On Tightly Secure Non-Interactive Key Exchange

TECHNISCHE Julia Hesse (Technische Universitat Darmstadt)
% DARMSTADT Dennis Hofheinz (Karlsruhe Institute of Technology)

(IT Lisa Kohl (Karlsruhe Institute of Technology)

Karlsruhe Institute of Technology

Rl
Zioe E6i Avazi School
HERZLIYA of Computer Science

Non-Interactive Key Exchange (NIKE)

(pkq,ski) < KeyGen (pks, ska) < KeyGen

K21 = SharedKey(pks, ski1) = K12 = SharedKey(pky, sk2)

Tight security

Scheme S secure if problem P hard:
A attacks S = B attacks P s.t.
AdvantageS, < \L/ - Advantagel (+ similar runtime)

security loss

» Asymptotic security: L < polynomial

Tight security

Scheme S secure if problem P hard:
A attacks S = B attacks P s.t.
AdvantageS, < \L/ - Advantagel (+ similar runtime)

security loss

» Asymptotic security: L < polynomial

» Tight security: L small (e.g. small constant)

Tight security

Scheme S secure if problem P hard:
A attacks S = B attacks P s.t.
AdvantageS, < \L/ - Advantagel (+ similar runtime)

security loss

» Asymptotic security: L < polynomial

» Tight security: L small (e.g. small constant)

Why do we care?
» Theory: closer relation between P and S

» Practice: smaller keys = more efficient instantiations

Recap: Diffie-Hellman Key Exchange
[DH76; CKS08]
G group, (g) =G, p:= |G|

g% g"
(RLLLLERLAY
L
a< Zp b+ Z,
Ko = (g°)° =g = Kiz = (g7)°

Decisional DH: a, b, c +r Z,: (g%,8°,8%°) ~c (g%, g°, &°)

(Simplified) Security model

2\\\\ Wy
L \K

(Simplified) Security model

!\\\\ Wy

(Simplified) Security of NIKE w/ extractions

pky,...,pk
(pk;, sk;) < KeyGen ! n
b+ {0,1} i,
Ko + SharedKey(pk;s,skjs) = .
Ky random key {Ski}igz{i*,j*}7 Kb
« =

Advantage’{® := | Pr[b* = b] — 1/2)

Recap: DH Key Exchange - Security w/ extractions

Idea: i*,j* <~g {1,...,n}, embed DDH-challenge in pk;., pk;.

Recap: DH Key Exchange - Security w/ extractions
Idea: i*,j* <~g {1,...,n}, embed DDH-challenge in pk;., pk;.
~ security loss of ~ n°

Reduction knows sk; Reduction doesn't know sk;

f e 055 7 ie{i*,)

Recap: DH Key Exchange - Security w/ extractions

Idea: i*,j* <~g {1,...,n}, embed DDH-challenge in pk;., pk;.

~ security loss of ~ n°

Reduction knows sk; Reduction doesn't know sk;

f e 055 7 ie{i*,)

[BJLS16]: This loss is inherent!

Our results

Can we do better?

Our results

Can we do better?
» Yes! First NIKE with security loss n (in the standard model).

Our results

Can we do better?
» Yes! First NIKE with security loss n (in the standard model).

Can we do even better?

Our results

Can we do better?
» Yes! First NIKE with security loss n (in the standard model).

Can we do even better?

» Seems hard! Lower bound of security loss n for broad class of NIKEs.

Our results

Can we do better?
» Yes! First NIKE with security loss n (in the standard model).

Can we do even better?

» Seems hard! Lower bound of security loss n for broad class of NIKEs.

+ Generic transformation with tight instantiation:

» NIKE with passive security ~» NIKE with active security

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of P pky,...,pk,

]
B C A
{Ski}i¢{i*,j*}a Kb

b*

Solution to P

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of P pki, ..., Pk,
"
B ¢ Asim
ki ig{ix j* ,K
Solution to P ‘{S Viggivgeys Ko
b‘k

Metareduction A

» ldea: simulate A by computing Kjsj«

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of P pki, ..., Pk,
i*,j*
rewind (| B [sim
ki ig{i* j* ,K
Solution to P ‘{S Yig(ivjry, Kb
b*

Metareduction A

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of 77. pky, ..., pk,
i*,j*
rewind | B sim
Skl I l’* . ’K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of 77. pky, ..., pk,
i*,j*
rewind | B sim
Skl I l’* . ’K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort = problem P easy

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys

> rules out tight simple black-box reductions

Instance of 77. pky, ..., pk,
i*,j*
rewind | B sim
Skl I l’* . ’K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort = problem P easy #
» = security loss of at least Q(n?)

