
SPDZ2k : Efficient MPC mod 2k for Dishonest Majoritya

Ronald Cramer1 Ivan Damg̊ard2 Daniel Escudero2 Peter Scholl2 Chaoping Xing3

August 21, 2018

1CWI, Amsterdam

2Aarhus University, Denmark

3Nanyang Technological University, Singapore

a
Supported by the European Research Council (ERC); the European Union’s Horizon 2020 research and innovation programme; the European

Union’s Horizon 2020 research and innovation programme and the Danish Independent Research Council.

Introduction

MPC

Trusted

Party

Trusted

Party

Alice Bob

Charlie Dave

x1 x2

x3 x4

z z

z z

1

MPC

Trusted

Party

Trusted

Party

Alice Bob

Charlie Dave

x1 x2

x3 x4

z z

z z

1

MPC

Trusted

Party

Trusted

Party

Alice Bob

Charlie Dave

x1 x2

x3 x4

z z

z z

1

MPC

Trusted

Party

Trusted

Party

Alice Bob

Charlie Dave

x1 x2

x3 x4

z z

z z

1

Many different approaches

Circuits over F2

• Garbled Circuits

• BMR

• GMW

• · · ·

Circuits over Fp

• BGW

• BeDOZa

• SPDZ

• MASCOT

• · · ·

Few works address circuits over Z2k with active security

2

Many different approaches

Circuits over F2

• Garbled Circuits

• BMR

• GMW

• · · ·

Circuits over Fp

• BGW

• BeDOZa

• SPDZ

• MASCOT

• · · ·

Few works address circuits over Z2k with active security

2

Why should we care about computation modulo 2k?

Closer to standard CPUs

• Efficiency improvement

• Simple compilation of existing 32/64-bit code into

arithmetic circuits.

• Simplified implementations

Completeness result

• Filling a gap in the theory of MPC

• Just for fun!

3

Why should we care about computation modulo 2k?

Closer to standard CPUs

• Efficiency improvement

• Simple compilation of existing 32/64-bit code into

arithmetic circuits.

• Simplified implementations

Completeness result

• Filling a gap in the theory of MPC

• Just for fun!

3

Some works on this direction

Cramer et al,

EUROCRYPT 2003

Actively secure MPC over black-box

rings

Mostly a feasibility result, honest

majority

Bogdanov et al,

ESORICS 2008

(Sharemind); Araki et al,

CCS 2016

Computation over Z2k Passive security, n = 3 and t = 1

Damg̊ard, Orlandi,

Simkin, CRYPTO 2018

Compiler from passive to active security

for arbitrary rings
Small number of corruptions

4

Why is it so difficult?

Pratical protocols use information-theoretic MACs over finite fields.

Problems with Z2k

• Zero-divisors!

• Non-invertible elements!

• 〈x , y〉 is not a 2-universal hash function!

Open problem

Design an efficient homomorphic authentication scheme modulo 2k

5

Our contributions

1. A new additively homomorphic authentication scheme over Z2k

• Efficient

• Number-theoretic tricks

• Fine-grained analysis of batch-checking

2. Triples generation

• Communication complexity: O((k + s)2) bits per multiplication gate.

• Roughly twice the communication cost of MASCOT

3. A protocol for MPC over Z2k

• O(|C |n) operations over Z2k+s

• Amortized communication complexity of online phase: O(|C |k) bits

6

Our contributions

1. A new additively homomorphic authentication scheme over Z2k

• Efficient

• Number-theoretic tricks

• Fine-grained analysis of batch-checking

2. Triples generation

• Communication complexity: O((k + s)2) bits per multiplication gate.

• Roughly twice the communication cost of MASCOT

3. A protocol for MPC over Z2k

• O(|C |n) operations over Z2k+s

• Amortized communication complexity of online phase: O(|C |k) bits

6

Our contributions

1. A new additively homomorphic authentication scheme over Z2k

• Efficient

• Number-theoretic tricks

• Fine-grained analysis of batch-checking

2. Triples generation

• Communication complexity: O((k + s)2) bits per multiplication gate.

• Roughly twice the communication cost of MASCOT

3. A protocol for MPC over Z2k

• O(|C |n) operations over Z2k+s

• Amortized communication complexity of online phase: O(|C |k) bits

6

SPDZ

Additive Secret sharing with MACs

We denote by [x] the following

•
∑

x i = x .

•
∑
αi = α, where α is a random global key

•
∑

mi = α · x .

Pi has x i , αi , mi

Important!

[x + y] = [x] + [y], [c · x] = c · [x] and [x + c] = [x] + c can be computed locally.

7

Additive Secret sharing with MACs

We denote by [x] the following

•
∑

x i = x .

•
∑
αi = α, where α is a random global key

•
∑

mi = α · x .

