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Crypto 81

* Exciting
e Informal

e Art rather than a science



Simons Institute for Theory of Computing

Data Privacy: Foundations and Applications
Jan. 15— May 17, 2019

Proofs, Consensus, and Decentralizing Societ)
Aug. 21 - Dec. 20, 2019

Integer Lattices: Algorithms, Complexity and

|_ a tt | Cces Applications to Cryptography

Jan 15— May 15, 2020




The Surprising Consequences

Of Basic Cryptographic Research

%

How NP got a new definition:

Probabilistically Checkable Proofs
(PCPs) & Approximation Properties of
NP-hard problems

Next Frontier:
Cryptography for Safe Machine Learning



Outline

* Historical connections between Cryptography and
Machine Learning

* Safe Machine Learning: a Cryptographic
Opportunity

* A sampling of what is done already today



Machine Learning

Theoretical
Computer
Science

“Explores the study and construction of algorithms that
can learn from and make predictions on DATA without

being explicitly programmed, through building a model
from sample inputs.



Many Machine Learning Models

Phase 1 : Learning/training

\' Given training data= {(labeled) instances},
drawn from an unknown distribution D, generate an
hypothesis/model, ordinarily tested against test data

Phase 2: Hypothesis/model developed is used to
* Classify new data drawn from D
* Generate new data similar to D

* Explain the data.



Many Machine Learning Models

Phase 1 : Learning/training
VP:..A»‘ NP Py S ¥ A PN N A | WHY [ ]
e an

Training ¢ data

Phase 2: Hypothesis/model developed is used to

" Classification/Generation/Explanation

* Explain the data.



Lets be more concrete

A magic DNF Boolean formula cis hidden in a black box.

C(Xla Xy, X3) =

(x; A x3) V(x; Ax, Anot-x,)

c could be used to answer:

* Is a tumor malignant

* Should a bank loan be approved

* Should a suspect be released on bail.
* Is an email message spam



Lets be more concrete

A magic DNF Boolean formula cis hidden in a black box.

C(Xla Xy, X3) =

(x; A x3) V(x; Ax, Anot-x,)

c could be used to answer:

*|satumor "’"“j
. should abi Obviously, we would love to
e Should a su learn c

° |s an email messase snam

But, how hard 1s 1t ?




To answer this question

Need to define:

What's meant by successfully “learn”

What information is made available to the learner
about the hidden c, aka “query model”

L. G. Valiant (1984). A theory of the learnable. CACM,
_7(11). 1134



Probabilistically and Approximately Correct
Learning (PAC) [valiant84]

Given examples {x ,c(x)} for x €X drawn according to
unknown distribution D and concept c : X =2 Label

a successful efficient learning algorithm generates an

hypothesis h that agrees with c approximately and with
high probability on inputs drawn from D

Efficient = polynomial in input size n and concept size c
Agrees Approximately and with high probability =

Let error =Prob, < [h(x)#c(x)]. Then, problerror>¢] < d



1984 Valiant PAPER: OPTIMISTIC

DNF: ¢(X;, %5, X3) = (%, A %3) V (x, Ax, Anot-x;)
* PAC-learn DNF with random examples from arbitrary D?
* PAC-learn DNF with random examples when D=uniform?
* PAC learn DNF by polynomial time h, not neccesarily a DNF?
* PAC learn DNF if membership queries are allowed?

Progress has been slow:

model Time Ref
PAC, hypothesis is DNF NP-Hard
v . 20(n"log?n) [KSO1]
L PAC, hypothesis is poly of
D) degree n3log n
h
PAC,D= Uniform Distribution nO(logn) [Ver90]
V| PAC, D=Uniform Distribution poly(n) [Jac94]
+ Membership queries




History of Cryptography & ML

Are there concepts which are not PAC-
learnable?

Massachusetts
Institute of
Technology




PAC learnability (even representation independent)
is crypto-hard for many query models

[ValiantKearns86] Secure RSA imply the existence of concepts in low level
complexity classes (NC) which cannot be PAC-learnable even if hypothesis is
any polynomial time algorithm

Proof: <e.N.X® mod N, label = Isb(x)>

[PittWarmath90] Secure PRF f imply the existence of concepts in complexity
classTime(f) which cannot be PAC-learnable with membership queries & D
uniform

[CohenGoldwasserVaikuntanathan14] Secure Aggregate-PRF f imply the
existence of concepts in Time(f) not PAC-learnable even if can request count
of positive examples in an interval

[BonehWaters13, BoyleGoldwasserlvan13] Constrained PRF imply non PAC-
learnable c even if can receive a circuit which computes a restriction of c.



