
Trapdoor functions from the Computational
Diffie-Hellman Assumption

Sanjam Garg1 Mohammad Hajiabadi1,2

1University of California, Berkeley

2University of Virginia

August 22, 2018

1 / 18

Classical Public-Key Crypto

2 / 18

Classical Public-Key Crypto

2 / 18

PKE and TDF

PKE

1k G

pk

sk

m E

pk

r

c c D

sk

m

Security: ∀m0,m1 : (pk,E (pk,m0; r0))
c≡ (pk,E (pk,m1; r1))

TDF

1k G

ik

tk

x F

ik

y y F−1

tk

x

One-wayness Security: (ik,F(ik , x))
?→ x is hard for random ik, x .

3 / 18

PKE and TDF

PKE

1k G

pk

sk

m E

pk

r

c c D

sk

m

Security: ∀m0,m1 : (pk,E (pk,m0; r0))
c≡ (pk,E (pk,m1; r1))

TDF

1k G

ik

tk

x F

ik

y y F−1

tk

x

One-wayness Security: (ik,F(ik , x))
?→ x is hard for random ik, x .

3 / 18

PKE and TDF

PKE

1k G

pk

sk

m E

pk

r

c c D

sk

m

Security: ∀m0,m1 : (pk,E (pk,m0; r0))
c≡ (pk,E (pk,m1; r1))

TDF

1k G

ik

tk

x F

ik

y y F−1

tk

x

One-wayness Security: (ik ,F(ik, x))
?→ x is hard for random ik, x .

3 / 18

PKE and TDF

PKE

1k G

pk

sk

m E

pk

r

c c D

sk

m

Security: ∀m0,m1 : (pk,E (pk,m0; r0))
c≡ (pk,E (pk,m1; r1))

TDF

1k G

ik

tk

x F

ik

y y F−1

tk

x

One-wayness Security: (ik ,F(ik , x))
?→ x is hard for random ik, x .

3 / 18

TDF vs PKE

Main Difference

I No randomness used in the evaluation algorithm of TDF.

Relations

I TDF implies the existence of PKE. [Yao’82, GM’82].

I TDF impossible from PKE w.r.t. black-box techniques
[GMR’01].

4 / 18

TDF vs PKE

Main Difference

I No randomness used in the evaluation algorithm of TDF.

Relations

I TDF implies the existence of PKE. [Yao’82, GM’82].

I TDF impossible from PKE w.r.t. black-box techniques
[GMR’01].

4 / 18

TDF vs PKE

Main Difference

I No randomness used in the evaluation algorithm of TDF.

Relations

I TDF implies the existence of PKE. [Yao’82, GM’82].

I TDF impossible from PKE w.r.t. black-box techniques
[GMR’01].

4 / 18

TDF Usefulness

ik1, ik2 ik1, ik2 and tk1

y1 = F (ik1, x1), y2 = F (ik2, x2)

Prove that x1 = x2

Bob: Compute x1 = F−1(tk1, y1) and check if y2 = F(ik2, x1).

I Application: black-box constructions of CCA-secure PKE
([PW’08,RS’09, etc]).

PKE instead of TDF

I Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]

5 / 18

TDF Usefulness

ik1, ik2 ik1, ik2 and tk1

y1 = F (ik1, x1), y2 = F (ik2, x2)

Prove that x1 = x2

Bob: Compute x1 = F−1(tk1, y1) and check if y2 = F(ik2, x1).

I Application: black-box constructions of CCA-secure PKE
([PW’08,RS’09, etc]).

PKE instead of TDF

I Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]

5 / 18

TDF Usefulness

ik1, ik2 ik1, ik2 and tk1

y1 = F (ik1, x1), y2 = F (ik2, x2)

Prove that x1 = x2

Bob: Compute x1 = F−1(tk1, y1) and check if y2 = F(ik2, x1).

I Application: black-box constructions of CCA-secure PKE
([PW’08,RS’09, etc]).

PKE instead of TDF

I Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]

5 / 18

TDF Usefulness

ik1, ik2 ik1, ik2 and tk1

y1 = F (ik1, x1), y2 = F (ik2, x2)

Prove that x1 = x2

Bob: Compute x1 = F−1(tk1, y1) and check if y2 = F(ik2, x1).

I Application: black-box constructions of CCA-secure PKE
([PW’08,RS’09, etc]).

PKE instead of TDF

I Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]

5 / 18

TDF Usefulness

ik1, ik2 ik1, ik2 and tk1

y1 = F (ik1, x1), y2 = F (ik2, x2)

Prove that x1 = x2

Bob: Compute x1 = F−1(tk1, y1) and check if y2 = F(ik2, x1).

I Application: black-box constructions of CCA-secure PKE
([PW’08,RS’09, etc]).

PKE instead of TDF

I Consistency check: require some kind of proof (e.g., NIZK).
[BFY90,NY90]

5 / 18

What assumptions are sufficient for TDFs?

I Factoring

I DDH and LWE [PW08]

Big gap from PKE!
This talk: We can do it from CDH.