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys
> rules out tight simple black-box reductions

Reduction doesn’t know sk;

Instance of 77. pky, ..., pk,
i J i€ {i,j*}
rewind | B sim
Skl I l’* . ’K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort = problem P easy #
» = security loss of at least Q(n?)

The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys
> rules out tight simple black-box reductions

Instance of P pki, ..., Pk,
i j*
rewind (| B [sim
Sk, i¢Li* j* ,K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

Reduction doesn’t know sk;
i€ {i,j*}

= has to abort on all runs # (i*, j*)

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort = problem P easy #

» = security loss of at least Q(n?)

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key

Our scheme: public keys have many secret keys

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:

V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:
V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

Solution: invalid public keys (w/o secret keys)

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:
V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

Solution: invalid public keys (w/o secret keys)

valid public keys Rc invalid public keys

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:
V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

Solution: invalid public keys (w/o secret keys)

valid public keys Rc invalid public keys

V(pky,ski), pks : (pky, pks, SharedKey(pk,, ski)) = (pky, pky, random)

10

How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:
V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

Solution: invalid public keys (w/o secret keys)

valid public keys Rc invalid public keys

V(pky,ski), pks : (pky, pks, SharedKey(pk,, ski)) = (pky, pky, random)

Note: this requires entropy in sk; given pk; (and thus many secret keys)!

10

Recap: Subset membership problem (SMP)

X set, L € X NP-language

Subset membership assumption for (X, L):

{x|x<+rL} R {x|x<+rX\L}

Recap: Subset membership problem (SMP)

X set, L € X NP-language

Subset membership assumption for (X, L):

{X|X%RL} 7

valid public keys R

{x|x<+rX\L}

invalid public keys

11

Recap: Hash proof system
[CS98]

HPS = (Gen, PubEval, PrivEval) is HPS for language L if:

PubEval(hpk, x, w)

return the same key K for all x € L with witness w
PrivEval(hsk, x)

Universality: Vx ¢ L, (hpk, hsk) < Gen:

(hpk, x,PrivEval(hsk, x)) = (hpk, x, random)

12

Our NIKE

Variation of the PAKE of [KOY01; GL03]
HPS = (Gen, PubEval,PrivEval) for L, SMP for L C X hard

x1 < L with witness wy
(hpky, hsky) <— Gen

K21 = PubEval(hpk,, x1, wy) = K1z = PrivEval(hsk,, x1)
13

Our NIKE

Variation of the PAKE of [KOY01; GL03]
HPS = (Gen, PubEval,PrivEval) for L, SMP for L C X hard

|\

L
x1 < L with witness wy Xp <— L with witness wy
(hpky, hsk,) < Gen (hpky, hsk,) < Gen
Ko1 = PubEval(hpky, xi, w1) = K1z = PrivEval(hsk.,, x1)

13

Our NIKE

Variation of the PAKE of [KOY01; GL03]
HPS = (Gen, PubEval,PrivEval) for L, SMP for L C X hard

UL Note:
, > hsk not unique
) L » can switch x to X\L
x1 < L with witness wy Xp <— L with witness wy
(hpky, hsk,) < Gen (hpky, hsk,) < Gen
K>1 = PubEval(hpky, x1, wy) = K1z = PrivEval(hsk,, x1)

13

Proof of Security - ldea

Idea: i* < {1,...,n}, embed SMP-challenge as x; in pk;«

14

Proof of Security - ldea

Idea: i* < {1,...,n}, embed SMP-challenge as x; in pk;«

Vji> i Kisj = PrivEval(hsk;, x;+)

14

Proof of Security - ldea

Idea: i* < {1,...,n}, embed SMP-challenge as x; in pk;«

Vji> i Kisj = PrivEval(hsk;, x;+)

~ random if x;» € X\L and hsk; unknown

14

Proof of Security - ldea
Idea: i* < {1,...,n}, embed SMP-challenge as x; in pk;«

Vji> i Kisj = PrivEval(hsk;, x;+)

~ random if x;» € X\L and hsk; unknown

~ security loss of only n

Reduction knows sk; Reduction doesn’t know sk;

I'#I'* I':I'*

14

Towards a new lower bound

[BJLS16]:

» obtain sk;« or skj- via rewinding to compute unique Kjxjx

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«
» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient

