
Practical and Tightly-Secure
Digital Signatures and Authenticated Key Exchange

Kristian Gjøsteen1 Tibor Jager2

NTNU - Norwegian University of Science and Technology, Trondheim, Norway,
kristian.gjosteen@ntnu.no

Paderborn University, Paderborn, Germany, tibor.jager@upb.de

CRYPTO 2018

kristian.gjosteen@ntnu.no
tibor.jager@upb.de

Authenticated Key Exchange

Alice Bob

Carol Dave

. . .

Bob! →
→ k or rnd?

← Carol!

→ k

Alice and Bob want to exchange a key.

Authenticated Key Exchange

Alice Bob

Carol Dave

. . .

Bob! →
→ k or rnd?

← Carol!

→ k

Alice and Bob and Carol and . . . want to exchange keys.

Authenticated Key Exchange

Alice Bob

Carol Dave

. . .

Bob! →
→ k or rnd?

← Carol!

→ k

The adversary

I directs honest users’ key exchanges;

I can inspect keys or test keys (real-or-random);

I controls the network;

I and can adaptively corrupt users.

Authenticated Key Exchange

Alice Bob

Carol Dave

. . .

Bob! →
→ k or rnd?

← Carol!

→ k

Our goal: If

I Alice believes she has exchanged a key with Bob,

it must be true that

I Bob exchanged exactly the same key exactly once with Alice; and

I it looks random.

Why

Tight

Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A poly-time crypto adversary with non-negligible advantage
gives us
a poly-time problem solver with non-negligible advantage.

The scheme is secure if we believe no such solver exists.

I A reduction is tight if T1 ≈ T2 and ε1 ≈ ε2.

Why do we want them?

I Why not?

I Ensure that our system is not trivially breakable.

I Help us choose security parameters.

Why

Tight

Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A crypto adversary using time T1 with advantage ε1
gives us
a problem solver using time T2 with advantage ε2.

The scheme is secure if we believe no such solver exists.

I A reduction is tight if T1 ≈ T2 and ε1 ≈ ε2.

Why do we want them?

I Why not?

I Ensure that our system is not trivially breakable.

I Help us choose security parameters.

Why Tight Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A crypto adversary using time T1 with advantage ε1
gives us
a problem solver using time T2 with advantage ε2.

The scheme is secure if we believe no such solver exists.

I A reduction is tight if T1 ≈ T2 and ε1 ≈ ε2.

Why do we want them?

I Why not?

I Ensure that our system is not trivially breakable.

I Help us choose security parameters.

Plain Diffie-Hellman
No Tampering + Static Corruption = No Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! → x = ga

x

y

yk = ya ←

Plain Diffie-Hellman
No Tampering + Static Corruption = No Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! → x = ga

x

y

yk = ya ←

When Alice talks to a corrupted Carol, we run Diffie-Hellman as usual.

Plain Diffie-Hellman
No Tampering + Static Corruption = No Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! → x = ga

x

y

yk = ya ←

When Alice talks to an honest Bob, we simulate the conversation using a
Diffie-Hellman tuple (g , x , y , z).

Rerandomization gives us many tuples and a tight proof.

Plain Diffie-Hellman
No Tampering + Adaptive Corruption = Commitment Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x

x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! →

x = ga

x

y

yk = ya ←

The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.

We can guess a communicating pair, but then tightness is lost.

Plain Diffie-Hellman
No Tampering + Adaptive Corruption = Commitment Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x

x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! →

x = ga

x

y

yk = ya ←

The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.

We can guess a communicating pair, but then tightness is lost.

Plain Diffie-Hellman
No Tampering + Adaptive Corruption = Commitment Problem

. . .

x = ga
x

y = gby

Bob! →
k = ya ←

→ Alice

→ k = xb

x

x

yy

Bob! →
k = z ←

→ Alice

→ k = z

Carol! →

x = ga

x

y

yk = ya ←

The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.

We can guess a communicating pair, but then tightness is lost.

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = No Problem

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB

Bob! →
k = ya ←

→ Alice

→ k = xb

h

h
y

y

xx = ga

x

Carol! →

I We hash the first message, and send x only after receiving the response.

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = No Problem

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB

Bob! →
k = ya ←

→ Alice

→ k = xb

h

h
y

y

x

x = ga

x

Carol! →

I We hash the first message, and send x only after receiving the response.

I In the random oracle model, our reduction does not have to commit to x until we
know if the response was honest or not. We get a tight reduction.

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = No Problem

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB

Bob! →
k = ya ←

→ Alice

→ k = xb

h

h
y

y

x

x = ga

x

Carol! →

I We hash the first message, and send x only after receiving the response.