On the Learnability of Discrete Distributions
(by Kearns et al, STOC 94)

Distribution D={D_} computed by a family of polynomial
time circuits C={C_} is hidden in a black box

D could be:
Learner can request samples * Pictures of cats
olease e Successful college essays
e CV'sthatgetyouajob
v e Slides for Keynote talks
Cmm——

* Plays by Shakespeare

Goal: output polynomial size C” which generates D’ =_ D

Naor95: if ddigital signatures Sig secure against CMA , then 3 such

family of distributions which are hard to generate.
D= {(m, verification-key), Sig(m.))




Crypto93’ Machine Learning Returns the favor...
Introducing Learning Parity with Noise (LPN)

Modern cryptography has had considerable impact on the development of com-
putational learning theory. Virtually every intractability result in Valiant’s model
[13] (which is representation-independent in the seuse that it does not rely on an
artificial syntactic restriction on the learning algorithm’s hypotheses) has at its
heart a cryptographic construction [4, 9, 1, 10]. In this paper, we give results in
the reverse direction by showing how to construct several cryptographic primi-
tives based on certain assumptions on the difficulty of learning. In doing so, we



Learning Parity with Noise (LPN) [BFKL93]

AN

* Let s be a secret vector in Z,"
* LPN, ;: Given an arbitrary number of “noisy” equations in s,

find s?
Os,+s,+s;+..4sx.  =0mod2 Add noise vector e:

18,408, +s;+...+1s. =1 mod2 Bernulli with p
1s;+18,+0s5+...+0s, =0 mod 2 Zlel over Z is small

Is;+1s,4+0s5+...4+0s, = 0 mod 2

0s;+1s,+0s5+...40s, = 1 mod 2
Best-Algorithm[BKWO03]: Best known algorithm time 20(n/logn)

Wolrlst case to average reductions[BLVW18],  noise: 1/2-1/poly(n)

“Easy” Hard problem: decoding from relative distance log?(n)/n



The Learning with Errors Problem (LWE) [RegevO5]

 Let s be a secret vector in an
* LWE,, ,: Given an arbitrary number of “noisy” equations in s,

find s? 14s1+15s2+ 5s3+ 2sa~8 (mod 17) .
' Add no1 ;
1351+ 1452+ 14s3+ 6S4~16(mod 17) dd noise e
6s1+10s,+13s3+ 1sz~3 (mod17) each lel<small

10s1+ 4s>+12s3+16s4x~12(mod 17)
951+ 552+ 953+ 6549 (mod17)

3s1+ 6s2+ 4s3+ 5s4~16(mod17) [q/2,_q/2],std dev oq
6s1+ 752+ 16s3+ 2543 (mod17)

Gaussian 1n

v'  Equivalent to approximating the size of the shortest vector in a
worst-case integer lattice [Reg05, BLPRS13]

v' Worst Case to Average [Ajtai98]

Best known algorithm still 20(n/logn) [BKWO5]

v" Revolutionary: Homomorphic Encryption, Leakage resilient Crypto,

AN

Functional/Attribute Encryption, and much more



Cryptographic Constructions from LWE and LPN

IWE,q, LPN,,,, p
ol t PRGS[BFKL93, GKL93], | Py
PKE[AIe03, Reg05, MP12, KMP14], MPCIFMV18] = 1
1
4l |
IBE, hashing [BLSV18, DGHM18] og’(n)1 1
m + Lattice Trapdoors [GPV08], ...
—m1 PRFs/LWR [BPR12]....
2ln easy %

Yor n = log?(k)

Thanks to Daniel Masny



Quantum Significance

BLALLRUL LAl S TELA & DUIENLE

QUANTUM COMPUTING IS GOING COMMERCIAL
WITH THE POTENTIAL TO DISRUPT
EVERYTHING

BY MEREDITH RUTLAND BAUER ON 4/9/17 AT 8:30 AM

HOW'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING

ALONG?

THE PROJECT EXISTS
IN A STMULTANEOUS
STATE OF BEING BOTH
TOTALLY SUCCESSFUL
AND NOT EVEN

/  GREAT STARTED.

