SPDZ,«: Efficient MPC mod 2* for Dishonest Majority?

Ronald Cramer! Ivan Damgard?> Daniel Escudero® Peter Scholl> Chaoping Xing®

August 21, 2018
1CWI, Amsterdam
2Aarhus University, Denmark

3Nanyang Technological University, Singapore

aSupported by the European Research Council (ERC); the European Union’s Horizon 2020 research and innovation programme; the European

Union's Horizon 2020 research and innovation programme and the Danish Independent Research Council.

Introduction

Alice Bob

Trusted
Party

Charlie Dave

AARHUS
/v UNIVERSITY

Trusted

Party
N
~ -

/
Charlie Dave

AARHUS
/v UNIVERSITY

Alice z z Bob

Trusted
Party

~ ﬂ

Charlie Dave

AARHUS
/v UNIVERSITY

Alice Bob

Charlie Dave

AARHUS
/v UNIVERSITY

Many different approaches

Circuits over > Circuits over I,

e Garbled Circuits e BGW

e BMR e BeDOZa

e GMW e SPDZ

o ... | e MASCOT
°

AARHUS
/v UNIVERSITY

Many different approaches

Circuits over > Circuits over I,

e Garbled Circuits e BGW

e BMR e BeDOZa

e GMW e SPDZ

O coc | e MASCOT
o ---

Few works address circuits over Zy« with active security

AARHUS
/v UNIVERSITY

Why should we care about computation modulo 2%?

Closer to standard CPUs

e Efficiency improvement

e Simple compilation of existing 32/64-bit code into

arithmetic circuits.

e Simplified implementations

o / AARHUS 3
A NP UNIVERSITY

Why should we care about computation modulo 2%?

Closer to standard CPUs

e Efficiency improvement

e Simple compilation of existing 32/64-bit code into

arithmetic circuits.

e Simplified implementations -

Completeness result

e Filling a gap in the theory of MPC

e Just for fun!

o / AARHUS 3
A NP UNIVERSITY

Some works on this direction

Cramer et al,
EUROCRYPT 2003

Actively secure MPC over black-box
rings

Mostly a feasibility result, honest
majority

Bogdanov et al,
ESORICS 2008

CCS 2016

(Sharemind); Araki et al,

Computation over Z,k

Passive security, n=3 and t =1

Damgard, Orlandi,
Simkin, CRYPTO 2018

Compiler from passive to active security
for arbitrary rings

Small number of corruptions

o / AARHUS 4
A NP UNIVERSITY

Why is it so difficult?

Pratical protocols use information-theoretic MACs over finite fields.

Problems with Z«

e Zero-divisors!
e Non-invertible elements!

e (x,y) is not a 2-universal hash function!

Open problem

Design an efficient homomorphic authentication scheme modulo 2%

AARHUS 5
NP UNIVERSITY

Our contributions

1. A new additively homomorphic authentication scheme over Z

e Efficient
e Number-theoretic tricks
e Fine-grained analysis of batch-checking

O / AARHUS 6
m NP UNIVERSITY

Our contributions

1. A new additively homomorphic authentication scheme over Z

e Efficient
e Number-theoretic tricks
e Fine-grained analysis of batch-checking
2. Triples generation
e Communication complexity: O((k + s)?) bits per multiplication gate.
e Roughly twice the communication cost of MASCOT

O / AARHUS 6
m NP UNIVERSITY

Our contributions

1. A new additively homomorphic authentication scheme over Z
e Efficient
e Number-theoretic tricks
e Fine-grained analysis of batch-checking

2. Triples generation
e Communication complexity: O((k + s)?) bits per multiplication gate.
e Roughly twice the communication cost of MASCOT

3. A protocol for MPC over Z«

e O(|C|n) operations over Zyk+s
e Amortized communication complexity of online phase: O(|C|k) bits

O / AARHUS 6
m NP UNIVERSITY

SPDZ

Additive Secret sharing with MACs

We denote by [x] the following

|
e > x'=x. }
|

[o | . 5 g

e > o' = «, where « is a random global key '+ Pjhas x', o', m'
|
|
|
|
|

° Zmi:a-x.

AARHUS
/v UNIVERSITY

Additive Secret sharing with MACs

We denote by [x] the following
e > x' =x. 1
e > o/ = a, where « is a random global key i P; has x', o/, m'

° Zmi:a-x.

[x+y] =[x]+[y], [c-x] = c-[x] and [x+ c] = [x] + ¢ can be computed locally.

AARHUS
/v UNIVERSITY

Secure computation with preprocessing

Input phase

[xi] = (xi — ri) +[ri]
——

open

where x; are the inputs and (r;, [ri]) is preprocessed.

