Private Circuits
A Modular Approach

Prabhanjan Ananth
Yuval Ishai
Amit Sahai
Surveillance Devices

- Credit card details
- SSN number
- Passwords
- PGP keys
- ...

Diagram showing surveillance devices connected to computer.
Surveillance Devices

Credit card details
SSN number
Passwords
PGP keys
...

Side Channel Attacks

Adversary can obtain partial information (leakage) about the computation
Leakage-Resilient Cryptography

GOAL

Protecting cryptographic schemes against side-channel attacks
This Work:

Leakage-Resilient Circuit Compilers
[ISW03]
Circuit Compilers

$C \xrightarrow{\text{Compile}} \widehat{C}$
Circuit Compilers

\[
\begin{align*}
 C & \xrightarrow{\text{Compile}} \hat{C} \\
 x & \xrightarrow{\text{Encode}} \hat{x} \\
 \hat{C}(\hat{x}) & \xrightarrow{\text{Decode}} C(x)
\end{align*}
\]
Remarks

- C, \hat{C} contain NAND gates
Remarks

- C, \hat{C} contain NAND gates

 - other bases for \hat{C} : results can be adapted
Remarks

- C, \widehat{C} contain NAND gates
 - other bases for \widehat{C}: results can be adapted

- Circuit compilation is deterministic
Remarks

• C, \hat{C} contain NAND gates
 - other bases for \hat{C}: results can be adapted

• Circuit compilation is deterministic
 - compiled circuit is reusable; no trapdoors
Remarks

• C, \hat{C} contain NAND gates

 - other bases for \hat{C} : results can be adapted

• Circuit compilation is deterministic

 - compiled circuit is reusable; no trapdoors

• \hat{C} can contain random-bit gates
Leakage-Resilient Circuit Compilers
Leakage-Resilient Circuit Compilers

\[\hat{C}(\hat{x}) \]
Leakage-Resilient Circuit Compilers

\[\hat{C}(\hat{x}) \]

Leakage on computation of \(\hat{C} \) on \(\hat{x} \)
What is *Leak*?

- **Global leakage**: *Leak* is function of entire computation

- **Local leakage**: adversary has partial view of computation
What is *Leak*?

- **Global leakage**: *Leak* is function of entire computation
 - low-complexity leakage classes \([\text{FRRTV11}, \text{Rot12}]\)

- **Local leakage**: adversary has partial view of computation
What is *Leak*?

- **Global leakage**: *Leak* is function of entire computation

 - *low-complexity leakage classes* [FRRTV11,Rot12]

- **Local leakage**: adversary has partial view of computation

 - *Wire-probing attacks* [ISW03,...]

 - *Split-state leakage-resilient compiler* [MR03,DP08,GR12,...]
What is *Leak*?

- **Global leakage:** *Leak* is function of entire computation
 - low-complexity leakage classes [*FRRTV11,Rot12*]

- **Local leakage:** adversary has partial view of computation
 - Wire-probing attacks [*ISW03,...*]
 - Split-state leakage-resilient compiler [*MR03,DP08,GR12,...*]
Wire-probing attacks

[ISW03, ...]

Subset of values in the computation leaked
Leakage-Resilience: Wire-probing attacks [ISW03,...]

Worst Case Leakage: threshold t

- Any t wires are leaked
Leakage-Resilience: Wire-probing attacks [ISW03,...]

Worst Case Leakage: threshold t

- Any t wires are leaked

Following [ISW03], several works study this setting... [RP10,KHL11,GM11,CPR13,CGPQR12,...]

MPC on Silicon
Applying MPC techniques to design secure hardware
Leakage-Resilience: Wire-probing attacks [ISW03,...]

Worst Case Leakage: threshold t

- Any t wires are leaked

Recent years: focus on randomness complexity

[IKLOPSZ13, BBPPTV16, BBPPTV17]
Randomness Complexity

Randomness Complexity = # of random-bit gates
Randomness Complexity

Randomness Complexity = # of random-bit gates

How many random bit-gates are needed?
Randomness Complexity

Randomness Complexity = # of random-bit gates

How many random bit-gates are needed?

