
Ofelimos: Combinatorial Optimization
via Proof-of-Useful-Work

A Provably Secure Blockchain Protocol

Matthias Fitzi1, Aggelos Kiayias1,2, Giorgos Panagiotakos1(B),
and Alexander Russell1,3

1 IOHK, Singapore, Singapore
{matthias.fitzi,giorgos.panagiotakos}@iohk.io

2 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

3 University of Connecticut, Storrs, USA
acr@cse.uconn.edu

Abstract. Minimizing the energy cost and carbon footprint of the Bit-
coin blockchain and related protocols is one of the most widely identi-
fied open questions in the cryptocurrency space. Substituting the proof-of-
work (PoW) primitive in Nakamoto’s longest-chain protocol with a proof
of useful work (PoUW) has been long theorized as an ideal solution in
many respects but, to this day, the concept still lacks a convincingly secure
realization.

In this work we put forth Ofelimos, a novel PoUW-based blockchain
protocol whose consensus mechanism simultaneously realizes a decentral-
ized optimization-problem solver.Our protocol is built around anovel local
search algorithm, which we call Doubly Parallel Local Search (DPLS), that
is especially crafted to suit implementation as the PoUW component of
our blockchain protocol. We provide a thorough security analysis of our
protocol and additionally present metrics that reflect the usefulness of the
system. DPLS can be used to implement variants of popular local search
algorithms such as WalkSAT that are used for real world combinatorial
optimization tasks. In this way, our work paves the way for safely using
blockchain systems as generic optimization engines for a variety of hard
optimization problems for which a publicly verifiable solution is desired.

Keywords: Blockchain · consensus · proof-of-useful-work · stochastic
local search

1 Introduction

Blockchain protocols based on Proof of Work (PoW) capitalize on computa-
tional work performed by protocol participants, called miners, to ensure the
security of the maintained transaction ledger. In the most prominent Proof-of-
Work blockchain designs, the work performed serves no other purpose besides

This work is based upon work supported by the National Science Foundation under
Grant No. 1801487.
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13508, pp. 339–369, 2022.
https://doi.org/10.1007/978-3-031-15979-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15979-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-15979-4_12

340 M. Fitzi et al.

maintaining security. These protocols also combine permissionless participation
with incentives, offering rewards to miners that commit computational effort
to the protocol. This has led to an increasing global commitment of energy to
systems like Bitcoin as the value of the currency has grown. At the time of this
writing, Bitcoin has an annualized energy expenditure on par with many small
to medium countries (see, e.g., the Cambridge Bitcoin Electricity Consumption
Index, https://cbeci.org).

This trend was identified early on as an important concern in the Bit-
coin ecosystem and motivated consideration of two major avenues for potential
improvement to the underlying blockchain protocol. The first is aimed at replac-
ing the PoW mechanism with an alternate resource lottery with potentially
“greener” characteristics, e.g., proof of stake [14,23,31], proof of space [17,40],
proof of space-time [37], and similar mechanisms. A common challenge faced by
these approaches is to ensure that the security of the resulting scheme has not
been eroded by the change in the underlying primitive (from “work” to some-
thing else). The second direction—which, in principle, could entirely ameliorate
the issue and is the focus of this work—is to repurpose the invested computa-
tional effort towards solving real-world problems. This direction thus posits a
proof-of-useful-work (PoUW) design approach for blockchain protocols.

Early designs and implementation attempts such as Noocoin [13] and Prime-
coin [32] highlighted the fundamental issue that would plague future progress
towards a satisfactory PoUW system. If the work solved is sufficiently generic,
then an attacker may direct the system towards solving problem instances that
are easy for them (e.g., due to precomputation or other private advantages “hid-
den” in the underlying instance-space structure) and hence operate with an
advantage in the underlying proof-of-work mechansim, threatening security. At
the same time, minimizing the attacker’s ability to manipulate the system by
adopting more structured “useful” work may render the system’s computations
useless in practice (e.g., Primecoin [32] and Gapcoin [19] compute sequences of
Cunningham primes and gaps between primes respectively—both mathematical
objects of dubious usefulness).

