ $\exists \text{ run} \neq (i^{\star}, j^{\star})$ on which \mathcal{B} does not abort \Rightarrow problem \mathcal{P} easy \pounds
- \Rightarrow security loss of at least $\Omega(n^2)$

Key of [BJLS16]: uniqueness of secret keys \Rightarrow uniqueness of shared key

Key of [BJLS16]: uniqueness of secret keys \Rightarrow uniqueness of shared key Our scheme: public keys have many secret keys

Key of [BJLS16]: uniqueness of secret keys \Rightarrow uniqueness of shared key Our scheme: public keys have many secret keys

Not enough! By correctness:

 $\forall (\mathsf{pk}_1,\mathsf{sk}_1), (\mathsf{pk}_2,\mathsf{sk}_2) \colon \mathtt{SharedKey}(\mathsf{pk}_2,\mathsf{sk}_1) = \mathtt{SharedKey}(\mathsf{pk}_1,\mathsf{sk}_2)$

Key of [BJLS16]: uniqueness of secret keys \Rightarrow uniqueness of shared key Our scheme: public keys have many secret keys Not enough! By correctness:

 $\forall (\mathsf{pk}_1, \mathsf{sk}_1), (\mathsf{pk}_2, \mathsf{sk}_2) \colon \texttt{SharedKey}(\mathsf{pk}_2, \mathsf{sk}_1) = \texttt{SharedKey}(\mathsf{pk}_1, \mathsf{sk}_2)$

Solution: invalid public keys (w/o secret keys)

Key of [BJLS16]: uniqueness of secret keys ⇒ uniqueness of shared key
Our scheme: public keys have many secret keys
Not enough! By correctness:

 $\forall (\mathsf{pk}_1, \mathsf{sk}_1), (\mathsf{pk}_2, \mathsf{sk}_2) : \texttt{SharedKey}(\mathsf{pk}_2, \mathsf{sk}_1) = \texttt{SharedKey}(\mathsf{pk}_1, \mathsf{sk}_2)$

Solution: invalid public keys (w/o secret keys)

valid public keys \approx_c invalid public keys

Key of [BJLS16]: uniqueness of secret keys ⇒ uniqueness of shared key
Our scheme: public keys have many secret keys
Not enough! By correctness:

 $\forall (\mathsf{pk}_1, \mathsf{sk}_1), (\mathsf{pk}_2, \mathsf{sk}_2) : \texttt{SharedKey}(\mathsf{pk}_2, \mathsf{sk}_1) = \texttt{SharedKey}(\mathsf{pk}_1, \mathsf{sk}_2)$

Solution: invalid public keys (w/o secret keys)

valid public keys \approx_c invalid public k	keys
--	------

 $\forall (\mathsf{pk}_1,\mathsf{sk}_1),\mathsf{pk}_2 \colon (\mathsf{pk}_1,\mathsf{pk}_2,\mathtt{SharedKey}(\mathsf{pk}_2,\mathsf{sk}_1)) \equiv (\mathsf{pk}_1,\mathsf{pk}_2,\mathtt{random})$

Key of [BJLS16]: uniqueness of secret keys ⇒ uniqueness of shared key
Our scheme: public keys have many secret keys
Not enough! By correctness:

 $\forall (\mathsf{pk}_1, \mathsf{sk}_1), (\mathsf{pk}_2, \mathsf{sk}_2) : \texttt{SharedKey}(\mathsf{pk}_2, \mathsf{sk}_1) = \texttt{SharedKey}(\mathsf{pk}_1, \mathsf{sk}_2)$

Solution: invalid public keys (w/o secret keys)

valid public keys \approx_c invalid public keys

 $\forall (\mathsf{pk}_1, \mathsf{sk}_1), \mathsf{pk}_2 \colon (\mathsf{pk}_1, \mathsf{pk}_2, \mathsf{SharedKey}(\mathsf{pk}_2, \mathsf{sk}_1)) \equiv (\mathsf{pk}_1, \mathsf{pk}_2, \mathsf{random})$ **Note:** this requires entropy in sk_1 given pk_1 (and thus many secret keys)!