Addition gates
[x+y]=[x] + [v]

Multiplication gates

[x-yl = [c] + (x — a) [b] + (y — b) -[a] + (x — a) (y — b)
—— ~—— —— ——

open open open open

where ([a], [b], [c]) is preprocessed with ¢ = a- b. /V AARHUS
UNIVERSITY

Reconstruction of [x]

q

Alice Bob

Charlle Dave

0 / AARHUS 9
Ml A NP UNIVERSITY

Reconstruction of [x]

\

ﬁ
»

Charlie

o

“3

Y

20 @

éob
ﬂ
/

Dave

Charlie

Check that -7 ;z =0

AARHUS 9
A /v UNIVERSITY

Security Analysis

Adversarial behavior can cause: x' = x + 6 and z/ = z + A with 6 # 0.

= Adversary knows A and ¢ such that § - o = A.
= The adversary guesses o« = 6 - A
= Probability at most 1/|F|

AARHUS
/v UNIVERS\TY

Security Analysis

Adversarial behavior can cause: x' = x + 6 and z/ = z + A with 6 # 0.

= Adversary knows A and ¢ such that § - o = A.
= The adversary guesses o« = 6 - A
= Probability at most 1/|F|

This does not work modulo 2%

The equation A = a - § mod 2% can be satisfied with high probability

e Main problem: & may not be invertible modulo 2.

e For instance: 6 =21 and A =0

AARHUS
/v UNIVERS\TY

SPDZ

THE COMPUTATION IS DONE IN Zoykts BUT CORRECTNESS IS ONLY
GUARANTEED MODULO 2K

O / AARHUS 11
m NP UNIVERSITY

THE COMPUTATION IS DONE IN Zoykts BUT CORRECTNESS IS ONLY
GUARANTEED MODULO 2K

To share x € Zy:

We denote by [x] the following

o > x' =45 X with X' = x
o > o =, o, where o € Zps is a random P; has x',o/,m €

global key Liok+s

o > m=sa-X.

x = y mod 2¢ will be abbreviated by x = y

AARHUS 11
/v UNIVERSITY

=k+s

O A /v

AARHUS
UNIVERSITY

12

k+s + oot =k+s

AARHUS 12
/ NP UNIVERSITY

Security Analysis

o / AARHUS 13
m NP UNIVERSITY

Security Analysis

e There is an error & x' = x + § with

AARHUS
/v UNIVERS\TY

Security Analysis

e There is an error & x' = x + § with
e The check passes <

AARHUS
/v UNIVERS\TY

k+s r---- X F---- Skts ----

o / AARHUS 14
A NP UNIVERSITY

=k+s

v < k

O N /v

AARHUS
UNIVERSITY

14

=k+s—v

(k+s)—v>s

AARHUS 14
A /v UNIVERSITY

(k+s)—v>s

=k+s—v

O N /o

AARHUS
UNIVERSITY

14

Security Analysis

e There is an error & x' = x + § with
e The check passes <

AARHUS
/v UNIVERS\TY

Security Analysis

There is an error & x' = x + § with
The check passes <

(oz . 2% =kas—v %) where v is the largest integer such that 2¥|§ (we have that
v < k)

But 6/2¥ is odd! So we can invert: (oz =fis_vy (2@%)_1 . 2%)

Therefore, the adversary knows the last k + s — v bits of a, which happens with

probability at most .

AARHUS
/v UNIVERS\TY

SPDZ,«: Protocol overview

Offline phase (preprocessing)

1. Random authenticated values
2. Multiplication triples
3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

e Checking individual MACs
e Batch MAC-checking

AARHUS 16
NP UNIVERSITY

SPDZ,«: Protocol overview

Offline phase (preprocessing)

1. Random authenticated values
2. Multiplication triples
3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

e Checking individual MACs
e Batch MAC-checking

AARHUS 16
NP UNIVERSITY

Batch MAC-checking

Many values are opened... it is expensive to check each one of them!

O / AARHUS 17
m NP UNIVERSITY

Many values are opened... it is expensive to check each one of them!

Typical solution over fields

To check correctness of xi, ..., x;, only check correctness of x = . rj - x;.

e Individual errors §; get aggregated § =) . ri - §;

° for at least one / implies with high probability

AARHUS
/v UNIVERS\TY

Many values are opened... it is expensive to check each one of them!

Typical solution over fields

To check correctness of xi, ..., x;, only check correctness of x = . rj - x;.

e Individual errors §; get aggregated § =) . ri - §;

° for at least one / implies with high probability

Key idea for SPDZ«

Do the same! (analysis gets tricky...)

AARHUS
/v UNIVERS\TY

Batch MAC-checking in SPDZ:

e Let E be the event: § - o =445 A

Naive approach

o AARHUS 18
A /v UNIVERSITY

Batch MAC-checking in SPDZ:

e Let E be the event: § - o =445 A

Naive approach

Fine-grained analysis

Pr[E] < =S + 2—5—1+Iogs

o AARHUS 18
A /v UNIVERSITY

Multiplication Triples

General Idea (high level)

Preprocess triples ([a], [b], [¢]) such that a, b are random and ¢ = a- b.