Dibert com  DibertCartoonistGgmail com

2 O2002 SCom Ademe, INg. St vy

CAN I THATS
OBSERVE A TRICKY

1T? QUESTION.
' |

\ J

other
ICing

NSA and NIST have started planning for post-quantum
cryptography



2017:Post Quantum Standardization has begun

82 submissions: 59 encryptions, 23 signatures

Essentially All Candidates are based on one version or
another of LWE



Bliss for Crypto is a Nightmare for ML

Impossibility Results May be Positive News for
Second Part of the Talk



The Evolution of Two Fields
Since the 1980s

Cryptography

Theory Practice

Theory & Practice
of cryptography are
coming closer together

Machine Learning

Theory Practice

Theory of ML alive and well, but
the excitement in ML is
in practice (DNN) lacking theory



Thing is...the Practice of ML is too
Important to Leave to Practice

An. R:;::Ehm is Now Helping

*Security: Threat Prediction
* Policing: decide which nei ‘

« Bail : decide who is a flight fme:
* Credit Rating: decide who gets a loan

Sudden Shift of Power




THE LARGEST COMPANIES BY MARKET CAP

2001

00008
@006
&

2006

“Data 1s the new o1l”
— Shivon Zilis,
Bloomberg Beta

Q

2011 3 .
Data will become a

currency’”’
- David Kenny, IBM

2016 Watson




THE LARGEST COMPANIES BY MARKET CAP

#1 #2 #3 #4 #5

20 The Sudden Shift of Power ta is the new oil”

— Shivon Zilis,

Bloomberg Beta
1 Can leave us unprotected and unregulated

: .
PeroChine Shel ac “Data will become a

currency’”’
y, IBM




The Thesis for the rest of the talk

After 30+ years of working on methods to ensure

the privacy and correctness of computation as well
as communication

Cryptography has the tools and models that should
enable it to play a central role in ensuring power of
algorithms is not abused



Challenges that Cryptography can help
address (and is addressing)

1. Power of ML comes from Data of individuals

Ensure privacy of both data & model during training and
classifying (even when not mandated by current
regulations) to maintain “power to the people”

2. Models should not be tampered-with nor introduce
bias for profit or control

Develop methods to minimize the influence of
maliciously chosen training data and to prove models

were derived from reported data.

Extra Benefit: Opportunity for using the last 30
years of “crypto computing” in practice



Challenges that Cryptography can help
address and is not currently addressing

3. Adversarial ML where clever manipulations of an input
by an adversary can cause misclassifications and fool

applications emerges as a real threat in applications such
as self driving cars or virus detection

0
0
56
0
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Challenges that Cryptography can help
address and is not currently addressing

3. Adversarial ML emerges as a real threat in applications
such as self driving cars or virus detection where clever
manipulations of an input by an adversary can cause
misclassifications and fool applications

As cryptographers have vast experience in mathematically
modeling of adversarial behavior may help in defining a

class of attacks and techniques that defend against them.

Define a class of domain specific attacks and prove

* Adversarial Robustness via Robust Training [mmstv201s]

* Adversarial Robustness requires more data [ssTTm18]

* Getting adversarial robustness to rotations/translations of
an image [ETTSM10]



Challenges that Cryptography can help
address and is not currently addressing

3. Adversarial ML emerges as a real threat in applications
such as self driving cars or virus detection where clever
manipulations of an input by an adversary can cause
misclassifications and fool applications

As cryptographers have vast experience in mathematically
modeling of adversarial behavior may help in defining a

class of attacks and techniques that defend against them.

Reminiscent of early
Side channel attack days




Challenges that Cryptography can help
address and is not currently addressing

3. Adversarial ML emerges as a real threat in applications
such as self driving cars or virus detection where clever

manipulations of an input by an adversary can cause
misclassifications and fool applications

Holy Grail: build ML models where "‘misclassification’
requires learning a cryptographically-hard’ task —

fine grained cryptographic hardness would be necessary.
Recall




Challenges that Cryptography can help
address and is not currently addressing

4. Trace the unauthorized use of your data and model

Develop methods to trace training data used for learning a
model without introducing new vulnerabilities.

SAN FRANCISCO — California has passed a digital privacy law granting
consumers more control over and insight into the spread of their personal
information online, creating one of the most significant regulations
overseeing the data-collection practices of technology companies in the
United States.

