

RUHR-UNIVERSITÄT BOCHUM The Algebraic Group Model and its Applications

Crypto, 22.8.18

Georg Fuchsbauer¹, Eike Kiltz², and **Julian Loss**² ¹ Inria, ENS, CNRS, PSL, France ² Ruhr University Bochum, Germany

- § Best case: proof in *standard model* (no simplifying assumptions).
- § Often, this is not possible (or just very hard to do).

- § Given cryptographic scheme, in what model do we prove it secure?
- § Best case: proof in *standard model* (no simplifying assumptions).
- § Often, this is not possible (or just very hard to do).
- § Must resort to *idealized models* instead.

Idealizing the Real World- But How?

\S Goal: 'abstract away' as many non-essential properties as possible.

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 3/24

Idealizing the Real World- But How?

RUB

§ Prove statements in simplified, idealized model.

Idealizing the Real World- But How?

- \S Goal: 'abstract away' as many non-essential properties as possible.
- § Prove statements in simplified, idealized model.
- § Intuition: If model is good, proofs are meaningful in the real world.

Notable Examples of Idealized Models

§ Random Oracle Model (ROM): idealizes hash functions.

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 4/24

Notable Examples of Idealized Models

- § Random Oracle Model (ROM): idealizes hash functions.
- § Generic Group Model (GGM): idealizes cyclic groups.

Generic Group Algorithms

Let $\mathbb{G} = \langle G, \circ, g \rangle$. A is *generic*, if it only computes over \mathbb{G} as follows: § Given $a, b \in \mathbb{G}$, compute $c := a \circ b$

Generic Group Algorithms

Let $\mathbb{G} = \langle G, \circ, g \rangle$. A is *generic*, if it only computes over \mathbb{G} as follows:

- § Given $a, b \in \mathbb{G}$, compute $c := a \circ b$
- § Given $a, b \in \mathbb{G}$, check whether a = b.

Generic Group Algorithms: Pros

§ Work in every cyclic group.

Generic Group Algorithms: Pros

- $_{\S}$ Work in every cyclic group.
- § Information theoretic lower bounds (DLP, CDH, DDH etc.)

Generic Group Algorithms: Pros

- $_{\S}$ Work in every cyclic group.
- § Information theoretic lower bounds (DLP, CDH, DDH etc.)
- § Fitting abstraction for (some) elliptic curves.

Generic Group Algorithms: Cons

§ Representation-based exploits: Computing Jacobi symbols, index calculus-based attacks, computing pairings etc.

Generic Group Algorithms: Cons

- § Representation-based exploits: Computing Jacobi symbols, index calculus-based attacks, computing pairings etc.
- § Deriving lower bounds is difficult/tedious.

Generic Group Algorithms: Cons

- § Representation-based exploits: Computing Jacobi symbols, index calculus-based attacks, computing pairings etc.
- § Deriving lower bounds is difficult/tedious.
- § Lower bounds are not 'modular'.

This Talk: Algebraic Group Model (AGM)

§ Strictly weaker model assumptions than GGM.

- § Strictly weaker model assumptions than GGM.
- $_{\S}$ GGM \leq AGM \leq Standard Model.

- § Strictly weaker model assumptions than GGM.
- $_{\S}$ GGM \leq AGM \leq Standard Model.
- § Lies in between GGM and standard model.

- § Strictly weaker model assumptions than GGM.
- $_{\S}$ GGM \leq AGM \leq Standard Model.
- § Lies in between GGM and standard model.
- § Provides improved abstraction of reality over GGM.

- § Strictly weaker model assumptions than GGM.
- $_{\S}$ GGM \leq AGM \leq Standard Model.
- § Lies in between GGM and standard model.
- § Provides improved abstraction of reality over GGM.
- § Still allows easy proofs.

Algebraic Algorithms

- § A takes as input list \vec{L} of group elements.
- § Outputs representation \vec{z} of X, i.e., $X = \prod_i L_i^{z_i}$.

Algebraic Algorithms: Some Background

§ First introduced by Paillier and Vergnaud in 05.