6 / 18

What assumptions are sufficient for TDFs?

I Factoring

I DDH and LWE [PW08]

Big gap from PKE!

This talk: We can do it from CDH.

6 / 18

What assumptions are sufficient for TDFs?

I Factoring

I DDH and LWE [PW08]

Big gap from PKE!
This talk: We can do it from CDH.

6 / 18

CDH and DDH

G: group of order p and generator g .

Computational Diffie-Hellman (CDH)

I Hard to compute g xy from (g , g x , g y), where x , y ← Zp.

Decisional Diffie-Hellman (DDH)

I (g , g x , g y , g xy)
c≡ (g , g x , g y , g z), where x , y , z ← Zp

7 / 18

CDH and DDH

G: group of order p and generator g .

Computational Diffie-Hellman (CDH)

I Hard to compute g xy from (g , g x , g y), where x , y ← Zp.

Decisional Diffie-Hellman (DDH)

I (g , g x , g y , g xy)
c≡ (g , g x , g y , g z), where x , y , z ← Zp

7 / 18

CDH and DDH

G: group of order p and generator g .

Computational Diffie-Hellman (CDH)

I Hard to compute g xy from (g , g x , g y), where x , y ← Zp.

Decisional Diffie-Hellman (DDH)

I (g , g x , g y , g xy)
c≡ (g , g x , g y , g z), where x , y , z ← Zp

7 / 18

Why is CDH Preferable?

I CDH is a weaker assumption.
I There are groups in which CDH is conjectured to be hard but

DDH is easy (e.g., Z∗p, groups with pairings).

8 / 18

Why is CDH Preferable?

I CDH is a weaker assumption.
I There are groups in which CDH is conjectured to be hard but

DDH is easy (e.g., Z∗p, groups with pairings).

8 / 18

Main Challenge in Building TDF from DH-Related
Assumptions

Why is constructing TDF from Diffie-Hellman assumptions difficult?

It doesn’t naturally offer trapdoors!

9 / 18

Main Challenge in Building TDF from DH-Related
Assumptions

Why is constructing TDF from Diffie-Hellman assumptions difficult?
It doesn’t naturally offer trapdoors!

9 / 18

TDF from DDH (Failed Idea Using ElGamal
Encryption)

(G, g), |G| = p.

1k G

pk = gα

sk = α

m E

pk

r

c = (g r , pk r ·m)

c D

sk = α m

r?

Main bottleneck in designing TDFs

I Recovering r : solving the Discrete Log!

10 / 18

TDF from DDH (Failed Idea Using ElGamal
Encryption)

(G, g), |G| = p.

1k G

pk = gα

sk = α

m E

pk

r

c = (g r , pk r ·m)

c D

sk = α m

r?

Main bottleneck in designing TDFs

I Recovering r : solving the Discrete Log!

10 / 18

TDF from DDH (Failed Idea Using ElGamal
Encryption)

(G, g), |G| = p.

1k G

pk = gα

sk = α

m E

pk

r

c = (g r , pk r ·m)

c D

sk = α m

r?

Main bottleneck in designing TDFs

I Recovering r : solving the Discrete Log!

10 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

DDH-Based TDF [Peikert-Waters’08]

(G, g), |G| = p.

I ik = gM where M ∈ Zn×n
p (and invertible) and tk = M−1

x ∈ {0, 1}n F

gM

y = gMxT

y F−1

tk = M−1

(g x1 , . . . , g xn)

I Can solve discrete-log as x1 . . . xn ∈ {0, 1}!

One-wayness

I Matrix pseudorandomness [NR97]: DDH implies gM c≡ gM′
,

where M is a random invertible matrix and M ′ is a random
rank-one matrix.

I CDH is not known to imply rank indistinguishability.

11 / 18

1 Background
Introduction
Main Challenges

2 Our TDF Construction
Our Methodology
Base Primitive: Recyclable Targeting KEM
TDF from Recyclable Targeting KEM

3 Summary and Future Work

12 / 18

Our Methodology for building TDF from CDH

I Derandomizing a class of PKE

I TDFs from recyclable targeted key-encapsulation schemes
(Recyclable Targeted KEMs) [DG’17, BBS’03]

Plan for the Rest of the talk

I Define Recyclable Targeted KEM

I CDH ⇒ Recyclable Targeted KEM (Not discussed. See
[DG’17].)

I Recyclable Targeted KEM ⇒ TDF

13 / 18

Our Methodology for building TDF from CDH

I Derandomizing a class of PKE
I TDFs from recyclable targeted key-encapsulation schemes

(Recyclable Targeted KEMs) [DG’17, BBS’03]

Plan for the Rest of the talk

I Define Recyclable Targeted KEM

I CDH ⇒ Recyclable Targeted KEM (Not discussed. See
[DG’17].)