[IKLOPSZ13] \(t^{3+\epsilon} \) random bit-gates sufficient, for any \(\epsilon > 0 \)
Randomness Complexity

Randomness Complexity = # of random-bit gates

How many random bit-gates are needed?

[IKLOPSZ13] $t^{3+\varepsilon}$ random bit-gates sufficient, for any $\varepsilon > 0$

Q: Is $t^{3+\varepsilon}$ tight?
Randomness Complexity

Randomness Complexity = # of random-bit gates

How many random bit-gates are needed?

[IKLOPSZ13] $t^{3+\epsilon}$ random bit-gates sufficient, for any $\epsilon > 0$

Q: Is $t^{3+\epsilon}$ tight?

NO!
Results: Worst-Case Probing

Leakage resilient compilers for s-sized circuits and threshold t
Results: Worst-Case Probing

Leakage resilient compilers for s-sized circuits and threshold t

- secure against t-wire probing attacks
Results: Worst-Case Probing

Leakage resilient compilers for s-sized circuits and threshold t

- secure against t-wire probing attacks

- compiled circuit has size $s \cdot poly(t)$
Results: Worst-Case Probing

Leakage resilient compilers for s-sized circuits and threshold t

- secure against t-wire probing attacks

- compiled circuit has size $s \cdot \text{poly}(t)$

- randomness complexity = $t^{1+\epsilon}$, for any $\epsilon > 0$
Leakage-Resilience: Random Wire-probing attacks
[ISWo3,Ajtai10,ADF16]
Leakage-Resilience: Random Wire-probing attacks

[ISW03, Ajtai10, ADF16]

Probabilistic Leakage: parameterized by (p,e)

- **Real World**
 - Every wire in $\widehat{C}(\hat{x})$ leaked with probability p

- **Ideal World**
 - Simulate leakage just given C

$\approx e$
Leakage-Resilience: Random Wire-probing attacks [ISW03,Ajtai10,ADF16]

Probabilistic Leakage: parameterized by \((p,e)\)

Real World

Every wire in \(\widehat{C}(\widehat{x})\)
leaked with probability \(p\)

Ideal World

Simulate leakage just given \(C\)

\(\approx\)

\(e\)

Related to Noisy Leakage Model: [CJJR99,FRRTV10,DDF15,....]
Prior works:
Random Wire-Probing Attacks

\[p = \text{constant}, \ e = \text{negligible} \]
Prior works:
Random Wire-Probing Attacks

\[p = \text{constant}, \ e = \text{negligible} \]

- [Ajtai10]:
 - highly complex
Prior works:
Random Wire-Probing Attacks

\[p = \text{constant}, \ e = \text{negligible} \]

- [Ajtai10]:
 - highly complex

- [ADF16]:
 - simplifies Ajtai’s result
 - still uses heavy machinery (AG codes and expanders)
Results: Random-Wire Probing

Leakage-resilient circuit compiler against \((p,e)\)-random probing attacks

- for some \(0 < p < 1\)

- \(e\) negligible in circuit size
Results: Random-Wire Probing

Leakage-resilient circuit compiler against \((p,e)\)-random probing attacks

- for some \(0 < p < 1\)
- \(e\) negligible in circuit size

\[p = 0.000065\]
Results: Random-Wire Probing

Leakage-resilient circuit compiler against \((p,e)\)-random probing attacks

- for some \(0 < p < 1\)

- \(e\) negligible in circuit size

- Simple composition-based approach; uses only elementary tools
Results: Random-Wire Probing

Leakage-resilient circuit compiler against \((p,e)\)-random probing attacks

- for some \(0 < p < 1\)

- \(e\) negligible in circuit size

Large gates: construction with \(p\) close to 1
Leakage Tolerance
Leakage Tolerance

\[\hat{x} = x \]

\[\widehat{C} \left(\hat{x} \right) = C(x) \]