Key idea (two parties)

(31+32)'(b1+b2) :alb1+a2b2+alb2+32b1

Share mixed products using OT

Similar to the MASCOT triple generation protocol (Keller et al, CCS 2016). Based on

Oblivious Transfer.

AARHUS
/v UNIVERS\TY

General Idea (high level)

.OT:[c=yysa-b]

[

2. Combine: Take inner product with a random vector: (r,c) =4s (r,a)-b

e MASCOT: a is a vector of (field) elements
e SPDZ,«: a is a vector of bits

o2

Authenticate: Shares are authenticated (using a MAC functionality)

4. Sacrifice: Check correctness

AARHUS
/v UNIVERS\TY

Conclusions

We develop an efficient dishonest majority MPC protocol for computation over

Z2k .

e New number-theoretic tricks introduced to overcome the difficulties of working

over a ring as Zox:

e Zero-divisors!

e Non-invertible elements!
e Taking dot product with random vectors is not a 2-universal function!

First efficient, information-theoretic secure, homomorphic authentication scheme

modulo 2.

21

O / AARHUS
m NP UNIVERSITY

Implementation and performance test

e Preprocessing is theoretically slower than MASCOT

e SPDZ,«'s online phase is expected to be faster in practice.

AARHUS 22
/v UNIVERSITY

Implementation and performance test

e Preprocessing is theoretically slower than MASCOT

e SPDZ,«'s online phase is expected to be faster in practice.

J

Develop sub-protocols for basic primitives

Inequality and equality tests, bit comparisons, bit decomposition, shifting, etc.

e Highly non-trivial! Dividing by 2 is not possible directly.

AARHUS 22
NP UNIVERSITY

Implementation and performance test

e Preprocessing is theoretically slower than MASCOT

e SPDZ,«'s online phase is expected to be faster in practice.

J

Develop sub-protocols for basic primitives

Inequality and equality tests, bit comparisons, bit decomposition, shifting, etc.

e Highly non-trivial! Dividing by 2 is not possible directly.

Extending security model

MPC over Z,« in the honest majority setting.

AARHUS 22
NP UNIVERSITY

Thank you!

Supplementary Material

A Secret-sharing-based protocol

23

A Secret-sharing-based protocol

X y

{ Input phase J

I

[x] [v]

23

A Secret-sharing-based protocol

X Il

X y

{ Input phase J

I

[x] [v]

[x©y]

23

A Secret-sharing-based protocol

X Il

X y [2]

{ Input phase } { Output phase J
| J
[x] [yl z

[x©y]

23

Batch MAC-checking in SPDZ,

e Let E be the event: - =415 A

e Let w be the largest integer such that 2" divides §.

<2=° <1

PrlE] = Pr[E|0 < w < k] -Pr[0 < w < K]

+ZPI’[E|W =k+ C] PI’[W =k + C] S[=S +27571+|og5

c=1

§2cfs §2—c—1

24

PrlE[0 <w < k] <2°°

We have that

e o mod 2T57 s fully determined

e This happens with probability at most 2% —k=5 < 2-5.

23

Prio <w < k] <1

26

PrlElw =k +c] <2°°, ce{l,... s}

Follows from the first proof (writing w = k + ¢)

27

Prlw =k +c] <2< ce{l,...,s}

Since 2% divides 9, we have that § =, 0, which implies

t—1
Xt 0t =w *ZX:"&'
i=1

S/

Let v < k — 1 be the largest integer such that 2" divides d;, then

_ (S
Xt =w—v 2v 2v'

is fully determined, this happens with probability at most

Since x+ mod 2%~V

V=W < 2—c—1'

28

Batch MAC Checking

Procedure for opening and checking the MACs on ¢ shared values [z1],..., [x¢].

Procedure BatchCheck

Let 27, m?, a7 be P;’s share, MAC share and MAC key share for [2;].

Open phase:

1.
2.

Each party P; broadcasts for each i the value & = zf mod 2.
The parties compute #; = »>7_, #] mod okts,

MAC check phase:

3.

4.

The parties call Frand(Z5s) to sample public random values xi,. .., Xt € Zas
and then compute § = 3°!_, xi - &; mod 2°F.

Each party P; samples 17 <—pg Zss, and then calls Fyac on input (s, s,r’, MAC)
to obtain [r]. Denote P;’s MAC share on r by .

1‘7—1‘7

. Each party P; computes p’ = Y/, x; - p} mod 2° where p! = # and

broadcasts 7’ = p’ + 7 mod 2°.