Conjecture [reception]: data tracing is possible unless

“privacy-preserving” learning algorithm was used on data.
[Double edged sword]



Challenges that Cryptography can help
address and is not currently addressing

4. Trace the unauthorized use of your data/model

How about tracing unauthorized use of the model ?
Develop methods to water mark (or leash) your models.

[ABCPK-Usenix18] “Turning your Weakness into your
Strength”

ldea: Watermark DNN models by training the network to

accept some “planted” adversarial examples =
watermarks.



Challenges that Cryptography can help
address and is not currently addressing

5. Fairness, accountability, and de-Biasing

Come up with computational Crypto-style definitions
building on “real” vs. “ideal” paradigm rather than
“similarity”.

6.Proper Use of Proper Randomness

Randomness seems key to training phase in DNN, what

type of randomness? does it affect stability? Is secrecy of
the randomness important?



Challenges that Cryptography can help
address and is not currently addressing

7. Define specialized cryptographic functionalities which
are ML complete

And then focus on efficient reductions between known ML
classifiers to these functionalities .

8. Replace current ML algorithms with cryptographic
friendly ones

A Real Opportunity for developing new theory
for cryptography motivated by ML



Challenge 1
Ensure Privacy of both data & model

e Classification
 Performance

Many Many works
*Training

* Approximate functionality
* Trust models ﬁ
e,

* Model Stealin g Feasibility =~ Asymptotic Concrete | Proof of
* Differential Privacy efficiency efficiency “concept




Uses Cryptographic Technologies of the Past

Garbled circuits Homomorphic Encryption Secret
B“. B[ ‘ Input ( Encrypt

' ' Data yy v
(“.( l 1"0- Fl Key Evaluati

Gen l aluation
Dy, Dy Output Decrypt € 0.9
Response k x1,v1)
2N J

Enccy.pg (F1)] [ENcaq. g (o) 3, y3)
Encey,p, (F1)| [Encay,m, (E1) 2 )
Ence, o (F1) | |Enca, g (E1) 2 52
Ence,.p, (Fo)| |Enca,, B, (Eo) M PC

Differential Privacy

User’s data D Curator Statistic 6

2Q.2 _S_W ,
] X X .




Each Have Their Merit depending on

particular ML model

v/

& )
Sy
o Amé!ﬁ?;

L)
)

A Pick and Choose
Approach



Privacy during Classification Phase

I I - - I {

1 | data training | | classification |_ '

| phase > model > phase [T data | !

|

: \ L >{ prediction !
I I

: server ' +  client

Hospital

The server’s model is sensitive

00
~00

financial model, genetic sequences, want to monitize it, ...

Client’s private data
medical records, credit history, .
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General 2PC [Y,80’s]

+OWEF Assumption
+Efficient Computationally

- Large Communication
~ size of the Boolean circuit
- Have to convert your ML
model to a Boolean circuits
- Inefficient for Arithmetic circuits
- Not easy to reuse effort

By, By

(‘“. (‘[

Dy, Dy

) [n I'vl

Garbled

circuits

m|m|m| m
= = 3 3
a a = a

==l =l=
m|m|m|m
= = =
a o o

I
(F

[ |Enca, 5 (Ey)
F

Using (F)HE [ems2,pse,8cv,609,

BV'11,BGV’'12, GSW’13]

+Efficient Communication
~ size of input/output
+ Arithmetic Computation(built
in)

- High Computation Cost

~ poly in depth of arith. circuit
-If your computation is not a
low-degree polynomial, too bad
- QR/LWE vs. general assumption

e N (D
Encrypt 1
Key Evaluati
Gen on
Decrypt [«
\ /\ J




Simple Classifiers [BPTG15]

Approach: There are repeating building blocks
across different classifiers. Find them, focus on
building them, emphasizing performance

ML Algorithm |[Classifier

Chc Perceptron Linear rimitives
HiLeast squares |Linear ts, ...
Fischer linear ,

C Linear | Tree
discriminant fier
Support vector | .

PP . Linear
Zmachine
Dot . . Private
ng Naive Bayes Naive Bayes Decision

Trees

ID/CA 5§ Decicion treec



Simple Classifiers [BPTG15]

Approach: There are repeating building blocks
across different classifiers. Find them, focus on
building them, emphasizing performance

Choose and combine the best fitted primitives
Homomorphic Encryption, Garbled Circuits, ...