I In the random oracle model, our reduction does not have to commit to x until we
know if the response was honest or not. We get a tight reduction.

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = No Problem

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB

Bob! →
k = ya ←

→ Alice

→ k = xb

h

h
y

y

xx = ga

x

Carol! →

I We hash the first message, and send x only after receiving the response.

I Note that there is an additional message flow compared to plain Diffie-Hellman.
The responder also learns the key later. This is often not a problem.

Security Parameters and Performance

We compare our protocol with plain Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For plain Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

Security Parameters and Performance

We compare our protocol with plain Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For plain Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

Security Parameters and Performance

We compare our protocol with signed Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For signed Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
exps. # bits time # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 5.4 1044 15.4

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = A Need for Signatures

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB

Bob! →
k = ya ←

→ Alice

→ k = xb

h

h
y

y

xx = ga

x

Carol! →

I If the adversary is allowed to tamper with messages, this protocol obviously fails.

Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = A Need for Signatures

. . .

h = H(x = ga) h

x x

x , σA x , σA

y = gby

y = gb, σBy , σB
Bob! →

k = ya ←
→ Alice

→ k = xb

h

h
y

y

xx = ga

x

Carol! →

I If the adversary is allowed to tamper with messages, this protocol obviously fails.

I The natural answer is to add the usual signatures.

I But this requires a signature scheme with a tight reduction!

Signatures with Tight Reductions

The standard security notion for signatures considers only a single key pair.

I There is a standard reduction to many key pairs, but it is non-tight.

I In fact, the loss in the standard reduction is quadratic in the number of users,
because of adaptive compromise.

The main obstacle to a tight reduction:

I We need to know every secret key to respond to compromise.

I We need to extract something from the eventual forgery.

Tight reductions are impossible for schemes with unique signatures or signing keys.

Signatures with Tight Reductions

The standard security notion for signatures considers only a single key pair.

I There is a standard reduction to many key pairs, but it is non-tight.

I In fact, the loss in the standard reduction is quadratic in the number of users,
because of adaptive compromise.

The main obstacle to a tight reduction:

I We need to know every secret key to respond to compromise.

I We need to extract something from the eventual forgery.

Tight reductions are impossible for schemes with unique signatures or signing keys.

Signatures with Tight Reductions

The standard security notion for signatures considers only a single key pair.

I There is a standard reduction to many key pairs, but it is non-tight.

I In fact, the loss in the standard reduction is quadratic in the number of users,
because of adaptive compromise.

The main obstacle to a tight reduction:

I We need to know every secret key to respond to compromise.

I We need to extract something from the eventual forgery.

Tight reductions are impossible for schemes with unique signatures or signing keys.

“Double-signature” idea

The “double-signature” idea from Bader et al. (TCC 15).

I The user has “real” and a “fake” verification key.

I A signature consists of a real signature for the “real” verification key, and a fake
signature for the “fake” verification key.

I We embed our hard problem in the “fake” verification key.

I If “real” and “fake” keys and signatures are indistinguishable, the adversary will
produce a forgery that applies to the “fake” verification key with probability 1/2.

This “double-signature” idea does not work for most signature schemes. The only
previous construction is impractical.

Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H : {0, 1}∗ → G .

Verification key: y = ga.

Signature: z = H(m)a and a proof that logH(m) z = logg y .

Our construction:

I We combine two signatures using an OR-proof.

I The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.

Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H : {0, 1}∗ → G .

Verification key: y = ga.

Signature: z = H(m)a and a proof that logH(m) z = logg y .

Our construction:

I We combine two signatures using an OR-proof.

I The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.

Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H : {0, 1}∗ → G .

Verification key: y = ga.

Signature: z = H(m)a and a proof that logH(m) z = logg y .

Our construction:

I We combine two signatures using an OR-proof.

I The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.

Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H : {0, 1}∗ → G .

Verification key: y = ga.

Signature: z = H(m)a and a proof that logH(m) z = logg y .

Our construction:

I We combine two signatures using an OR-proof.

I The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.

Security Parameters and Performance

We compare our protocol with Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
exps. # bits time # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 5.4 1044 15.4

Our scheme II 17 4358 17 4358 17
DH+ECDSA 5 2306 13.5 3128 38.5

Summary

I First practical tightly-secure signature scheme with adaptive corruptions.

I First practical tightly-secure AKE.

I More efficient than ordinary signed Diffie-Hellman for large-scale deployment
settings

Questions?

	Introduction
	Diffie-Hellman
	Signatures