Pi has x i , αi , mi

Important!

[x + y] = [x] + [y], [c · x] = c · [x] and [x + c] = [x] + c can be computed locally.

7

Secure computation with preprocessing

Input phase

[xi] = (xi − ri)︸ ︷︷ ︸
open

+[ri]

where xi are the inputs and (ri , [ri]) is preprocessed.

Addition gates

[x + y] = [x] + [y]

Multiplication gates

[x · y] = [c] + (x − a)︸ ︷︷ ︸
open

·[b] + (y − b)︸ ︷︷ ︸
open

·[a] + (x − a)︸ ︷︷ ︸
open

(y − b)︸ ︷︷ ︸
open

where ([a], [b], [c]) is preprocessed with c = a · b. 8

Reconstruction of [x]

Alice Bob

Charlie Dave

x1 x2

x3 x4

∑n
i=1 x

i = x

Alice Bob

Charlie Dave

z1 = m1 − α1x

z2 = m2 − α2x

z3 = m3 − α3x

z4 = m4 − α4x

Check that
∑n

i=1 zi = 0

9

Reconstruction of [x]

Alice Bob

Charlie Dave

x1 x2

x3 x4

∑n
i=1 x

i = x

Alice Bob

Charlie Dave

z1 = m1 − α1x

z2 = m2 − α2x

z3 = m3 − α3x

z4 = m4 − α4x

Check that
∑n

i=1 zi = 0

9

Security Analysis

Adversarial behavior can cause: x ′ = x + δ and z ′ = z + ∆ with δ 6= 0.

⇒ Adversary knows ∆ and δ such that δ · α = ∆.

⇒ The adversary guesses α = δ−1 ·∆
⇒ Probability at most 1/|F|

This does not work modulo 2k

The equation ∆ ≡ α · δ mod 2k can be satisfied with high probability

• Main problem: δ may not be invertible modulo 2k .

• For instance: δ = 2k−1 and ∆ = 0

10

Security Analysis

Adversarial behavior can cause: x ′ = x + δ and z ′ = z + ∆ with δ 6= 0.

⇒ Adversary knows ∆ and δ such that δ · α = ∆.

⇒ The adversary guesses α = δ−1 ·∆
⇒ Probability at most 1/|F|

This does not work modulo 2k

The equation ∆ ≡ α · δ mod 2k can be satisfied with high probability

• Main problem: δ may not be invertible modulo 2k .

• For instance: δ = 2k−1 and ∆ = 0

10

SPDZ2k

Our solution

The computation is done in Z2k+s but correctness is only

guaranteed modulo 2k

To share x ∈ Z2k :

We denote by [x] the following

•
∑

x i ≡k+s x
′ with x ′ ≡k x

•
∑
αi ≡k+s α, where α ∈ Z2s is a random

global key

•
∑

mi ≡k+s α · x ′.

Pi has x i , αi ,mi ∈
Z2k+s

x ≡ y mod 2` will be abbreviated by x ≡` y

11

Our solution

The computation is done in Z2k+s but correctness is only

guaranteed modulo 2k

To share x ∈ Z2k :

We denote by [x] the following

•
∑

x i ≡k+s x
′ with x ′ ≡k x

•
∑
αi ≡k+s α, where α ∈ Z2s is a random

global key

•
∑

mi ≡k+s α · x ′.

Pi has x i , αi ,mi ∈
Z2k+s

x ≡ y mod 2` will be abbreviated by x ≡` y 11

x1 x2 xn x ′

+ + · · · + ≡k+sk + s

k

s

x

12

x1 x2 xn x ′

+ + · · · + ≡k+sk + s

k

s

x

12

Security Analysis

• There is an error ⇔ x ′ = x + δ with δ 6≡k 0

• The check passes ⇔ α · δ ≡k+s ∆

• α · δ
2v ≡k+s−v

∆
2v where v is the largest integer such that 2v |δ (we have that

v < k)

• But δ/2v is odd! So we can invert: α ≡k+s−v
(

δ
2v

)−1 · ∆
2v

• Therefore, the adversary knows the last k + s − v bits of α, which happens with

probability at most 2v−k−s < 2−s .

13

Security Analysis

• There is an error ⇔ x ′ = x + δ with δ 6≡k 0

• The check passes ⇔ α · δ ≡k+s ∆

• α · δ
2v ≡k+s−v

∆
2v where v is the largest integer such that 2v |δ (we have that

v < k)

• But δ/2v is odd! So we can invert: α ≡k+s−v
(

δ
2v

)−1 · ∆
2v

• Therefore, the adversary knows the last k + s − v bits of α, which happens with

probability at most 2v−k−s < 2−s .

