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Authenticated Key Exchange
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. . .

Bob! →
→ k or rnd?
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→ k

Alice and Bob want to exchange a key.
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The adversary

I directs honest users’ key exchanges;

I can inspect keys or test keys (real-or-random);

I controls the network;

I and can adaptively corrupt users.



Authenticated Key Exchange

Alice Bob

Carol Dave

. . .

Bob! →
→ k or rnd?

← Carol!

→ k

Our goal: If

I Alice believes she has exchanged a key with Bob,

it must be true that

I Bob exchanged exactly the same key exactly once with Alice; and

I it looks random.



Why

Tight

Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A poly-time crypto adversary with non-negligible advantage
gives us
a poly-time problem solver with non-negligible advantage.

The scheme is secure if we believe no such solver exists.

I A reduction is tight if T1 ≈ T2 and ε1 ≈ ε2.

Why do we want them?

I Why not?

I Ensure that our system is not trivially breakable.

I Help us choose security parameters.
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Plain Diffie-Hellman
No Tampering + Static Corruption = No Problem
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When Alice talks to a corrupted Carol, we run Diffie-Hellman as usual.
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When Alice talks to an honest Bob, we simulate the conversation using a
Diffie-Hellman tuple (g , x , y , z).

Rerandomization gives us many tuples and a tight proof.



Plain Diffie-Hellman
No Tampering + Adaptive Corruption = Commitment Problem
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The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.

We can guess a communicating pair, but then tightness is lost.
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Our Modified Diffie-Hellman
No Tampering + Adaptive Corruption = No Problem
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I We hash the first message, and send x only after receiving the response.
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know if the response was honest or not. We get a tight reduction.
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I We hash the first message, and send x only after receiving the response.

I Note that there is an additional message flow compared to plain Diffie-Hellman.
The responder also learns the key later. This is often not a problem.



Security Parameters and Performance

We compare our protocol with plain Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For plain Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.
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Security Parameters and Performance

We compare our protocol with signed Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For signed Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
# exps. # bits time # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 5.4 1044 15.4
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No Tampering + Adaptive Corruption = A Need for Signatures
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I If the adversary is allowed to tamper with messages, this protocol obviously fails.

I The natural answer is to add the usual signatures.

I But this requires a signature scheme with a tight reduction!



Signatures with Tight Reductions

The standard security notion for signatures considers only a single key pair.

I There is a standard reduction to many key pairs, but it is non-tight.

I In fact, the loss in the standard reduction is quadratic in the number of users,
because of adaptive compromise.

The main obstacle to a tight reduction:

I We need to know every secret key to respond to compromise.

I We need to extract something from the eventual forgery.

Tight reductions are impossible for schemes with unique signatures or signing keys.
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“Double-signature” idea

The “double-signature” idea from Bader et al. (TCC 15).

I The user has “real” and a “fake” verification key.

I A signature consists of a real signature for the “real” verification key, and a fake
signature for the “fake” verification key.

I We embed our hard problem in the “fake” verification key.

I If “real” and “fake” keys and signatures are indistinguishable, the adversary will
produce a forgery that applies to the “fake” verification key with probability 1/2.

This “double-signature” idea does not work for most signature schemes. The only
previous construction is impractical.



Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H : {0, 1}∗ → G .

Verification key: y = ga.

Signature: z = H(m)a and a proof that logH(m) z = logg y .

Our construction:

I We combine two signatures using an OR-proof.

I The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.
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Security Parameters and Performance

We compare our protocol with Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For Diffie-Hellman:

I Small-scale: 216 users, 216 sessions and quadratic loss 264: NIST P-384.

I Large-scale: 232 users, 232 sessions and quadratic loss 2128: NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
# exps. # bits time # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 5.4 1044 15.4

Our scheme II 17 4358 17 4358 17
DH+ECDSA 5 2306 13.5 3128 38.5



Summary

I First practical tightly-secure signature scheme with adaptive corruptions.

I First practical tightly-secure AKE.

I More efficient than ordinary signed Diffie-Hellman for large-scale deployment
settings



Questions?
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