I Recyclable Targeted KEM ⇒ TDF

13 / 18

Our Methodology for building TDF from CDH

I Derandomizing a class of PKE
I TDFs from recyclable targeted key-encapsulation schemes

(Recyclable Targeted KEMs) [DG’17, BBS’03]

Plan for the Rest of the talk

I Define Recyclable Targeted KEM

I CDH ⇒ Recyclable Targeted KEM (Not discussed. See
[DG’17].)

I Recyclable Targeted KEM ⇒ TDF

13 / 18

Key-Encapsulation Mechanism

1k G

pk

sk

��ZZm E

pk

r

c

e

c D

sk

��ZZm

e

e is always a single bit.

14 / 18

Recyclable Targetted KEM

Targeting Property [DG’17]

I E(pk, (i , b); r) = (ct, e)

I D(sk, ct) = e if (pk, sk) ∈ K(1λ) and ski = b.

I Security: (pk, sk, ct, e)
c≡ (pk, sk, ct, e ′), where

(ct, e)
$←− E(pk, (i , 1− ski); r) and e ′

$←− {0, 1}.

Recyclability

ct does not depend on pk. So
E(pk, (i , b); r) = (E1((i , b); r),E2(pk, (i , b); r)) = (ct, e)

15 / 18

Recyclable Targetted KEM

Targeting Property [DG’17]

I E(pk, (i , b); r) = (ct, e)

I D(sk, ct) = e if (pk, sk) ∈ K(1λ) and ski = b.

I Security: (pk, sk, ct, e)
c≡ (pk, sk, ct, e ′), where

(ct, e)
$←− E(pk, (i , 1− ski); r) and e ′

$←− {0, 1}.

Recyclability

ct does not depend on pk. So
E(pk, (i , b); r) = (E1((i , b); r),E2(pk, (i , b); r)) = (ct, e)

15 / 18

Recyclable Targetted KEM

Targeting Property [DG’17]

I E(pk, (i , b); r) = (ct, e)

I D(sk, ct) = e if (pk, sk) ∈ K(1λ) and ski = b.

I Security: (pk, sk, ct, e)
c≡ (pk, sk, ct, e ′), where

(ct, e)
$←− E(pk, (i , 1− ski); r) and e ′

$←− {0, 1}.

Recyclability

ct does not depend on pk. So
E(pk, (i , b); r) = (E1((i , b); r),E2(pk, (i , b); r)) = (ct, e)

15 / 18

Recyclable Targetted KEM

Targeting Property [DG’17]

I E(pk, (i , b); r) = (ct, e)

I D(sk, ct) = e if (pk, sk) ∈ K(1λ) and ski = b.

I Security: (pk, sk, ct, e)
c≡ (pk, sk, ct, e ′), where

(ct, e)
$←− E(pk, (i , 1− ski); r) and e ′

$←− {0, 1}.

Recyclability

ct does not depend on pk. So
E(pk, (i , b); r) = (E1((i , b); r),E2(pk, (i , b); r)) = (ct, e)

15 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)

I F(ik, sk): let pk = G(sk).
I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk):

let pk = G(sk).
I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1))

= (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)

I Can recover sk1 with probability 1/2. This can be boosted via
repetition.

I Not clear how to prove security!
I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.

I Not clear how to prove security!
I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

E1

(i ∈ [n], b ∈ {0, 1})

r

ct pk E2

r e

sk D

ct e

if pk = G(sk) and ski = b

Simple construction for recovering the first bit of the input.

I tk =
(

r1
r ′1

)
and ik =

(
ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk): let pk = G(sk).

I if sk1 = 0, then return (pk,D(sk, ct1)) = (pk,E2(pk; r1)).
I if sk1 = 1, then return (pk,D(sk, ct′1)) = (pk,E2(pk; r ′1)).

I F−1: Check for a match: (
E2(pk; r1)
E2(pk; r ′1)

)
I Can recover sk1 with probability 1/2. This can be boosted via

repetition.
I Not clear how to prove security!

I Fix: Put a random bit in the place you cannot apply D.

16 / 18

Recovering the First Bit

I Gen(1λ): tk =
(

r1
r ′1

)
and

ik =
(

ct1
ct′1

)
=

(
E1((i=1,b=0);r1)
E1((i=1,b=1);r ′1)

)
I F(ik, sk||b1): let pk = G(sk). Then:

I if sk1 = 0 then M1 :=

(
D(sk, ct1)

b1

)
I if sk1 = 1 then M1 :=

(
b1

D(sk, ct′1)

)
Return Y = (pk,M1).

I F−1(tk,Y):

M′1 =

(
E2(pk, (1, 0); r1)
E2(pk, (1, 1); r ′1)

)

17 / 18

Summary and Future Work

Summary

I A Construction of TDFs from CDH.

Future Work

I Extended forms of TDFs from CDH (e.g., lossy trapdoor
functions)

I Trapdoor Permutations from CDH/DDH?

18 / 18

	Background
	Introduction
	Main Challenges

	Our TDF Construction
	Our Methodology
	Base Primitive: Recyclable Targeting KEM
	TDF from Recyclable Targeting KEM

	Summary and Future Work