1.1 Our Contributions

We propose the first PoUW-based blockchain protocol that is accompanied by
a thorough security and usefulness analysis. Central to our construction is a
novel general-purpose algorithm for stochastic local search called Doubly Parallel
Local Search (DPLS). Our key technique for protocol design is to mold the whole
blockchain protocol execution into a DPLS engine that demonstrably performs
the steps of the algorithm in a publicly verifiable manner. The PoUW operation
in our consensus protocol has the miners collectively run DPLS on instances
contributed by interested clients. In more detail, our results are the following.

(I) Doubly Parallel Local Search (DPLS). We put forth a new algorithm
for stochastic local search. With DPLS we achieve the following two-pronged
objective: (i) The structural properties of the algorithm suitably reflect the

https://cbeci.org

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 341

stochastic dynamics of the underlying permissionless blockchain operation so
that a blockchain execution can be viewed as a virtual machine running the
algorithm; (ii) Stochastic local search is a powerful, well-studied, and generic
algorithmic paradigm for solving computationally hard optimization problems.
Thus the DPLS algorithm itself can be evaluated in the context of the broad
family of existing stochastic local search algorithm variants and, in particular,
assessed with respect to problems of high real-world value.

DPLS is a general-purpose stochastic local search algorithm based on an
underlying algorithm M , called the exploration algorithm: Given a set of points
in the solution space, M searches for a better solution via a local exploration
process that requires a modicum of computational effort. (For example, M might
call for a fixed number of steps of gradient descent at each input point.) Based
on M , DPLS follows a “doubly” parallel search strategy where a number of paths
are pursued in parallel, and in each path a number of exploration threads via M
are executed; finally, the best one according to a scoring function is selected.

(II) Moderately Hard DAG Computations. To consider the possibility of
using a DPLS solver within a proof-of-work setting, it is essential to articulate
the conditions under which running the basic exploration algorithm M exhibits
moderate hardness (MH). This property is the necessary requirement for a com-
putational problem to be applicable in the blockchain setting. What makes the
modeling more challenging compared to, say, the case of Bitcoin’s PoW algo-
rithm is that we cannot resort to an idealized model (such as the Random Oracle
Model) and must express the moderate hardness property in a way that can be
suitably utilized in the security arguments of the blockchain protocol.

To capture this and at the same time reflect the parallelizable nature of
DPLS, we focus on the DAG-computation abstraction which has been widely
used in the modeling of parallel computations (e.g., see [1,39]). In the setting of
DPLS the main computational unit is the exploration algorithm M and we are
principally interested in expressing the moderate hardness of DAG computations
over M . The delicate part of this modeling is to express the advantage ε of
the adversary over the honest parties as a function of its ability to “grind” the
randomness of the DAG computation as well as capitalize on any advantage
obtained from observing previously published steps in the computation.

(III) The PoUW-Based Blockchain Protocol. At a high level, our protocol
calls for parties to post instances for problems of interest in the ledger, while
locking funds denominated in the ledger’s native token to incentivize miners to
work towards solving them. Maintaining the blockchain translates to performing
steps of the DPLS algorithm for the instances in the ledger and being rewarded
for that—with foresight, we stress that solving such instances directly (or post-
ing pre-solved instances) will not help an adversary in extending the ledger any
faster. Problem posers can keep funding a particular DPLS computation when-
ever its funds are getting depleted.

The cornerstone of our protocol is its PoUW mechanism that operates in
three stages. In the “pre-hash” stage, random strings are repeatedly generated
and hashed until one is found that achieves a small hash (as in a standard PoW).

342 M. Fitzi et al.

This string will constitute the random seed for the DPLS exploration algorithm
M and will be useful for controlling “grinding attacks” in which an adversary
attempts to force adoption of a random string that yields a comparatively easy
computation. When the exploration stage terminates, a “post-hash” step deter-
mines with a single hash query whether the resulting value qualifies as a PoUW.
This “sandwiching” of M between two small hashes is essential for security since
it forces an adversarial miner to seed the computation with a randomly selected
seed and learn that a successful block can be issued only after the exploration
step M is complete. However, if we apply this idea naively (e.g., as a drop-in
replacement to Bitcoin’s PoW algorithm), there are three major disadvantages:
first, a number of useful exploration steps will go to waste, since they won’t lead
to a block; second, adjusting the hardness of block production (which is needed
for blockchain security) would impact usefulness (since miners will spend too
much effort trying to find small hashes) and, finally, we do not want waste com-
putational cycles by repeating M -computations to verify newly mined blocks.