13

Security Analysis

• There is an error ⇔ x ′ = x + δ with δ 6≡k 0

• The check passes ⇔ α · δ ≡k+s ∆

• α · δ
2v ≡k+s−v

∆
2v where v is the largest integer such that 2v |δ (we have that

v < k)

• But δ/2v is odd! So we can invert: α ≡k+s−v
(

δ
2v

)−1 · ∆
2v

• Therefore, the adversary knows the last k + s − v bits of α, which happens with

probability at most 2v−k−s < 2−s .

13

α δ ∆

v < k

0
...

0

0
...

0
α δ

2v
∆
2v

(k + s)− v > s

α (
δ

2v

)−1 ∆
2v

≡k+s−v ×(k + s)− v > s

× ≡k+s

≡k+s−v

k + s

14

α δ ∆

v < k

0
...

0

0
...

0

α δ
2v

∆
2v

(k + s)− v > s

α (
δ

2v

)−1 ∆
2v

≡k+s−v ×(k + s)− v > s

× ≡k+s

≡k+s−v

k + s

14

α δ ∆

v < k

0
...

0

0
...

0

α δ
2v

∆
2v

(k + s)− v > s

α (
δ

2v

)−1 ∆
2v

≡k+s−v ×(k + s)− v > s

×

≡k+s

≡k+s−vk + s

14

α δ ∆

v < k

0
...

0

0
...

0
α δ

2v
∆
2v

(k + s)− v > s

α (
δ

2v

)−1 ∆
2v

≡k+s−v ×(k + s)− v > s

× ≡k+s≡k+s−vk + s

14

Security Analysis

• There is an error ⇔ x ′ = x + δ with δ 6≡k 0

• The check passes ⇔ α · δ ≡k+s ∆

• α · δ
2v ≡k+s−v

∆
2v where v is the largest integer such that 2v |δ (we have that

v < k)

• But δ/2v is odd! So we can invert: α ≡k+s−v
(

δ
2v

)−1 · ∆
2v

• Therefore, the adversary knows the last k + s − v bits of α, which happens with

probability at most 2v−k−s < 2−s .

15

Security Analysis

• There is an error ⇔ x ′ = x + δ with δ 6≡k 0

• The check passes ⇔ α · δ ≡k+s ∆

• α · δ
2v ≡k+s−v

∆
2v where v is the largest integer such that 2v |δ (we have that

v < k)

• But δ/2v is odd! So we can invert: α ≡k+s−v
(

δ
2v

)−1 · ∆
2v

• Therefore, the adversary knows the last k + s − v bits of α, which happens with

probability at most 2v−k−s < 2−s .

15

SPDZ2k : Protocol overview

Offline phase (preprocessing)

1. Random authenticated values

2. Multiplication triples

3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

• Checking individual MACs

• Batch MAC-checking

16

SPDZ2k : Protocol overview

Offline phase (preprocessing)

1. Random authenticated values

2. Multiplication triples

3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

• Checking individual MACs

• Batch MAC-checking

16

Batch MAC-checking

Motivation

Many values are opened... it is expensive to check each one of them!

Typical solution over fields

To check correctness of x1, . . . , xt , only check correctness of x =
∑

i ri · xi .

• Individual errors δi get aggregated δ =
∑

i ri · δi
• δi 6= 0 for at least one i implies δ 6= 0 with high probability

Key idea for SPDZ2k

Do the same! (analysis gets tricky...)

17

Motivation

Many values are opened... it is expensive to check each one of them!

Typical solution over fields

To check correctness of x1, . . . , xt , only check correctness of x =
∑

i ri · xi .

• Individual errors δi get aggregated δ =
∑

i ri · δi
• δi 6= 0 for at least one i implies δ 6= 0 with high probability

Key idea for SPDZ2k

Do the same! (analysis gets tricky...)

17

Motivation

Many values are opened... it is expensive to check each one of them!

Typical solution over fields

To check correctness of x1, . . . , xt , only check correctness of x =
∑

i ri · xi .

• Individual errors δi get aggregated δ =
∑

i ri · δi
• δi 6= 0 for at least one i implies δ 6= 0 with high probability

Key idea for SPDZ2k

Do the same! (analysis gets tricky...)

17

Batch MAC-checking in SPDZ2k

• Let E be the event: δ · α ≡k+s ∆

Naive approach

Pr[E] ≤ 2−
s
2

Fine-grained analysis

Pr[E] ≤ 2−s + 2−s−1+log s

18

Batch MAC-checking in SPDZ2k

• Let E be the event: δ · α ≡k+s ∆

Naive approach

Pr[E] ≤ 2−
s
2

Fine-grained analysis

Pr[E] ≤ 2−s + 2−s−1+log s

18

Multiplication Triples

General Idea (high level)

Preprocess triples ([a], [b], [c]) such that a, b are random and c ≡k a · b.