» shared keys between valid public keys unique

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient
» shared keys between valid public keys unique

» invalid public keys have no secret keys

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient
» shared keys between valid public keys unique

» invalid public keys have no secret keys

Our metareduction:

» ldea: obtain sk;~ and sk;« via rewinding to compute unique Kjxj«

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient
» shared keys between valid public keys unique

» invalid public keys have no secret keys

Our metareduction:
» ldea: obtain sk;~ and sk;« via rewinding to compute unique Kjxj«

» reduction aborts on all runs without i* or on all runs without j*

15

Towards a new lower bound

[BJLS16]:
» obtain sk;+ or skj- via rewinding to compute unique K«

» reduction aborts on all runs without i* and all runs without j* = loss of Q(n?)

Problem: sk;«, sk~ not unique

Observation: uniqueness of Kj«j« sufficient
» shared keys between valid public keys unique

» invalid public keys have no secret keys

Our metareduction:
» ldea: obtain sk;~ and sk;« via rewinding to compute unique Kjxj«

» reduction aborts on all runs without /* or on all runs without j* = loss of Q(n)

15

From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key
» USS-NIZK allows to simulate during the reduction

» PoK allows to extract the secret key from corrupted users

16

From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key
» USS-NIZK allows to simulate during the reduction

» PoK allows to extract the secret key from corrupted users

Instantiation:
> generic instantiation from standard components

» optimized tightly secure instantiation for our NIKE

16

Our results

] Reference \ | pk| \ sec. model \ sec. loss | assumption \ uses ‘
[DHT76] 1xG passive n? DDH -
Ours 3xG passive n DDH -
[CKSO08] 2xG active* 2 CDH ROM
[FHKP13] 1 X Zn active n? factoring ROM
[FHKP13] 2xG+1xZ, active n? DBDH pairing
Ours 12x G active n DLIN pairing

*w /o extractions
Modular constructions

New lower bound:

» applies to all schemes where invalid public keys have no secret keys
» yields a loss of ©(n) for all simple black-box reductions

Generic transformation from passive to active secure NIKE Thank you!!

17

Bibliography |

E

Christoph Bader, Tibor Jager, Yong Li, and Sven Schage. “On the
Impossibility of Tight Cryptographic Reductions”. In:

EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and

Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016,
pp. 273-304. DOI: 10.1007/978-3-662-49896-5_10.

David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman
Problem and Applications”. In: EUROCRYPT 2008. Ed. by

Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr. 2008,
pp. 127-145.

Ronald Cramer and Victor Shoup. “A Practical Public Key Cryptosystem
Provably Secure Against Adaptive Chosen Ciphertext Attack”. In:
CRYPTO'98. Ed. by Hugo Krawczyk. Vol. 1462. LNCS. Springer,
Heidelberg, Aug. 1998, pp. 13-25.

18

http://dx.doi.org/10.1007/978-3-662-49896-5_10

Bibliography Il

El

E

Whitfield Diffie and Martin E. Hellman. “New Directions in
Cryptography”. In: |IEEE Transactions on Information Theory 22.6
(1976), pp. 644-654.

Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and
Kenneth G. Paterson. “Non-Interactive Key Exchange”. In: PKC 2013.

Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Vol. 7778. LNCS. Springer,

Heidelberg, 2013, pp. 254-271. pDO1: 10.1007/978-3-642-36362-7_17.

Rosario Gennaro and Yehuda Lindell. “A Framework for Password-Based

Authenticated Key Exchange”. In: EUROCRYPT 2003. Ed. by Eli Biham.

Vol. 2656. LNCS. http://eprint.iacr.org/2003/032.ps.gz.
Springer, Heidelberg, May 2003, pp. 524-543.

19

http://dx.doi.org/10.1007/978-3-642-36362-7_17
http://eprint.iacr.org/2003/032.ps.gz

Bibliography Il

@ Jonathan Katz, Rafail Ostrovsky, and Moti Yung. “Efficient
Password-Authenticated Key Exchange Using Human-Memorable
Passwords”. In: EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045.
LNCS. Springer, Heidelberg, May 2001, pp. 475-494.

Ei Eike Kiltz and Hoeteck Wee. "Quasi-Adaptive NIZK for Linear Subspaces
Revisited”. In: EUROCRYPT 2015, Part Il. Ed. by Elisabeth Oswald and
Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015,
pp. 101-128. por: 10.1007/978-3-662-46803-6_4.

20

http://dx.doi.org/10.1007/978-3-662-46803-6_4