We resolve these issues with three mechanisms. First, taking advantage of
the scoring function, we have the miners publish the best value they have pro-
duced based on all their post-hash attempts; in this way, progress in the DPLS
computation is not lost. Note that deviating from this strategy may only impact
usefulness—the security of the protocol is maintained against any Byzantine
deviation. Second, we adopt the 2-for-1 PoW mechanism of [20], which allows
for the production of two types of blocks with a single hash attempt: either an
“input block”, in which case it is inserted in the blockchain as a transaction, or a
“ranking block”, which extends the blockchain and refers to any number of input
blocks. Using this decoupling mechanism, we can keep the steady progress of the
DPLS computation and adjust the underlying (ranking) block hardness indepen-
dently. The crucial property this ensures is that as more miners join the protocol
the DPLS computation is sped up proportionally; on the other hand, ranking
block production can be kept steady as required for the security of the underlying
blockchain protocol. In this way, the more real-world useful problem instances
are submitted to the system (as evidenced by the increased funding locked with
each one and the platform’s native token appreciation), the more computational
power will be introduced to the DPLS engine to solve them. Finally, instead of
requiring verification to repeat the computations of M , block producers issue
a suitable succinct non-interactive argument of knowledge (SNARG) (see, e.g.,
[24]), so that verifier complexity becomes independent of M .

We prove our protocol secure under a standard “honest majority” assump-
tion reminiscent of the Bitcoin protocol analysis, where the distance above 1/2
depends, among other parameters, on “moderate hardness advantage” ε. (We
note that even if ε = 1, which is to say that we have no moderate hardness
guarantees at all, our protocol remains secure with a bound close to 3/4).

As a final remark, our security treatment must additionally contend with a
novel probabilistic challenge. In particular, a fundamental assumption adopted
by previous proof-of-work analyses is absent: the guarantee that miners’ proof-
of-work victories are given by independent Poisson (or “discrete Poisson”)

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 343

processes. In our setting, the process by which miners produce proofs of work is
given by a non-trivial Markov chain reflecting the features described above: e.g.,
pre-hashing, useful work computation, post-hashing, and SNARG computation.
Furthermore, adversarial miners are under no obligation to follow the Markov
chain; for example, they may restart the process when they choose. (From this
perspective, the classical analysis can be viewed as a chain with a single “mining”
state with two transitions, one corresponding to a failed mining attempt—which
simply carries the chain back to the same mining state—and one corresponding
to a successful mining attempt.) This complex mining model even poses signifi-
cant challenges for the analysis of honest players because honest players’ states
in the chain may be synchronized by various events (such as the beginning of
the protocol or, depending on the details of the algorithm, delivery of a new
block). Unfortunately, such synchronization is a direct threat to the production
of desirable “uniquely honest” time periods, during which a unique honest miner
generates a proof of work. Such uniquely honest time periods are an emblematic
ingredient in the consistency of such systems (see, e.g., [30] where this is explored
in detail). To manage these correlations in the model, we consider the aggregate
Markov chain carried out by (all) the honest players and establish that when the
parameters of the chain are under suitable control—essentially, that the “Pois-
son” parts of the chain “dominate” the other parts of the chain corresponding to
useful work and SNARG computation—the chain converges very rapidly to the
ideal distribution where each honest participant is in an independent stationary
distribution. We then apply the recurrence-time properties of the stationary dis-
tribution along with standard tail bounds for independent random variables to
bound the events of interest. This is then leveraged to establish the stochastic
properties necessary for consistency. We remark that our techniques here are
quite general, and could be applied to quite complex “mining chains,” so long
as they have a sufficiently substantial “Poisson part” (corresponding to standard
proof-of-work discovery). In particular, the techniques can be applied to a generic
mining problem—even one with very little variance in time to completion—so
long as it is followed by a sufficiently difficult proof of work.