Recap: Subset membership problem (SMP)

X set, $L \subseteq X$ NP-language

Subset membership assumption for (X, L):

 $\{x \mid x \leftarrow_R L\} \qquad \approx_c \qquad \{x \mid x \leftarrow_R X \setminus L\}$

Recap: Subset membership problem (SMP)

X set, $L \subseteq X$ NP-language

Subset membership assumption for (X, L):

$$\{x \mid x \leftarrow_R L\} \approx_c \{x \mid x \leftarrow_R X \setminus L\}$$
valid public keys \approx_c invalid public keys

Recap: Hash proof system [CS98]

HPS = (Gen, PubEval, PrivEval) is HPS for language L if:

$$\left. \begin{array}{l} \operatorname{PubEval}(hpk, x, w) \\ \operatorname{PrivEval}(hsk, x) \end{array} \right\} \text{ return the same key } K \text{ for all } x \in L \text{ with witness } w \end{array} \right\}$$

Universality: $\forall x \notin L$, $(hpk, hsk) \leftarrow Gen$:

 $(hpk, x, \texttt{PrivEval}(hsk, x)) \equiv (hpk, x, \texttt{random})$

Our NIKE

Variation of the PAKE of [KOY01; GL03]

HPS = (Gen, PubEval, PrivEval) for L, SMP for $L \subseteq X$ hard

 $x_1 \leftarrow L$ with witness w_1

 $(hpk_2, hsk_2) \leftarrow \texttt{Gen}$ $K_{21} = \texttt{PubEval}(hpk_2, x_1, w_1) = K_{12} = \texttt{PrivEval}(hsk_2, x_1)$

Our NIKE

Variation of the PAKE of [KOY01; GL03]

 $\mathtt{HPS} = (\mathtt{Gen}, \mathtt{PubEval}, \mathtt{PrivEval})$ for L, SMP for $L \subseteq X$ hard

 $egin{aligned} &x_1 \leftarrow L ext{ with witness } w_1 \ &(hpk_1, hsk_1) \leftarrow ext{Gen} \ &\mathcal{K}_{21} = ext{PubEval}(hpk_2, x_1, w_1) \end{aligned} =$

 $egin{aligned} & x_2 \leftarrow L \ ext{with witness} \ w_2 \ & (hpk_2, hsk_2) \leftarrow ext{Gen} \ & \mathcal{K}_{12} = ext{PrivEval}(hsk_2, x_1) \end{aligned}$

Our NIKE

Variation of the PAKE of [KOY01; GL03]

 $\mathtt{HPS} = (\mathtt{Gen}, \mathtt{PubEval}, \mathtt{PrivEval})$ for L, SMP for $L \subseteq X$ hard

Note:

- hsk not unique
- can switch x to $X \setminus L$

 $egin{aligned} &x_1 \leftarrow L ext{ with witness } w_1 \ &(hpk_1, hsk_1) \leftarrow ext{Gen} \ &\mathcal{K}_{21} = ext{PubEval}(hpk_2, x_1, w_1) \end{aligned}$

 $egin{aligned} & x_2 \leftarrow L \ ext{with witness} \ w_2 \ & (hpk_2, hsk_2) \leftarrow ext{Gen} \ & K_{12} = ext{PrivEval}(hsk_2, x_1) \end{aligned}$

Idea: $i^* \leftarrow_R \{1, \ldots, n\}$, embed SMP-challenge as x_{i^*} in pk_{i^*}

Idea: $i^* \leftarrow_R \{1, \ldots, n\}$, embed SMP-challenge as x_{i^*} in pk_{i^*}

$$\forall j > i^{\star} : K_{i^{\star}j} = \texttt{PrivEval}(hsk_j, x_{i^{\star}})$$

Idea: $i^* \leftarrow_R \{1, \ldots, n\}$, embed SMP-challenge as x_{i^*} in pk_{i^*}

 $\forall j > i^{\star} \colon K_{i^{\star}j} = \texttt{PrivEval}(hsk_j, x_{i^{\star}})$ $\approx \text{random if } x_{i^{\star}} \in X \setminus L \text{ and } hsk_j \text{ unknown}$

Idea: $i^{\star} \leftarrow_{R} \{1, \ldots, n\}$, embed SMP-challenge as $x_{i^{\star}}$ in $pk_{i^{\star}}$

 $\forall j > i^{\star} \colon K_{i^{\star}j} = \texttt{PrivEval}(hsk_j, x_{i^{\star}}) \\ \approx \texttt{random if } x_{i^{\star}} \in X \backslash L \texttt{ and } hsk_j \texttt{ unknown}$

 \rightsquigarrow security loss of only *n*

Reduction knows sk_i

 $i \neq i^{\star}$

Reduction doesn't know sk_i

 $i = i^{\star}$

[BJLS16]:

▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique $K_{i^*j^*}$

[BJLS16]:

- obtain sk_{i^*} or sk_{j^*} via rewinding to compute unique $K_{i^*j^*}$
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique K_{i*j*}
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique K_{i*j*}
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique $K_{i^*j^*}$
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

shared keys between valid public keys unique

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique $K_{i^*j^*}$
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow$ loss of $\Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

