On Tightly Secure Non-Interactive Key Exchange

TECHNISCHE Julia Hesse (Technische Universitat Darmstadt)
% DARMSTADT Dennis Hofheinz (Karlsruhe Institute of Technology)

(IT Lisa Kohl (Karlsruhe Institute of Technology)

Karlsruhe Institute of Technology

Rl
Zioe E6i Avazi School
HERZLIYA of Computer Science




Non-Interactive Key Exchange (NIKE)

(pkq,ski) < KeyGen (pks, ska) < KeyGen

K21 = SharedKey(pks, ski1) = K12 = SharedKey(pky, sk2)
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Tight security

Scheme S secure if problem P hard:
A attacks S = B attacks P s.t.
AdvantageS, < \L/ - Advantagel (+ similar runtime)

security loss

» Asymptotic security: L < polynomial

» Tight security: L small (e.g. small constant)

Why do we care?
» Theory: closer relation between P and S

» Practice: smaller keys = more efficient instantiations



Recap: Diffie-Hellman Key Exchange
[DH76; CKS08]
G group, (g) =G, p:= |G|

g% g"
(RLLLLERLAY
L
a< Zp b+ Z,
Ko = (g°)° =g = Kiz = (g7)°

Decisional DH: a, b, c +r Z,: (g%,8°,8%°) ~c (g%, g°, &°)
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(Simplified) Security of NIKE w/ extractions

pky,...,pk
(pk;, sk;) < KeyGen ! n
b+ {0,1} i,
Ko + SharedKey(pk;s,skjs) = .
Ky random key {Ski}igz{i*,j*}7 Kb
« =

Advantage’{® := | Pr[b* = b] — 1/2)
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Recap: DH Key Exchange - Security w/ extractions
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~ security loss of ~ n°

Reduction knows sk; Reduction doesn't know sk;
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[BJLS16]: This loss is inherent!
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Our results

Can we do better?
» Yes! First NIKE with security loss n (in the standard model).

Can we do even better?

» Seems hard! Lower bound of security loss n for broad class of NIKEs.

+ Generic transformation with tight instantiation:

» NIKE with passive security ~» NIKE with active security
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The lower bound of [BJLS16]

» applies to all NIKEs w/ unique secret keys
> rules out tight simple black-box reductions

Instance of P pki, ..., Pk,
i j*
rewind (| B [ sim
Sk, i¢Li* j* ,K
Solution to P ‘{ Viggivgeyr Kb
b*

Metareduction A

Reduction doesn’t know sk;
i€ {i,j*}

= has to abort on all runs # (i*, j*)

> ldea: simulate A by computing Kj«j« with extracted sk~ (or skix)
» 3 run # (i*,j*) on which B does not abort = problem P easy #

» = security loss of at least Q(n?)
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How to circumvent the lower bound of [BJLS16]7

Key of [BJLS16]: uniqueness of secret keys = uniqueness of shared key
Our scheme: public keys have many secret keys

Not enough! By correctness:
V(pky,ski), (pky, ska2): SharedKey(pksy, sk1) = SharedKey(pky, sk2)

Solution: invalid public keys (w/o secret keys)

valid public keys Rc invalid public keys

V(pky,ski), pks : (pky, pks, SharedKey(pk,, ski)) = (pky, pky, random)

Note: this requires entropy in sk; given pk; (and thus many secret keys)!
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Recap: Subset membership problem (SMP)

X set, L € X NP-language

Subset membership assumption for (X, L):

{X|X%RL} 7

valid public keys R

{x|x<+rX\L}

invalid public keys
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Recap: Hash proof system
[CS98]

HPS = (Gen, PubEval, PrivEval) is HPS for language L if:

PubEval(hpk, x, w)

return the same key K for all x € L with witness w
PrivEval(hsk, x)

Universality: Vx ¢ L, (hpk, hsk) < Gen:

(hpk, x,PrivEval(hsk, x)) = (hpk, x, random)

12



Our NIKE

Variation of the PAKE of [KOY01; GL03]
HPS = (Gen, PubEval,PrivEval) for L, SMP for L C X hard
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|\

L
x1 < L with witness wy Xp <— L with witness wy
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Our NIKE

Variation of the PAKE of [KOY01; GL03]
HPS = (Gen, PubEval,PrivEval) for L, SMP for L C X hard

UL Note:
, > hsk not unique
) L » can switch x to X\L
x1 < L with witness wy Xp <— L with witness wy
(hpky, hsk,) < Gen (hpky, hsk,) < Gen
K>1 = PubEval(hpky, x1, wy) = K1z = PrivEval(hsk,, x1)

13
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Idea: i* < {1,...,n}, embed SMP-challenge as x; in pk;«

Vji> i Kisj = PrivEval(hsk;, x;+)

~ random if x;» € X\L and hsk; unknown

~ security loss of only n

Reduction knows sk; Reduction doesn’t know sk;

I'#I'* I':I'*
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From passive to active security

Idea: add unbounded simulation sound NIZK proof of knowledge of secret key
» USS-NIZK allows to simulate during the reduction

» PoK allows to extract the secret key from corrupted users

Instantiation:
> generic instantiation from standard components

» optimized tightly secure instantiation for our NIKE

16



Our results

] Reference \ | pk| \ sec. model \ sec. loss | assumption \ uses ‘
[DHT76] 1xG passive n? DDH -
Ours 3xG passive n DDH -
[CKSO08] 2xG active* 2 CDH ROM
[FHKP13] 1 X Zn active n? factoring ROM
[FHKP13] 2xG+1xZ, active n? DBDH pairing
Ours 12x G active n DLIN pairing

*w /o extractions
Modular constructions

New lower bound:

» applies to all schemes where invalid public keys have no secret keys
» yields a loss of ©(n) for all simple black-box reductions

Generic transformation from passive to active secure NIKE Thank you!!

17
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