(IV) Usefulness Metrics. We devise a two-pronged approach to measuring
usefulness. Recall first that our blockchain protocol can be thought as a decen-
tralized DPLS solver. The first usefulness metric asks how good is the blockchain
execution as a DPLS engine. This can be done by measuring the ratio per unit
of time of the number of steps that the blockchain protocol spends in DPLS
computations compared to its total number of steps. We call this metric Ueng,
as it can be thought to capture the efficiency of the blockchain protocol as an
“engine” that runs DPLS. The second metric, denoted Ualg, reflects how useful
DPLS computations are themselves. For a given instance distribution we define
this metric as the ratio between the expected number of steps of the best algo-
rithm for that instance distribution divided by the expected number of steps that
DPLS takes. Note that identifying the best algorithm for a problem is typically
infeasible based on current state of the art, so in this case the best algorithm can
be simply substituted with the best known algorithm for the problem at hand.

344 M. Fitzi et al.

Combining the above two metrics, we can obtain, as an overall metric of useful-
ness, the product Ueng · Ualg. The key advantage of our two-pronged approach
is that we can completely characterize Ueng with protocol analysis, while Ualg is
an empirical metric that must be assessed in the context of a specific class of
problems.

To conclude the discussion onusefulnessmetrics, wemention that for our proto-
col it holds that (i) Ueng ≤ 1/2, which stems from the fact that we balance the pre-
hash probability of success to require the same effort as the worst-case time com-
plexity of M—this enables us to prove security for any advantage ε in the underly-
ing MH assumption; and (ii)Ueng will be close to 1/2 if M ’s runtime distribution is
sufficiently concentrated and the rate at which blocks are produced is sufficiently
small compared to the SNARG cost. We note that the 1/2 bound can be surpassed
by taking into account the sensitivity of ε and adaptively setting the pre-hash dif-
ficulty, however such a direction would be only feasible if we restrict the class of
exploration algorithms M to those whose hardness is well understood. Estimating
Ualg requires some real-world baseline – as an illustrative example we choose Walk-
SAT [28,43], a popular local search algorithm for satisfiability problems. Given this
choice,Ualg would result from comparing how the DPLS implementation fares with
respect to running WalkSAT in isolation. Exploring this direction further goes out-
side the scope of the present paper but we give some insights in the full version of
the paper [18]. It is worth noting that the instance distribution would be an impor-
tant consideration in this analysis; for illustrative purposes in the full version of the
paper, we use Blocks World Planning, a well known NP-hard problem in AI [26] for
which there is an abundance of public data sets. Using WalkSAT as the baseline,
we show that a single-thread implementation of DPLS performs reasonably well
against WalkSAT, investing about twice as much computational steps, i.e., some-
thing that amounts to an estimation of Ualg ≈ 1/2. Similar results are obtained
from additional experiments that reflect adversarial deviations and the effect of
parallelization.

The above results are evidence for the non-negligible real-world usefulness
of our PoUW-based blockchain protocol. We anticipate that investigating fur-
ther the DPLS blockchain engine as an optimization solver will be an exciting
research direction from an algorithmic perspective. There is yet another benefi-
cial dimension of using our blockchain protocol as a DPLS solver: optimization is
executed collaboratively in a publicly verifiable manner. Depending on the task,
public verifiability has intrinsic usefulness and this can be seen as the price the
system pays for the remaining ratio 1 − Ueng · Ualg. For instance, optimization
tasks such as athletic-competition tournament scheduling or various matching
problems (e.g., the allocation of residents to hospitals or radio frequency auc-
tions) can benefit from public verifiability; see the full version of the paper [18]
for further discussion and references.

1.2 Related Work

Beyond the early work mentioned above [13,19,32], a number of other works
investigated the concept. One line of research considered hybrid constructions

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 345

where the miner can choose between applying either standard PoW or doing some
potentially useful computation [11,38,45]. Further constructions for PoUW min-
ing were given by Loe et al. [34], Dotan et al. [16], and, closer to our work, Bal-
dominos et al. [7] and Lihu et al. [33], who suggested to base PoUW on stochastic
search and machine-learning problems. In all these previous approaches the secu-
rity of the system was not rigorously analyzed and, in many cases, concrete attacks
by e.g., an adversary who directly plants easy instances to solve, are feasible.

