Bauhaus-Universität Weimar

Rasta

A cipher with low ANDdepth and few ANDs per bit

Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor Leander, Eik List, Florian Mendel, Christian Rechberger

Crypto 2018

- Several designs minimize number of multiplications
 - FLIP [MJSC16]
 - Kreyvium [CCFLNPS16]
 - LowMC [ARSTZ15]
 - MiMC [AGRRT16]
- New optimization goals enable/require new design strategies

Challenges

Challenges for Rasta

- How to minimize ANDdepth and ANDs per bit at the same time?
- Especially low ANDdepth seems challenging
- How to analyze the outcome?

- Evaluated for varying inputs
- Part of the input potentially public
- Need high algebraic degree (ANDdepth) for protection
 - Against higher-order differentials, cube-like attacks, ...

$$O_1 = I_1 K_1 K_3 + I_2 I_3 K_4 + I_1 I_2 K_2 + I_1 I_2 + I_4 K_1 + K_2$$

$$O_1 = I_1I_2(K_2+1) + I_1K_1K_3 + I_2I_3K_4 + I_4K_1 + K_2$$

- Evaluated for varying inputs
- Part of the input potentially public
- Need high algebraic degree (ANDdepth) for protection
 - Against higher-order differentials, cube-like attacks, ...
- $O_1 = I_1 K_1 K_3 + I_2 I_3 K_4 + I_1 I_2 K_2 + I_1 I_2 + I_4 K_1 + K_2$
- $O_1 = I_1I_2(K_2+1) + I_1K_1K_3 + I_2I_3K_4 + I_4K_1 + K_2$

The Design

Rasta

- Stream cipher based on family of public permutations $P_{N,i}$
 - Each permutation evaluated once
 - Different permutations to generate key stream
 - Choice of permutation depends solely on public parameters
 - Public nonce N
 - Block counter i

Rasta

- Seed extendable output function (XOF) with public values
 - "Randomly" generates invertible matrices $M_{j,N,i}$
 - "Randomly" generates round constants c_{i,N,i}
 - To get affine layer $A_{j,N,i}(x) = M_{j,N,i} \cdot x \oplus c_{j,N,i}$
- Use of χ [Dae95] as non-linear function S

Rasta

- High-level idea to make relevant computations of the cipher independent of the key was first used in Flip [MJSC16]
- XOF does not influence relevant AND metric

Design Rationale

- Changing affine layers against
 - Differential and impossible-differential attacks
 - Cube and higher-order differential attacks
 - Integral attacks
- Block size, key size ≫ security level against
 - Attacks based on linear approximations
 - Attacks targeting polynomial system of equations

Choosing parameters

- Parameterizable problem regarding
 - Block size
 - Number of rounds
- Rasta
 - Base parameters on bounds and arguments
 - Conservative approach
- Agrasta
 - Aggressive parameter set of Rasta design strategy
 - Base parameters on best known attacks
 - Challenge for cryptanalysts

Choosing parameters

- Parameterizable problem regarding
 - Block size
 - Number of rounds
- Rasta
 - Base parameters on bounds and arguments
 - Conservative approach
- Agrasta
 - Aggressive parameter set of Rasta design strategy
 - Base parameters on best known attacks
 - Challenge for cryptanalysts

Choosing parameters

- Parameterizable problem regarding
 - Block size
 - Number of rounds
- Rasta
 - Base parameters on bounds and arguments
 - Conservative approach
- Agrasta
 - Aggressive parameter set of Rasta design strategy
 - Base parameters on best known attacks
 - Challenge for cryptanalysts

The Road to Rasta

Linear approximations

Bound probability that good approximations exist

Probability of good approximations

Solving non-linear multivariate polynomial equations

- General problem of solving non-linear systems of m equations with k unknowns
- Limiting the degree limits possible number of different monomials
- Increase k to prevent trivial linearization

Maximum number of different monomials

Instances of Rasta

Security level		Rounds				
	2	3	4	5	6	
80-bit	2 ^{21.2}	2 ¹²	327	327	219	
128-bit	2 ^{33.2}	2^{18}	1877	525	351	
256-bit	2 ^{65.2}	2 ³⁴	2 ^{18.8}	3 5 4 5	703	

The Road to Agrasta (Cryptanalysis)

Cryptanalysis

- SAT solver
 - Exhaustive search performs better for more than 1 round
- Experiments with toy versions
 - No obvious outliers
 - Various dedicated attacks
 - For various versions of SAS
 - Variants of 2-round Rasta where block size \approx security level
 - Variants of 3-round Rasta where block size \approx security level

Cryptanalysis of instances with 80-bit security

Cryptanalysis of instances with 80-bit security

Agrasta: More agressive parameters

Security level	Rounds	Block size
80-bit	4	81
128-bit	4	129
256-bit	5	257

Conclusion

Conclusion

- Rasta: conservative, based on bounds and arguments
- Agrasta: more aggressive, based on attacks
- New design approach
- Even conservative versions competitive in benchmark (HElib)
- Huge gap between known attacks and bounds

Bibliography I

[AGRRT16] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity ASIACRYPT 2016

[ARSTZ15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner Ciphers for MPC and FHE EUROCRYPT 2015

[CCFLNPS16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and R. Sirdey Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression

FSE 2016

Bibliography II

[Dae95] J. Daemen,

Cipher and hash function design – Strategies based on linear and differential

cryptanalysis,

http://jda.noekeon.org/JDA_Thesis_1995.pdf, PhD thesis, Katholieke Universiteit Leuven, 1995.

[MJSC16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet

Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts

EUROCRYPT 2016