Input encoding and output decoding algorithms are identity functions.
Leakage Tolerance

\[\hat{x} = x \]

\[\hat{C}(\hat{x}) = C(x) \]

Input encoding and output decoding algorithms are identity functions

This implies leakage-resilience!
Security Notions

A fraction of input and output will be leaked
Security Notions

A fraction of input and output will be leaked

- Worst-case: parameterized by t

Leakage simulatable given
- t bits of input
- t bits of output
Security Notions

A fraction of input and output will be leaked

• Probabilistic: *parameterized by* \((p, p', e)\)

<table>
<thead>
<tr>
<th>Leakage simulatable given</th>
</tr>
</thead>
<tbody>
<tr>
<td>- every bit of input (x) w/ probability (p')</td>
</tr>
<tr>
<td>- every bit of output (C(x)) w/ probability (p')</td>
</tr>
</tbody>
</table>
Results: Leakage Tolerance

Worst Case: t-wire probing attacks

- **construction:** randomness complexity $t^{1+\epsilon}$

- **lower bound:** require at least t random-bit gates
Results: Leakage Tolerance

Probabilistic Case: \((p,p',e)\)-random probing attacks

- \(p < 0.00006\), any \(p' > p\)
 - Exists!
- \(p > 0.8\), any \(p' > p\)
 - Doesn’t exist
Techniques
Goal for this talk

- Leakage-resilient circuit compiler
- \((p,e)\)-random probing attacks
Starting Point:
\(t\)-out-\(n \) Secure MPC

\(\Pi(C) \)

\(\hat{C} \)
Starting Point: t-out-n Secure MPC

\[\Pi(C) \]

Passive Corruption of P2

\[\hat{C} \]

Leak State of P2

\(x_1 \) \quad x_2 \quad x_n

\(P_1 \) \quad \ldots \quad P_n

\[\equiv \]
Leakage-Resilient Circuit Compiler

\[\hat{C} = \Pi(C') \]

- Input: shares of x
- Output: shares of C(x)
 - reconstruct x
 - compute C(x)
 - share C(x)
Leakage-Resilient Circuit Compiler

Security?

If at most t wires leaked then the leakage can be simulated
If at most t wires leaked then the leakage can be simulated

\[\text{Probability that more than } t \text{ wires are leaked} = \text{Simulation error } e \]

\[e \leq \exp \left(\frac{-(1 + t)^2}{12 \text{poly}(|C|) \cdot p} \right) \] (by Chernoff)
If at most t wires leaked then the leakage can be simulated

\[
\text{Probability that more than } t \text{ wires are leaked} = \text{Simulation error } e
\]

\[
\frac{\text{Simulation Error}}{e} \leq \exp \left(\frac{-(1 + t)^2}{12 \text{poly}(|C|) \cdot p} \right)
\]

(by Chernoff)

If p, $|C|$, t are \textbf{constants} then e is \textbf{constant}
Leakage-Resilient Circuit Compiler

If at most t wires leaked then the leakage can be simulated

\[\text{Probability that more than } t \text{ wires are leaked} = \text{Simulation error } e \]

\[\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot p} \leq \exp(\text{Simulation Error } e) \]

If $p, |C|, t$ are constants then e is constant

negligible??
(p, e_o)-Base Gadget G_0

Leakage-resilient circuit compiler

with

p = constant, e_o = constant
Reducing the Error

IDEA
- Start with t-out-n secure MPC
- Emulate every gate in t-out-n secure MPC with (p, e_o)-base gadget G_o
Reducing the Error

Security?

Leakage simulatable as long as at most t base gadgets fail
Reducing the Error

Security?

Leakage simulatable as long as at most t base gadgets fail

Probability that more than t base gadgets fail = Simulation error e_t
Reducing the Error

Security?