In contrast to the above, a formal security approach was adopted by [8] but
the published version of the work retracted the “usefulness” dimension of the
original paper. Also, their proof-of-work construction is not suited for permis-
sionless ledgers as it does not introduce any variance in puzzle-completion time.

Finally, some alternative approaches to the problem at hand that are worth
mentioning in our context are the concept of “merged mining”, a technique
employed in a number of cryptocurrencies where the mining effort for the
blockchain has a dual use as mining Bitcoin and hence it is “useful” in this
sense: Permacoin [36] where, via proofs of retrievability, the usefulness dimen-
sion is in maintaining a public file store; and useful work enforced via a trusted
execution environment [44] where, in contrast to the above solutions, full trust
in a specific hardware manufacturer is required.

We stress that, to the best of our knowledge, no prior fully decentralized,
PoUW-based blockchain protocol has been published along with a thorough
security (or usefulness) analysis.

1.3 Organization of the Paper

In Sect. 2 we describe the computational model and some basic notation. DPLS
is presented in Sect. 3. Next, we expand on our notion of moderately hard DAG
computations in Sect. 4. In Sect. 5 we present our blockchain protocol, whose
security and usefulness we analyze in Sect. 6. Applications and experimental
results, as well as some of the code and proofs are presented in the full version
of the paper [18].

2 Preliminaries

Notation. For k ∈ N
+, [k] denotes the set {1, . . . , k}. We denote sequences by

(ai)i∈I , where I is a countable index set. For a set X, x ← X denotes sampling
an element from X uniformly at random. For a distribution U over a set X,
x ← U denotes sampling an element of X according to U . By Um we denote the
uniform distribution over {0, 1}m. We denote that some function f is negligible
in λ by f(λ) < negl(λ). We let λ denote the security parameter.

Security Model. We adopt the computational model of [21], which is a variant
of the model presented in [20]. There, the set of parties {P1, . . . , Pn} running the
protocol is fixed and the parties, the environment Z, the adversary A, and the

346 M. Fitzi et al.

control program C coordinating the execution are all modeled as IRAMs. The
adversary A is active and can corrupt up to t parties in order to break security.

Communication Model. We follow the communication model used by most
previous works [6,41] that analyze blockchain protocols in the cryptographic set-
ting, where time is discrete and the network is (partially) synchronous. In more
detail, the protocol advances in rounds and communication happens through a
diffusion functionality. Honest parties can use it to send messages which may be
adaptively delayed for up to Δ rounds by the adversary, but are guaranteed to
be received by everyone in the network. Communication is not authenticated, in
the sense that the functionality does not provide any guarantees regarding the
origin of sent messages. Finally, the adversary is rushing and can additionally
choose to send its own messages only to a subset of the parties.

Setup. All parties have access to a common reference string (CRS), sampled
from a known efficiently samplable distribution, which is used to instantiate a
succinct non-interactive argument (SNARG) system [24] SNARG = (S,P,V).
Note that there are several ways to securely establish a CRS for a SNARG in
a permissionless blockchain environment. In particular, assuming the slightly
stronger notion of an updatable structured reference string (SRS) [25,35], the
construction of [29] allows to obtain a common reference string.

Random Oracle. Parties have access to a random-oracle (RO) functionality [9].
We use both RO and non-RO based moderately hard problems and, in order to
argue about security, we need to be able to compare their computational costs.
We thus assume that a query to RO takes cH computational steps both for the
honest parties and the adversary.

Concrete Modeling. A and Z have a concrete bound of t · cH steps they can
take per round as well as an upper bound θ on the number of messages they can
send per round.

3 Doubly Parallel Local Search

One approach to designing a PoUW blockchain for optimization problems is to:
(i) first pick your favorite optimization algorithm, and then (ii) try to design a
blockchain protocol around it. The disadvantage of such an approach is that any
change in the target optimization problem may result in vital changes to the
blockchain and consensus system, requiring new security proofs. Here, instead,
we adopt a modular approach where we first build a PoUW blockchain based on
a generic optimization algorithm, and later, with minimal overhead, instantiate
it with the problem-specific parameters. This allows for re-using our blockchain
analysis for different instantiations of the optimization algorithm.