6. Parties compute p = Z;lzl 7 mod 2°.

. Each party P; computes m’ = 22:1 Xi -m] mod ks and 27 =m! — o - —

28 p-a? 42507 mod 2", Then it commits to 27, and then all parties open
their commitments.

. Finally, the parties verify that Z;L:] 27 =k4s 0. If the check passes then the

parties accept the values #; mod 2¥, otherwise they abort.

29

Triples - Part 1

Protocol ITripie

The integer parameter 7 = 4s + 2k specifies the size of the input triple used to
generate each output triple.

Multiply:

1. Each party P; samples a' = (ai,...,a}) <r (Z2)", b' < g Zor+s
2. Every ordered pair of parties (P;, P;) does the following:

(a)
(b)

(0)
(d)

Both parties call Fgor with P; as the receiver and P; as the sender. P;
inputs the bits (ai,...,a) € (Z2)".

Pj receives ¢p. a7, € Zor+s and P receives s’ = ¢ for h =
NELS . i,

1,...,7.

Pj sends dy" = qp}, — q7), + b mod 2" for h=1,...,7.

P sets t),) = 5,7 +aj, - d}* mod 25FS for h =1,...,7. In particular

) =wss sy’ +ap - d}”
Sive dl) +ah- (a —alh V)
Skts Qo+ anb’
Therefore, the following equation holds modulo 2°** on each entry

0N

Ji
0,1 ay

i i i

ly 9.2 5%
= . +b .

2,7 Jit *

tz q0.+ ar

30

Triples - Part 2

(e) P; sets cﬁ"j = (ti’j,t;’j, o L t27) € (Zyr+s)™.
(F) Pjsets ¢l ;= — (a1, @2 -+ 40)7) € (Lak+s).
(g) The following congruence holds

i i i g
Cij +Cij=ktsa b,

where the modulo congruence is component-wise.
3. Each party P; computes:

c=a b+ Z(cﬁ,j +¢5;) mod 2°F*
JF#i

31

Triples - Part 3

Protocol IItipe (continuation)

Combine:
1. Sample 7,7 <—r Frand ((Zok+s)7).
2. Each party P; sets

a' = Zrha’ [A] mod 2", ¢ = Z rnc’[h] mod 2FF* and
h=1 =

a' = thal [h] mod okt &= fre'[h] mod okt
h=1 h=1

Authenticate: Each party P; runs Fuac on their shares to obtain authenticated
shares [a], [b], [c],], [¢].

Sacrifice: Check correctness of the triple ([a], [b], [¢]) by sacrificing [a], [€].

1. Sample t := Frand (Z2¢).

. Execute the procedure AffineComb to compute [p] =t - [a] — [a]

. Execute the procedure BatchCheck on [p] to obtain p.

. Execute the procedure AffineComb to compute [o] =t - [c] — [¢] — [b] - p.

. Run BatchCheck on [o] to obtain o, and abort if this value is not zero

modulo 2¢+°.

Output: Generate using Fvac a random value [r] with r € Zjs. Output

([a], [B], [c + 2"7]) as a valid triple.

T W N

32

Communication

. Input cost Triple cost
Protocol Message space Stat. security (kbit) (kbit)
Ziy32 26 3.17 79.87
Ours Zio64 57 12.48 319.49
Zor2s 57 16.64 557.06
32-bit field 32 1.06 51.20
MASCOT 64-bit field 64 4.16 139.26
128-bit field 64 16.51 360.44

Table 1. Communication cost of our protocol and previous protocols for various rings
and fields, and statistical security parameters

83

Suite Mult (par)|Mult (seq)|Input-Mult-Output|Input (par)
SPDZ 1148ms 328ms 2118ms 335ms
SPDZ,x 236ms 318ms 674ms 166ms
SPDZ,. (Optimized)| 165ms - - -
Improvement 4.86 1.03 3.14 2.01

Table 1. Primitive non-linear operations.

Performance (1)

34

Performance (2)

Protocol 1 Thread|5 Threads|10 threads|20 threads
Mascot (k = 128) 1031 1551 1862 1952
SPDZ,. (k = 64, s = 64) 1199 1932 2047 2076
SPDZyx (k = 64, s = 96) - - - -

Table 2. Multiplication triple generation (throughput in triples per second).

We ran triple generation on two t2-medium tier AWS EC2 instances, each
instance with 2 vCPUs and 4GB memory, connected over a 800 Mbits/sec link.

We generate 500 elements per thread both for Mascot and SPDZqx.

Total amount of bits sent per triple, per party in two-party setting: (k +
25)(9s + 4k) + 2(k + 2s) = (k + 25)(9s + 4k + 2), where 2(k + 2s) comes from
the sacrifice step.

85

	Introduction
	SPDZ
	SPDZ2k
	Batch MAC-checking
	Multiplication Triples
	Conclusions
	Supplementary Material