Key idea (two parties)

(
a1 + a2

)
·
(
b1 + b2

)
= a1b1 + a2b2 + a1b2 + a2b1

Share mixed products using OT

Similar to the MASCOT triple generation protocol (Keller et al, CCS 2016). Based on

Oblivious Transfer.

19

General Idea (high level)

1. OT: c ≡k+s a · b

2. Combine: Take inner product with a random vector: 〈r , c〉 ≡k+s 〈r , a〉 · b

• MASCOT: a is a vector of (field) elements

• SPDZ2k : a is a vector of bits

3. Authenticate: Shares are authenticated (using a MAC functionality)

4. Sacrifice: Check correctness

20

Conclusions

We develop an efficient dishonest majority MPC protocol for computation over

Z2k .

• New number-theoretic tricks introduced to overcome the difficulties of working
over a ring as Z2k :

• Zero-divisors!

• Non-invertible elements!

• Taking dot product with random vectors is not a 2-universal function!

First efficient, information-theoretic secure, homomorphic authentication scheme

modulo 2k .

21

Future work

Implementation and performance test

• Preprocessing is theoretically slower than MASCOT

• SPDZ2k ’s online phase is expected to be faster in practice.

Develop sub-protocols for basic primitives

Inequality and equality tests, bit comparisons, bit decomposition, shifting, etc.

• Highly non-trivial! Dividing by 2 is not possible directly.

Extending security model

MPC over Z2k in the honest majority setting.

22

Future work

Implementation and performance test

• Preprocessing is theoretically slower than MASCOT

• SPDZ2k ’s online phase is expected to be faster in practice.

Develop sub-protocols for basic primitives

Inequality and equality tests, bit comparisons, bit decomposition, shifting, etc.

• Highly non-trivial! Dividing by 2 is not possible directly.

Extending security model

MPC over Z2k in the honest majority setting.

22

Future work

Implementation and performance test

• Preprocessing is theoretically slower than MASCOT

• SPDZ2k ’s online phase is expected to be faster in practice.

Develop sub-protocols for basic primitives

Inequality and equality tests, bit comparisons, bit decomposition, shifting, etc.

• Highly non-trivial! Dividing by 2 is not possible directly.

Extending security model

MPC over Z2k in the honest majority setting.

22

Thank you!

22

Supplementary Material

A Secret-sharing-based protocol

Input phase

x y

[x] [y]

�

[x] [y]

[x � y]

Output phase

[z]

z

23

A Secret-sharing-based protocol

Input phase

x y

[x] [y]

�

[x] [y]

[x � y]

Output phase

[z]

z

23

A Secret-sharing-based protocol

Input phase

x y

[x] [y]

�

[x] [y]

[x � y]

Output phase

[z]

z

23

A Secret-sharing-based protocol

Input phase

x y

[x] [y]

�

[x] [y]

[x � y]

Output phase

[z]

z

23

Batch MAC-checking in SPDZ2k

• Let E be the event: δ · α ≡k+s ∆

• Let w be the largest integer such that 2w divides δ.

Pr[E] =

≤2−s︷ ︸︸ ︷
Pr[E |0 ≤ w ≤ k] ·

≤1︷ ︸︸ ︷
Pr[0 ≤ w ≤ k]

+
s∑

c=1

Pr[E |w = k + c]︸ ︷︷ ︸
≤2c−s

·Pr[w = k + c]︸ ︷︷ ︸
≤2−c−1

≤ 2−s + 2−s−1+log s

24

Pr[E |0 ≤ w ≤ k] ≤ 2−s

We have that

α ≡k+s−w

(
δ

2w

)−1

· ∆

2w

• α mod 2k+s−w is fully determined

• This happens with probability at most 2w−k−s ≤ 2−s .

25

Pr[0 ≤ w ≤ k] ≤ 1

. . .

26

Pr[E |w = k + c] ≤ 2c−s , c ∈ {1, . . . , s}

Follows from the first proof (writing w = k + c)

27

Pr[w = k + c] ≤ 2−c−1, c ∈ {1, . . . , s}

Since 2w divides δ, we have that δ ≡w 0, which implies

χt · δt ≡w −
t−1∑
i=1

χi · δi︸ ︷︷ ︸
S ′

Let v ≤ k − 1 be the largest integer such that 2v divides δt , then

χt ≡w−v

(
δt
2v

)−1

· S
′

2v
.

Since χt mod 2w−v is fully determined, this happens with probability at most

2v−w ≤ 2−c−1.

28

Batch MAC Checking

29

Triples - Part 1

30

Triples - Part 2

31

Triples - Part 3

32

Communication

33

Performance (1)

34

Performance (2)

35

	Introduction
	SPDZ
	SPDZ2k
	Batch MAC-checking
	Multiplication Triples
	Conclusions
	Supplementary Material

