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Authenticated Key Exchange
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Alice and Bob want to exchange a key.
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Alice Bob

Alice and Bob and Carol and ... want to exchange keys.
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The adversary
> directs honest users' key exchanges;
» can inspect keys or test keys (real-or-random);
» controls the network;

» and can adaptively corrupt users.



Authenticated Key Exchange

Carol Dave

Alice Bob

Our goal: If
> Alice believes she has exchanged a key with Bob,
it must be true that
> Bob exchanged exactly the same key exactly once with Alice; and

» it looks random.



Why Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A poly-time crypto adversary with non-negligible advantage
gives us
a poly-time problem solver with non-negligible advantage.

The scheme is secure if we believe no such solver exists.

Why do we want them?
> Why not?
» Ensure that our system is not trivially breakable.

» Help us choose security parameters.
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Why Tight Security Proofs?

A typical security proof is a reduction from some problem to attacking our crypto:

A crypto adversary using time T1 with advantage ¢;
gives us
a problem solver using time T, with advantage e5.

The scheme is secure if we believe no such solver exists.
P> A reduction is tight if T; &= T, and €1 = €.

Why do we want them?
> Why not?
» Ensure that our system is not trivially breakable.

» Help us choose security parameters.
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When Alice talks to a corrupted Carol, we run Diffie-Hellman as usual.



Plain Diffie-Hellman

No Tampering + Static Corruption = No Problem
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When Alice talks to an honest Bob, we simulate the conversation using a
Diffie-Hellman tuple (g, x, y, z).

Rerandomization gives us many tuples and a tight proof.
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The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.
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Plain Diffie-Hellman

No Tampering + Adaptive Corruption = Commitment Problem

Caroll % x @ %

The commitment problem: the adversary may corrupt the responder after we have
committed by sending the first message.

We can guess a communicating pair, but then tightness is lost.
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> We hash the first message, and send x only after receiving the response.

» In the random oracle model, our reduction does not have to commit to x until we
know if the response was honest or not. We get a tight reduction.
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Our Modified Diffie-Hellman

No Tampering + Adaptive Corruption = No Problem

h=H(x=g?) h
Bobl - O ——n— "5 ————— 0O — Alice
k=2 Y —y=&— )
=Yy X X — k=x

> We hash the first message, and send x only after receiving the response.

> Note that there is an additional message flow compared to plain Diffie-Hellman.
The responder also learns the key later. This is often not a problem.
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Security Parameters and Performance
We compare our protocol with signed Diffie-Hellman.
We want 128-bit security. Our protocol will use the NIST P-256 curve.

For signed Diffie-Hellman:
» Small-scale: 2'° users, 216 sessions and quadratic loss 254: NIST P-384.

> Large-scale: 232 ysers, 232 sessions and quadratic loss 2128. NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
# exps. | # bits time | # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 54 | 1044 154
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Our Modified Diffie-Hellman

Ne Tampering + Adaptive Corruption = A Need for Signatures

h=H(x=g?) h
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» If the adversary is allowed to tamper with messages, this protocol obviously fails.
» The natural answer is to add the usual signatures.

» But this requires a signature scheme with a tight reduction!
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Signatures with Tight Reductions

The standard security notion for signatures considers only a single key pair.
» There is a standard reduction to many key pairs, but it is non-tight.
» In fact, the loss in the standard reduction is quadratic in the number of users,
because of adaptive compromise.
The main obstacle to a tight reduction:
> We need to know every secret key to respond to compromise.

> We need to extract something from the eventual forgery.

Tight reductions are impossible for schemes with unique signatures or signing keys.



“Double-signature” idea

The “double-signature” idea from Bader et al. (TCC 15).
> The user has “real” and a “fake” verification key.

> A signature consists of a real signature for the “real” verification key, and a fake
signature for the “fake” verification key.

» We embed our hard problem in the “fake” verification key.

» If “real” and “fake” keys and signatures are indistinguishable, the adversary will
produce a forgery that applies to the “fake” verification key with probability 1/2.

This “double-signature” idea does not work for most signature schemes. The only
previous construction is impractical.
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Our Signature Scheme

Our basis is the The Goh-Jarecki signature scheme, which uses a cyclic group G and a
hash function H: {0,1}* — G.

Verification key: y = g?.
Signature: z = H(m)? and a proof that logy,,) z = log, y.
Our construction:

» We combine two signatures using an OR-proof.

» The fake signature is just a random z and a simulated proof of equal discrete
logarithms.

The usual AKE security models require strongly unforgeable signatures. This scheme is
not strongly unforgeable, so we need to use a slightly different security model.



Security Parameters and Performance

We compare our protocol with Diffie-Hellman.

We want 128-bit security. Our protocol will use the NIST P-256 curve.

For Diffie-Hellman:

» Small-scale: 2'° users, 216 sessions and quadratic loss 254: NIST P-384.

> Large-scale: 232 ysers, 232 sessions and quadratic loss 2128. NIST P-521.

Exponentiation relative time cost: P-256 = 1, P-384 = 2.7, P-521 = 7.7.

small-scale large-scale
# exps. | # bits time | # bits time

Our scheme 2 770 2 770 2
Plain DH 2 770 54 | 1044 154
Our scheme I 17 4358 17 4358 17
DH-+ECDSA 5 2306 135 | 3128 38.5




Summary

» First practical tightly-secure signature scheme with adaptive corruptions.
> First practical tightly-secure AKE.

» More efficient than ordinary signed Diffie-Hellman for large-scale deployment
settings



Questions?
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