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Non-Interactive Key Exchange (NIKE)

(pk1, sk1)← KeyGen

K21 = SharedKey(pk2, sk1)

(pk2, sk2)← KeyGen

K12 = SharedKey(pk1, sk2)

pk1, pk2

=
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Tight security

Scheme S secure if problem P hard:

A attacks S =⇒ B attacks P s.t.

AdvantageSA ≤ L︸︷︷︸
security loss

· AdvantagePB (+ similar runtime)

I Asymptotic security: L ≤ polynomial

I Tight security: L small (e.g. small constant)

Why do we care?

I Theory: closer relation between P and S
I Practice: smaller keys ⇒ more efficient instantiations

3



Tight security

Scheme S secure if problem P hard:

A attacks S =⇒ B attacks P s.t.

AdvantageSA ≤ L︸︷︷︸
security loss

· AdvantagePB (+ similar runtime)

I Asymptotic security: L ≤ polynomial

I Tight security: L small (e.g. small constant)

Why do we care?

I Theory: closer relation between P and S
I Practice: smaller keys ⇒ more efficient instantiations

3



Tight security

Scheme S secure if problem P hard:

A attacks S =⇒ B attacks P s.t.

AdvantageSA ≤ L︸︷︷︸
security loss

· AdvantagePB (+ similar runtime)

I Asymptotic security: L ≤ polynomial

I Tight security: L small (e.g. small constant)

Why do we care?

I Theory: closer relation between P and S
I Practice: smaller keys ⇒ more efficient instantiations

3



Recap: Diffie-Hellman Key Exchange
[DH76; CKS08]
G group, 〈g〉 = G, p := |G|

a← Zp

K21 = (gb)a

b ← Zp

K12 = (ga)b

ga, gb

= gab =

Decisional DH: a, b, c ←R Zp: (ga, gb, gab) ≈c (ga, gb, g c)
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(Simplified) Security model

pk1, · · · , pkn
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(Simplified) Security of NIKE w/ extractions

b?

A

pk1, . . . , pkn
(pki , ski )← KeyGen

i?, j?

{ski}i /∈{i?,j?},Kb

b ← {0, 1}
K0 ← SharedKey(pki? , skj?)
K1 random key

AdvantagenikeA := |Pr[b? = b]− 1/2|
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Recap: DH Key Exchange - Security w/ extractions

Idea: i?, j? ←R {1, . . . , n}, embed DDH-challenge in pki? , pkj?

 security loss of ≈ n2

Reduction doesn’t know ski

Reduction knows ski

i ∈ {i?, j?}i /∈ {i?, j?}

[BJLS16]: This loss is inherent!
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Our results

Can we do better?

I Yes! First NIKE with security loss n (in the standard model).

Can we do even better?

I Seems hard! Lower bound of security loss n for broad class of NIKEs.

+ Generic transformation with tight instantiation:

I NIKE with passive security  NIKE with active security
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The lower bound of [BJLS16]

I applies to all NIKEs w/ unique secret keys

I rules out tight simple black-box reductions

⇒ has to abort on all runs 6= (i?, j?)

Reduction doesn’t know ski

i ∈ {i?, j?}
rewindrewind

b?

b?

Metareduction Λ

A

simA

sim

A

sim

BB

pk1, . . . , pknInstance of P

Solution to P

i?, j?

{ski}i /∈{i?,j?},Kb

{ski}i /∈{i?,j?},Kb{ski}i /∈{i?,j?},Kb

I Idea: simulate A by computing Ki?j?

with extracted skj? (or ski?)
I ∃ run 6= (i?, j?) on which B does not abort

⇒ problem P easy E

I ⇒ security loss of at least Ω(n2)
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How to circumvent the lower bound of [BJLS16]?

Key of [BJLS16]: uniqueness of secret keys ⇒ uniqueness of shared key

Our scheme: public keys have many secret keys

Not enough! By correctness:

∀(pk1, sk1), (pk2, sk2) : SharedKey(pk2, sk1) = SharedKey(pk1, sk2)

Solution: invalid public keys (w/o secret keys)

≈c invalid public keysvalid public keys

∀(pk1, sk1), pk2 : (pk1, pk2, SharedKey(pk2, sk1)) ≡ (pk1, pk2, random)

Note: this requires entropy in sk1 given pk1 (and thus many secret keys)!
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Recap: Subset membership problem (SMP)

X set, L ⊆ X NP-language

Subset membership assumption for (X , L):

≈c {x | x ←R X \ L}{x | x ←R L}

≈c invalid public keysvalid public keys
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Recap: Hash proof system
[CS98]

HPS = (Gen, PubEval, PrivEval) is HPS for language L if:

PubEval(hpk, x ,w)

PrivEval(hsk , x)

}
return the same key K for all x ∈ L with witness w

Universality: ∀x /∈ L, (hpk, hsk )← Gen:

(hpk, x , PrivEval(hsk , x)) ≡ (hpk, x , random)
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Our NIKE
Variation of the PAKE of [KOY01; GL03]

HPS = (Gen, PubEval, PrivEval) for L, SMP for L ⊆ X hard

Note:
I hsk not unique

I can switch x to X\L

x1 ← L with witness w1

(hpk1, hsk1)← Gen

K21 = PubEval(hpk2, x1,w1)

x2 ← L with witness w2

(hpk2, hsk2)← Gen

K12 = PrivEval(hsk2, x1)

(hpk1,

x1

)

,

(

hpk2

, x2)

=
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Proof of Security - Idea

Idea: i? ←R {1, . . . , n}, embed SMP-challenge as xi? in pki?

∀j > i? : Ki?j = PrivEval(hsk j , xi?)

≈ random if xi? ∈ X\L and hsk j unknown

 security loss of only n

Reduction doesn’t know skiReduction knows ski

i = i?i 6= i?
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Towards a new lower bound

[BJLS16]:

I obtain ski? or skj? via rewinding to compute unique Ki?j?

I reduction aborts on all runs without i? and all runs without j? ⇒ loss of Ω(n2)

Problem: ski? , skj? not unique

Observation: uniqueness of Ki?j? sufficient

I shared keys between valid public keys unique

I invalid public keys have no secret keys

Our metareduction:

I Idea: obtain ski? and skj? via rewinding to compute unique Ki?j?

I reduction aborts on all runs without i? or on all runs without j? ⇒ loss of Ω(n)
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From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key

I USS-NIZK allows to simulate during the reduction

I PoK allows to extract the secret key from corrupted users

Instantiation:

I generic instantiation from standard components

I optimized tightly secure instantiation for our NIKE
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Our results
Reference |pk| sec. model sec. loss assumption uses

[DH76] 1×G passive n2 DDH -
Ours 3×G passive n DDH -

[CKS08] 2×G active? 2 CDH ROM
[FHKP13] 1× ZN active n2 factoring ROM
[FHKP13] 2×G + 1× Zp active n2 DBDH pairing
Ours 12×G active n DLIN pairing

*w/o extractions
Modular constructions

New lower bound:
I applies to all schemes where invalid public keys have no secret keys
I yields a loss of Ω(n) for all simple black-box reductions

Generic transformation from passive to active secure NIKE Thank you!!
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Impossibility of Tight Cryptographic Reductions”. In:
EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and
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