We start by giving an overview of DPLS, the generic optimization algorithm
that our blockchain protocol is implementing from a client’s point of view, i.e.,
ignoring the internal details of the blockchain algorithm.

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 347

3.1 Overview

Clients of our protocol publish on the blockchain the optimization problems
that they want miners to solve. Miners, on the other hand, run the Doubly
Parallel Local Search (DPLS) algorithm to solve these problems. Solving large
optimization problems may require more work than what can be computed by
a miner during the mining of a single block. Thus, we design DPLS to be a
distributed algorithm where the computation result is obtained by multiple state
updates – each corresponding to a block –, some of them possibly occurring
concurrently. Concurrent updates is the first source of parallelism of DPLS.

In its core, DPLS follows the well-known stochastic local search approach:
it searches a solution space X by repeatedly exploring the neighborhood of a
currently selected point, looking for a neighboring point that promises progress
towards an optimal solution. More concretely, based on the description of a
problem instance Λ, DPLS gradually builds a directed acyclic graph (DAG)
G recording the already explored points in X. A single exploration step then
consists of invoking a generic exploration algorithm M on G, yielding a new
point in X, with the goal of extending G by a point of better quality (computed
by a scoring algorithm gΛ), thereby progressing the exploration. Note that, in
a strictly sequential execution, a ‘linear’ graph G may be sufficient. However,
maintaining a DAG of explored points allows for more general flavors of local
search where multiple threads are concurrently explored by different parties.

As communication and local pre-computation are important resources in per-
missionless systems, we cannot afford to publish every exploration step computed
by miners. Instead, each miner performs many randomized local exploration
steps in a batch, publishing only the best one of them. To this end, the explo-
ration algorithm M is parametrized by an inner state z that determines the
initial state of the search in a batch, e.g., a common starting location in G to
focus the batched search, and a randomness seed r ensuring that same-batch
steps are independent. Batched search is the second source of parallelism of our
doubly parallel algorithm.

Given the above, DPLS is parametrized by the following problem-specific
sub-algorithms:

– Initialization algorithm Init(Λ): A probabilistic algorithm that takes as input
an instance description Λ and outputs a DAG G.

– Focus algorithm F(Λ,G): A probabilistic algorithm that takes as input Λ,G
and outputs an inner-state string z.

– Exploration algorithm MΛ(G, z, r): A deterministic algorithm that takes as
input a DAG G, an inner state z, and a seed r, and outputs a point x ∈ X.

– Scoring algorithm gΛ(x): A deterministic algorithm that takes as input Λ and
x ∈ X, and outputs the score y ∈ R of x.

– Termination algorithm Finished(Λ,G): A deterministic algorithm that takes
as input Λ,G and outputs 1 if the algorithm has finished, and 0 otherwise.

348 M. Fitzi et al.

3.2 DPLS Modeled in a Blockchain Setting

Problem solving starts by the problem setter posting an instance description Λ
together with the output of Init(Λ) in the blockchain, in the form of a special
transaction. Miners work on such an instance by running the Update procedure
(Algorithm1), which makes use of the sub-algorithms introduced above. The
outputs produced are posted to the blockchain and are in turn used by other
parties to produce additional updates. The search algorithm ends when predicate
Finished(Λ,G) becomes true.

Update takes as inputs the chosen instance description Λ and the party’s
current view of the DAG G. The inner state z is generated using algorithm
F(Λ,G), while the number of invocations of M in a single batch, denoted by k,
is distributed according to the geometric distribution, with the exact parameters
of the distribution set by the protocol designer. The sampling of k from the geo-
metric distribution models its integration into the useful-work mining procedure
where each computation of M qualifies for block production with probability
p2—the miner must find a block to publish a state update. After k is fixed,
that many seeds (ri)i∈[k] are sampled independently at random, and algorithm
M(G, z, ri) is invoked k times, with the best-scoring result (according to function
g) being output by Update.

