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Security: Yo, my : (pk, E(pk, mo; o)) = (pk. E(pk, m1; 1))
TDF
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One-wayness Security: (ik, F(ik, x)) 7 x is hard for random ik, x.
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TDF vs PKE

Main Difference

» No randomness used in the evaluation algorithm of TDF.

» TDF implies the existence of PKE. [Yao'82, GM'82].

» TDF impossible from PKE w.r.t. black-box techniques
[GMR'01].
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y1 = F(iki, x1),y2 = F(ik2, x2)

Prove that x; = XQ‘

Bob: Compute x; = F~1(tky, y1) and check if y» = F(ika, x1).
» Application: black-box constructions of CCA-secure PKE
([PW’08,RS'09, etc]).

PKE instead of TDF

» Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]
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» Factoring
» DDH and LWE [PWO08]

Big gap from PKE!

This talk: We can do it from CDH.
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G: group of order p and generator g.
Computational Diffie-Hellman (CDH)

» Hard to compute g* from (g, g%, g”), where x,y < Zp.

Decisional Diffie-Hellman (DDH)

> (g,8%,8,8Y) = (8,85, 8", 87), where x,y,z + Z,,
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Why is CDH Preferable?

» CDH is a weaker assumption.

» There are groups in which CDH is conjectured to be hard but
DDH is easy (e.g., Z%, groups with pairings).



Main Challenge in Building TDF from DH-Related
Assumptions

Why is constructing TDF from Diffie-Hellman assumptions difficult?



Main Challenge in Building TDF from DH-Related
Assumptions

Why is constructing TDF from Diffie-Hellman assumptions difficult?
It doesn’t naturally offer trapdoors!
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TDF from DDH (Failed Idea Using ElGamal

Encryption)
(G, g). |G| = p.
pk=g% pk c= (g, pk" -m) r?
lk - G m—| E c— D
Sk = r Sk = m

Main bottleneck in designing TDFs

» Recovering r: solving the Discrete Log!
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DDH-Based TDF [Peikert-Waters’'08]

(G, &) |G| = p.
> ik = g" where M € Z*" (and invertible) and tk = M~

gM

L
XE{O,l}nHF—'y:gMXT /
thk =M1

» Can solve discrete-log as x; ...x, € {0,1}!

One-wayness

» Matrix pseudorandomness [NR97]: DDH implies g™ = gM’,
where M is a random invertible matrix and M’ is a random

rank-one matrix.

» CDH is not known to imply rank indistinguishability.
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Our Methodology for building TDF from CDH

» Derandomizing a class of PKE

» TDFs from recyclable targeted key-encapsulation schemes
(Recyclable Targeted KEMs) [DG'17, BBS'03]

Plan for the Rest of the talk

» Define Recyclable Targeted KEM

» CDH = Recyclable Targeted KEM (Not discussed. See
[DG'17].)

» Recyclable Targeted KEM = TDF



Key-Encapsulation Mechanism
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e is always a single bit.
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Recyclable Targetted KEM

Targeting Property [DG'17]

» E(pk, (i, b);r) = (ct,e)

» D(sk,ct) = e if (pk,sk) € K(1*) and sk; = b.

» Security: (pk, sk, ct, e) = (pk, sk, ct, €'), where
(ct,e) & E(pk, (i,1 —sk;); r) and € & {0,1}.

Recyclability

ct does not depend on pk. So
E(pk, (7, b); r) = (E1((/; b); r), E2(pk, (i, b); r)) = (ct, e)
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Simple construction for recovering the first bit of the input.
r . t E1((i=1,b=0);n
> th= () and ik= () = (B50)
» F(ik,sk): let pk = G(sk).
» if sk; = 0, then return (pk, D(sk, ct1))
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Simple construction for recovering the first bit of the input.

cty

> tk= (1) and ik = (&
» F(ik,sk): let pk = G(sk).

» F~L. Check for a match:
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» if sk; = 0, then return (pk,
» if sky =1, then return (pk
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tk= (7 ) andik= (&) = (B0

F(ik,sk): let pk = G(sk).
» if sky = 0, then return (pk, D(sk, ct1)) =
» if sky =1, then return (pk, D

F~1: Check for a match:

v

v

v

» Can recover skj with probability 1/2. This can be boosted via
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e if pk = G(sk) and sk; = b

Ei > ct pk —| Ez

Simple construction for recovering the first bit of the input.
E1((i=1,b=0);n)

tk = (:}) and ik = (22) = (El((izl,bzl);r{)>

v

» F(ik,sk): let pk = G(sk).
» if sky = 0, then return (pk, D(sk, ct1)) =
» if sky = 1, then return (pk, D(sk,ct})) =
» F~1: Check for a match:

» Can recover skj with probability 1/2. This can be boosted via
repetition.
Not clear how to prove security!

» Fix: Put a random bit in the place you cannot apply D.

v



Recovering the First Bit

» Gen(1%): tk = (2) and

G fct _( E1((i=1,b=0);r1)
ik = (a’i) = <E1((i:1,b:l);é))
» F(ik,sk||b1): let pk = G(sk). Then:

» if sk; = 0 then My := (D(SE’ Ctl))
1

» if sk; =1 then My := (D(slljlct’)>
» =t
Return Y = (pk, My).
» F1(tk,Y):



Summary and Future Work

» A Construction of TDFs from CDH.

» Extended forms of TDFs from CDH (e.g., lossy trapdoor
functions)

» Trapdoor Permutations from CDH/DDH?
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