Linear Naive Bayes Decision Tree
Classtifier Classtifier Classifier

Private
Decision
Trees

Dot
Product Compare Argmax SW1tch1ng



Linear Classifier

Separate two sets of
points
Very common classifier

Dot product +
Encrypted compare

Clien Server
v PK w SK
4 ¥  } ¥
Dot Product ﬁ Dot Product
[{v,w)] PK SK

\/

\/ ./
Enc. Compare == . Compare
\/

(v,w) >0




Moving from Simpler Model to
Deep Neural Nets: what’s the challenge?

Probabilities of
“@® — Dog
Cat
Man
Neither

output

1 eights Activation Function=

a, we W
) w\ Non-linear
? output
a

activation e.g. g=logistic function,
’ i Max (ReLu),
Tanh



And yet, yes, we can!
Neural Nets Private Classification

Using Lattice based FHE: CryptoNets [GLLNW16]

convert fixed precision real numbers to integers
use the square function: sqr(z) := z? activation function

replacing m
Big Idea: Trading Accuracy for Efficiency
Using MPC: DeepSecure [RRK17]

Garbled Circuits-optimized implementation of Sigmoid, Tanh functionf

When is FHE better than MPC [Vinod’s rule]?

1. Computationis linear (deg 1) and
2. Circuit-size is super-linear (e.g. quadratic)

(MPC costs in bandwidth)



The Gazelle Approach [JVC18]

Convolutional Neural Networks:
Alternating Linear and Non-linear Layers

[ Model Parameters
Llnear Non- Llnear Llnear Non- Llnear
Layer Layer Layer Layer
(FHE) (2PC) (FHE) (2PC)
instance Classification

result

Fast HE Library with Native Support for Neural Network Layers
(extending the PALISADE lattice library)




Maintaining Privacy during
Training Phase: more challenging

* Non-Linearity Galore: Training non-linear regressions
and DNN’s involve multiple passes through the entire
corpus of training data — each time computing a
sequence of non-linear operations on “encrypted data”

Training with Privacy >> |Training Data| Classification
with Privacy




Maintaining Privacy during
Training Phase: more challenging

* Non-Linearity Galore: Training non-linear regressions
and DNN’s involve multiple passes through the entire
corpus of training data — each time computing a
sequence of non-linear operations on “encrypted data”

Training with Privacy >> |Training Data| Classification
with Privacy

* As LARGE cohorts of training examples are needed,
often need training data from multiple institutions

or individuals and must keep data private across
contributors



Federated Learning for Neural Nets = Distributed
training data with local training [BIKMMPRSS17]

Train a DNN by
K _
(1) local training by user . X S, = eenes

(2) Report weight modifications to SM \ 3 )
not your inputs =z " ! ¢

00000000000000000000

(3) The loss gradient
can be now computed as a

weighted sum of local loss -
gradients of individual users

Not good enough...

Weight modification Aw' can leak
information



Federated Learning for Neural Nets = Distributed
training data with local training [BIKMMPRSS17]

Train a DNN by
K _
(1) local training by user . X S, = eenes

(2) Report weight modifications to SM \ 3 )
not your inputs AW AW AW AW

00000000000000000000

(3) The loss gradient
can be now computed as a

weighted sum of local loss
gradients of individual users

ldea’: MPC among users each with

Inputs Aw' to compute the aggregate
modification

Assumption: server does not collude with
any singe user



Regressions: Linear, Ridge... Logistic...

Xy

-’?2,}’2\

i—

x-'n;)’r/

B

On encrypted inputs, evaluator is replaced by:
Homomorphic Evaluation of encrypted (x,y)’s

Training Approximate Logistic Regression

e iDash 2017 winning entry. Logistic Regression Model Training
based on new Homomorphic Encryption for approximate
arithmetic [KimSong KimLeeCheon17]

* iDash 2017 runner up. Use (F) HE with low-deg polynomial

instead of a logistic function
[ChenGiladBachrachHanHuanlJalaliLaineLauter17]




Training Neural Nets

Multiple Non Colluding Servers: secure ML [MZ17] and

(F)HE: secure NN [WGC18]

Hard (for me) to compare: which benchmarks, ability to
process batches of data as they come, performance, training
sample size, depth of network, precision of results



Output of the Model can Leak Training Data

Even with best guarantees on privacy of users training data, the
output c(x) may reveal information on training inputs.