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 10/24

Algebraic Algorithms: Some Background

- § First introduced by Paillier and Vergnaud in 05.
- § Algebraic reductions mostly used for meta-reductions.

Algebraic Algorithms: Some Background

- § First introduced by Paillier and Vergnaud in 05.
- § Algebraic reductions mostly used for meta-reductions.
- § Some exceptions: E.g. Abdalla et al. (S&P '15) consider an algebraic *adversary* in one of their proofs

New Idea: Algebraic Group Model

 ${}_{\S}\,$ All algorithms are modeled as algebraic, i.e., also adversaries in security experiments.

New Idea: Algebraic Group Model

- $\ensuremath{\$}$ All algorithms are modeled as algebraic, i.e., also adversaries in security experiments.
- § This gives strictly weaker model assumptions than the GGM.

Relation to the GGM

RUB

Lemma 1

Every generic algorithm is an algebraic algorithm.

- $_{\$}$ A generic algorithm A computes any output from elements in the list \vec{L} via $\circ.$
- § Thus, it must know a representation \vec{z} for every output.
- \S We assume that it outputs \vec{z} 'for free'.

Bounds for GGM via Reduction in AGM

Theorem 2 (Composition)

§ Suppose that:

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 13/24

Bounds for GGM via Reduction in AGM

Theorem 2 (Composition)

§ Suppose that: • true $\stackrel{\text{GGM}}{\longrightarrow} S$

Bounds for GGM via Reduction in AGM

Theorem 2 (Composition)

§ Suppose that: \circ true $\stackrel{\text{GGM}}{\longrightarrow} S$ \circ S $\stackrel{\text{AGM}}{\longrightarrow} T$

Bounds for GGM via Reduction in AGM

Theorem 2 (Composition)

§ Suppose that: \circ true $\xrightarrow{\text{GGM}} S$ $\circ S \xrightarrow{\text{AGM}} T$ § Then true $\xrightarrow{\text{GGM}} T$, if reduction in AGM is a generic algorithm.

Proofs in AGM vs. Proofs in GGM

- $\S\,$ GGM: Lower bounds for algorithms via combinatorics.
- § AGM: Reductions.

- ${}_{\S}$ How do we prove reductions in the AGM?
- \S Want to make use of representation vector \vec{z} .

Using the AGM: Example

RUB

- § CDH: Given g, g^x, g^y , compute g^{xy} .
- § DLP: Given g^u , compute u.
- 8 Lemma : DLP ⇔ CDH
- § Breaking CDH algebraically is as hard as solving DLP.

Challenger: $U = g^{u}$ Adversary $\xrightarrow{g, g^{x}, g^{y}}$ $\xrightarrow{g^{xy}, z = (a, b, c)}$

§
$$g^{xy} = (g^x)^a (g^y)^b g^c$$
 is equivalent to $xy \equiv_p xa + yb + c$.

Challenger: $U = g^{u}$ Adversary $\begin{array}{c} g, g^{x}, g^{y} \\ \hline g^{xy}, z = (a, b, c) \end{array}$

$$g^{xy} = (g^x)^a (g^y)^b g^c \text{ is equivalent to } xy \equiv_p xa + yb + c.$$

$$g^x x \equiv_p \frac{yb+c}{y-a} \implies : \text{ Can either solve for } x \text{ or } a \equiv_p y.$$

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 17/24

Challenger: $U = g^u$

Adversary

$$g, g^{x}, g^{y}$$

$$g^{xy}, z = (a, b, c)$$

§
$$g^{xy} = (g^x)^a (g^y)^b g^c$$
 is equivalent to $xy \equiv_p xa + yb + c$.
§ $x \equiv_p \frac{yb+c}{y-a} \implies$: Can either solve for x or $a \equiv_p y$.
§ Idea: Set $U = g^x$ OR $U = g^y$ and choose the other randomly.