- shared keys between valid public keys unique
- invalid public keys have no secret keys

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique $K_{i^*j^*}$
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

- shared keys between valid public keys unique
- invalid public keys have no secret keys

Our metareduction:

▶ Idea: obtain sk_{i*} and sk_{j*} via rewinding to compute unique K_{i*j*}

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique $K_{i^*j^*}$
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

- shared keys between valid public keys unique
- invalid public keys have no secret keys

Our metareduction:

- ▶ Idea: obtain sk_{i*} and sk_{j*} via rewinding to compute unique K_{i*j*}
- reduction aborts on all runs without i^* or on all runs without j^*

[BJLS16]:

- ▶ obtain sk_{i*} or sk_{j*} via rewinding to compute unique K_{i*j*}
- reduction aborts on all runs without i^* and all runs without $j^* \Rightarrow \text{loss of } \Omega(n^2)$

Problem: sk_{i^*}, sk_{j^*} not unique

Observation: uniqueness of $K_{i^*j^*}$ sufficient

- shared keys between valid public keys unique
- invalid public keys have no secret keys

Our metareduction:

- ▶ Idea: obtain sk_{i*} and sk_{j*} via rewinding to compute unique K_{i*j*}
- reduction aborts on all runs without i^* or on all runs without $j^* \Rightarrow \text{loss of } \Omega(n)$

From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key

- USS-NIZK allows to simulate during the reduction
- PoK allows to extract the secret key from corrupted users

From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key

- USS-NIZK allows to simulate during the reduction
- PoK allows to extract the secret key from corrupted users

Instantiation:

- generic instantiation from standard components
- optimized tightly secure instantiation for our NIKE

Reference	pk	sec. model	sec. loss	assumption	uses
[DH76]	$1 imes \mathbb{G}$	passive	n ²	DDH	-
Ours	$3 imes \mathbb{G}$	passive	п	DDH	-
[CKS08]	$2 imes \mathbb{G}$	active*	2	CDH	ROM
[FHKP13]	$1 imes \mathbb{Z}_{N}$	active	n ²	factoring	ROM
[FHKP13]	$2 imes \mathbb{G} + 1 imes \mathbb{Z}_p$	active	n^2	DBDH	pairing
Ours	$12 imes \mathbb{G}$	active	п	DLIN	pairing

*w/o extractions

Modular constructions

New lower bound:

- > applies to all schemes where invalid public keys have no secret keys
- yields a loss of $\Omega(n)$ for all simple black-box reductions

Generic transformation from passive to active secure NIKE Thank you!!

Bibliography I

Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. "On the Impossibility of Tight Cryptographic Reductions". In: *EUROCRYPT 2016, Part II.* Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 273–304. DOI: 10.1007/978–3–662–49896–5_10.

David Cash, Eike Kiltz, and Victor Shoup. "The Twin Diffie-Hellman Problem and Applications". In: *EUROCRYPT 2008*. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr. 2008, pp. 127–145.

Ronald Cramer and Victor Shoup. "A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack". In: *CRYPTO'98*. Ed. by Hugo Krawczyk. Vol. 1462. LNCS. Springer, Heidelberg, Aug. 1998, pp. 13–25.

Bibliography II

- Whitfield Diffie and Martin E. Hellman. "New Directions in Cryptography". In: *IEEE Transactions on Information Theory* 22.6 (1976), pp. 644–654.
- Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. "Non-Interactive Key Exchange". In: *PKC 2013*. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. LNCS. Springer, Heidelberg, 2013, pp. 254–271. DOI: 10.1007/978-3-642-36362-7_17.
- Rosario Gennaro and Yehuda Lindell. "A Framework for Password-Based Authenticated Key Exchange". In: *EUROCRYPT 2003*. Ed. by Eli Biham. Vol. 2656. LNCS. http://eprint.iacr.org/2003/032.ps.gz. Springer, Heidelberg, May 2003, pp. 524-543.

Bibliography III

Jonathan Katz, Rafail Ostrovsky, and Moti Yung. "Efficient Password-Authenticated Key Exchange Using Human-Memorable Passwords". In: *EUROCRYPT 2001*. Ed. by Birgit Pfitzmann. Vol. 2045. LNCS. Springer, Heidelberg, May 2001, pp. 475–494.

Eike Kiltz and Hoeteck Wee. "Quasi-Adaptive NIZK for Linear Subspaces Revisited". In: *EUROCRYPT 2015, Part II*. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 101–128. DOI: 10.1007/978-3-662-46803-6_4.