Output+ Aux Information = Model Inversion

Solution: Convert Training phase to output a Differentially
Private Model/Hypothesis

Def[KLN11]: A Learning algorithm L is (¢,0)-differentially private
if V' S={(x,b,)},S"={(x",b".)} which are identical except for 1 entry,

V'set T Prob[L(S) in T]<etProb[L(S’) in T] +0

DP learning was applied to Histograms, regressions, decision
trees, SVM’s and Neural Nets : Gap in sample complexity is large

Note: still need to use (MPC or HE) to protect the training data
input to L, even if output hypothesis will be differentially private




What about Model Stealing?

ML service

Data owner

B

Extraction
adversary

Service Model Type Data set Queries Time (s)
Logistic Regression  Digits 650 70

Amazon Logistic Regression ~ Adult 1,485 149
BigML Decision Tree German Credit 1,150 631
& Decision Tree Steak Survey 4,013 2,088

Table 1: Results of model extraction attacks on ML services. For
each target model, we report the number of prediction queries made to
the ML API in an attack that extracts a 100% equivalent model. The
attack time is primarily influenced by the service’s prediction latency
(=~ 100ms/query for Amazon and =~ 500ms/query for BigML).

Unnecessary Vulnerability? Services Report Confidence levels

Figures from “Stealing Machine Learning Models via Prediction APIs”

[TZJRR16]



Are we done yet? Wait a second !

Why do we trust all these users and their training data
(or the servers to follow the protocol) ?7??

This is A Fundamental Question

The stakes are too high to pretend it doesn’t matter



Challenge 2: Need to ensure models reflect data
accurately and are not tampered with and
data is not poisoned.

* How to verify that everyone (servers and users)
follows the protocol during the training phase

* How to make Learning robust to adversarial inputs

* Distributed Optimization + Byzantine Agreement
Toward achieving “Robust” and “Statistically-Optimal”

gradient descent
[BJK15,BMGS17, YCRB18]

* How to verify model is not modified post training
phase



Verify Everyone Follows the protocol: build MPC
for malicious parties

 Information theoretic [GW88] <1/3 Malicious colluders:
efficient but may be too much interaction

 Add commitments + Zero Knowledge Proofs to implementations

* Non-Interactive SNARK, STARK with setup
* Or Some Interaction

e Dovetails work in the block

chain world on adding zk-proofs for anonymity, privacy, enterprise
proofs of correct supply chains



Verify Eyeryone Follows the protocol: build MPC
for malicious parties

* Information thepretic [GW88] <1/3 Malicious

Avracrt A~

-
ala
a%hmm ala I~ ~
- a’a
- ‘-

ERO KNOWLEDGE PROOF STANDARDIZATI

n Open Industry / Academic Initiative

INTRODUCTION 1ST WORKSHOP STANDARDS DOCUMENTS

P
) The 1st ZKProof Standards Workshop
10-11th May, 2018

ZKProof

Zero Knowledge Proofs are a cutting edge
breakthrough technology forms the basis
° between data privacy and integrity. Zero Kno
computational statement is correct without reve

cryptographic tool that is starting to see adoption. This

of several cryptographic applications, improving the trad
prover to convince a verifier that some
the statement.

e-offs

wledge Proofs allow 2
aling any information except the veracity of

ardize the use of zero knowledge proofs.

and
applications and all other

implementation,
e in Boston in mid May and will bring

tiative of industry and academia to St
standardize the security,
first workshop will take plIc
xperts in the field.

C 7ZKProof.org is an open ini
We are planning several workshops to
related aspects of this technology. The

Z together for the first time academic and industry €

Cuii CDLAJWFfNQrQPFESC:]II 19
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Verify the Model/Findings are accurate
(extending robust statistics to IP-land)

Extend Interactive Proofs + PCPs

to the land of “proofs about distributions” [GRothblum18]

| have an hypothesis
consistent

with distribution D
(which | may own)
| claim 95% accuracy

D

A

A

v

| want to verify

the model is 95% accurate
on D which | have a limited
ability to sample



New ML Challenges: an opportunity

For using the last 30 years of “crypto computing”
In practice

For developing new theory for crypto for ML



Thanks to

Peter Bartlett
Zvika Brakersky
Aloni Cohen

Ran Cohen

Adam Klivans
Alexander Madry
Daniel Masny
Raluca Popa

Guy Rothblum
Adi Shamir
Yonadav Shavit
Vinod Vaikuntanathan

And anyone else | bothered with questions on this topic...