Challenger: $U = g^u$

Adversary

$$g, g^{x}, g^{y}$$

$$g^{xy}, z = (a, b, c)$$

§
$$g^{xy} = (g^x)^a (g^y)^b g^c$$
 is equivalent to $xy \equiv_p xa + yb + c$.
§ $x \equiv_p \frac{yb+c}{y-a} \implies$: Can either solve for x or $a \equiv_p y$.
§ Idea: Set $U = g^x$ OR $U = g^y$ and choose the other randomly.

- § Idea: Set U
- § Succeeds with probability 1/2.

- § Strong DH (SDH): CDH assumption with additional DDH oracle to 'fixed base' g^{\times} .
- § Related to Gap DH (but slightly stronger).

- § Strong DH (SDH): CDH assumption with additional DDH oracle to 'fixed base' g^{\times} .
- § Related to Gap DH (but slightly stronger).
- § Used for DHIES, Hashed ElGamal etc.

- § Strong DH (SDH): CDH assumption with additional DDH oracle to 'fixed base' g^{x} .
- § Related to Gap DH (but slightly stronger).
- 8 Used for DHIES. Hashed ElGamal etc.
- § Lemma : DLP $\stackrel{\text{AGM}}{\Leftrightarrow}$ SDH

Equivalence to DLP in AGM: LRSW

- § Basis of Camenisch-Lysyanskaya signature.
- § Used for RFID Tags, Anonymous Credentials, etc.
- \S Lemma : DLP $\stackrel{\texttt{AGM}}{\Leftrightarrow}$ LRSW

§ Tight reduction of BLS (short, pairing based signature) to DLP.

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 20/24

Some more Results

§ *Tight* reduction of BLS (short, pairing based signature) to DLP. § q-type variant of DDH $\stackrel{\text{AGM}}{\Longrightarrow}$ ElGamal CCA1

Some more Results

- § Tight reduction of BLS (short, pairing based signature) to DLP.
- \S q-type variant of DDH $\stackrel{AGM}{\Longrightarrow}$ ElGamal CCA1
- \S q-type variant of DLP $\stackrel{\text{AGM}}{\Longrightarrow}$ Groth's ZK-SNARK (EC16)

§ AGM is ideal for analyzing group based crypto systems that would otherwise be analyzed in GGM.

- $_{\$}$ AGM is ideal for analyzing group based crypto systems that would otherwise be analyzed in GGM.
- § Examples: Structure preserving signatures, ZK-SNARKS.

§ AGM is in between GGM and Standard Model.

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 22/24

RUB

- § AGM is in between GGM and Standard Model.
- \S Reduction based, easy to work with.

Summary

- § AGM is in between GGM and Standard Model.
 - \S Reduction based, easy to work with.
 - \S Captures a broad class of important algorithms.

Summary

- § AGM is in between GGM and Standard Model.
- \S Reduction based, easy to work with.
- § Captures a broad class of important algorithms.
- § Circumvents impossibility results for black box reductions.

Summary

RUB

- § AGM is in between GGM and Standard Model.
- § Reduction based, easy to work with.
- § Captures a broad class of important algorithms.
- § Circumvents impossibility results for black box reductions.
- § Results from AGM carry over to GGM.

§ Meta-theorems to cover broad class of assumptions?

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18 23/24

RUB

- § Meta-theorems to cover broad class of assumptions?
- § Automated proof tools in AGM?

- § Meta-theorems to cover broad class of assumptions?
- § Automated proof tools in AGM?
- § Possibility results along the lines of Dent (Asiacrypt '02)?

Open Questions

- § Meta-theorems to cover broad class of assumptions?
- § Automated proof tools in AGM?
- § Possibility results along the lines of Dent (Asiacrypt '02)?
- \S Proofs for composite order groups?

Open Questions

- § Meta-theorems to cover broad class of assumptions?
- § Automated proof tools in AGM?
- § Possibility results along the lines of Dent (Asiacrypt '02)?
- § Proofs for composite order groups?
- § Extend to Decisional Assumptions.

Many thanks for your attention!

QUESTIONS?

The Algebraic Group Model and its Applications|Horst Görtz Institute for IT-Security|Crypto|22.8.18

Horst Görtz Institut