Leakage simulatable as long as at most t base gadgets fail

Probability that more than t base gadgets fail = Simulation error e_t

\[
\text{Simulation Error } e_t \leq \exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot e_0}\right)
\]

(by Chernoff)
Size?
Size?

\[|\text{Base Gadget}| \times |\Pi(C')| \]
IDEA
- Start with t-out-n secure MPC
- Emulate every gate in t-out-n secure MPC with \((p,e_{k-1})\)-gadget \(G_{k-1}\)

After \(k\) steps
After k steps: size?

Size of k^{th} Gadget G_k \[\leq |(k - 1)^{th} \text{ Gadget}| \times |\Pi(C')| \]

\[\leq |(k - 2)^{th} \text{ Gadget}| \times |\Pi(C')| \times |\Pi(C')| \]

\[\vdots \]

\[\leq (|\Pi(C')|)^k \]
After k steps: size?

Size of k^{th} Gadget G_k

\[\leq |(k - 1)^{th} \text{ Gadget}| \times |\Pi(C')| \]

\[\leq |(k - 2)^{th} \text{ Gadget}| \times |\Pi(C')| \times |\Pi(C')| \]

\[\ldots \]

\[\leq (|\Pi(C')|)^k \]

\[= \exp(O(k)) \quad \text{When } |C| \text{ is a constant...} \]
After k steps: error

Simulation Error e_k ≤ $\exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot e_{k-1}} \right)$

≤ $\exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot \exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot e_{k-2}} \right)} \right)$

≤ $\exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot \exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot \exp\left(\frac{-(1 + t)^2}{12\text{poly}(|C|) \cdot e_{k-3}} \right)} \right)} \right)$

...

≤ $\exp(-2^{O(k)})$

When $|C|$ is a constant...
When $|C|$ is constant,

$$e_k \leq \exp(-2^{O(k)})$$

Size of k^{th} Gadget $G_k \leq \exp(O(k))$
When $|C|$ is constant,
\[k = \log(|C|) \]

\[e_k \leq \exp(-2^{O(k)}) = \text{negl}(|C|) \]

\[\text{Size of } k^{th} \text{ Gadget } G_k \leq \exp(O(k)) = \text{poly}(|C|) \]
When $|C|$ is constant,

$$e_k \leq \exp(-2^{O(k)}) = \text{negl}(|C|)$$

Size of k^{th} Gadget $G_k \leq \exp(O(k)) = \text{poly}(|C|)$

Diagram:
- (Error)$^{-1}$ vs. Size as k increases.

$C = \text{NAND}$
To compile a large circuit C,

\[
\begin{array}{c}
\text{NAND} \\
\text{NAND} \\
\text{NAND} \\
\end{array}
\]
To compile a large circuit C, stitch together the gadgets for every gate in the circuit.
To compile a large circuit C,

Compositional issues?
Worst-Case Leakage: t-wire probing

- Similar approach: analysis much simpler
Worst-Case Leakage: t-wire probing

- Similar approach: analysis much simpler
- Randomness complexity:
Worst-Case Leakage: t-wire probing

• Similar approach: analysis much simpler

• Randomness complexity:
 • G_0 has constant randomness locality
Worst-Case Leakage: t-wire probing

- Similar approach: analysis much simpler
- Randomness complexity:
 - G_0 has constant randomness locality
 - G_k has randomness locality $O(k)$
Worst-Case Leakage: t-wire probing

• Similar approach: analysis much simpler

• Randomness complexity:

 • G_o has constant randomness locality

 • G_k has randomness locality $O(k)$

 • $k=O(\log(t))$
Worst-Case Leakage: t-wire probing

- Similar approach: analysis much simpler

- Randomness complexity:
 - G_0 has constant randomness locality
 - G_k has randomness locality $O(k)$
 - $k=O(\log(t))$
 - [IKLOPSZ13] “small” randomness locality implies “small” randomness complexity
Conclusion

- **Worst-case wire-probing attacks:**
 - Randomness complexity $t^{1+\epsilon}$ (optimal)
 - Prior to our work: randomness complexity $t^{3+\epsilon}$

- **Random wire-probing attacks:**
 - Simpler construction using elementary tools
Thanks!