Algorithm 1. The state update procedure.
function Update(Λ, G)

z ← F(Λ, G) � Compute the inner state
k ← Geom(p2) � Sample from geometric
(ri)i∈[k] ← Uk

m � Sample uniformly
S := {(z, ri, xi)|xi := M(G, z, ri), i ∈ [k]} � Invoke M
(z, r, x) := arg max(z,r,x)∈S g(x) � Pick best
return (z, r, x)

3.3 An Example

We present an instantiation of DPLS (Init, F, M , g, Finished) for a variant of the
classical WalkSAT algorithm [28,43] for the SAT problem.

First, we give a summary of the original WalkSAT algorithm. Starting from
some initial configuration, at each step, WalkSAT picks a variable to flip as
follows: Given the current configuration, one of the unsatisfied clauses is chosen
at random. For each of the variables involved in the clause, a grade is computed
which is equal to the number of clauses that are going to be broken (i.e., turn from
satisfied to unsatisfied) if the chosen variable is flipped. If there exist variables
that have grade 0, then one of them is selected at random and flipped. Otherwise,
a variable is selected (and flipped) at random, with probability wp coming from
the selected clause, and with probability 1− wp coming from the variables with

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 349

the best grade. The walk continues until a solution is found, or some other
condition is met, e.g., an upper bound on the total number of flips is reached.
If no solution is found, the algorithm can be restarted from some other point in
the solution space.

In the DPLS variant, the instance description Λ encodes the description
of the SAT instance, i.e., the number of variables and the different clauses,
with the solution space X being equal to the possible configurations of the SAT
variables. Init(Λ), to aid parallelization, outputs a number of different initial
configurations in X. In each invocation of Update, miners run function F to
pick at random which point/configuration in G to work on and encode this
information in z. Given this configuration, exploration algorithm M(G, z, r) is set
to run WalkSAT for a fixed number of flips. Note, that the starting configuration
is the same for the different runs of M in a single Update invocation, allowing
miners to focus their search. On the other hand, the randomness used by the
different WalkSAT invocations comes from the respective seeds (r), leading to
the exploration of different points in the solution space. To choose the best one
among these points, g counts the number of satisfied clauses in the respective
ending configurations. Hence, Update outputs the configuration that maximizes
g, which is then possibly going to be used by another miner as the starting
point of another run of Update. The algorithm terminates after a predefined
number of updates have been posted. For the detailed code and the experimental
evaluation of the performance of this algorithm, we point the reader to the full
version of the paper [18].

3.4 Generality of the Approach

Most well-known stochastic-local-search (SLS) algorithms [27] can be mapped
to DPLS as follows: The Init function provides the initial information needed,
e.g., a number of different starting locations for parallel search. Given the cur-
rent location, M is set to explore a single location in its neighborhood and any
randomness needed is provided by the seed. Consequently, Update can be inter-
preted as exploring different points in the neighborhood, and then returning the
one that maximizes the scoring function. This point can then serve as the next
point in the search. We expect better performance when the total neighbor-
hood size is sufficiently large, such that miners do not explore the same points
due to desynchronization and the fact that the points searched are randomly
determined. A subclass of SLS algorithms that has this characteristic is Very
Large Scale Neighborhood search algorithms [2], where the algorithm (partially)
searches a very large neighborhood before making its next step. We provide more
evidence about the generality and possible real world applications of DPLS in
the full version of the paper [18].

4 Moderately Hard DAG Computations

In DPLS, most of the work is spent running the exploration algorithm M . Hence,
it is natural to base security on the moderate hardness of this computation. We

350 M. Fitzi et al.

next describe in detail the syntax and relevant security properties required for
its use in a PoUW protocol.

4.1 Syntax

As explained earlier, an important aspect of DPLS is that state updates are
performed in a distributed way, and without much coordination. Based on this
observation, we adopt a DAG structure for computations involving M , where
each computation corresponds to a vertex on the DAG and depends on multiple
previous vertices. Our notion generalizes the iterated computation paradigm [10,
22], where each computation depends on a single vertex.

We note that the parameters of the computation performed will be possibly
influenced by the adversary, in the sense that he may try to post a client problem
to be solved, only with the purpose of subverting the underlying blockchain
protocol. As the security of the blockchain depends on the hardness of individual
computations of M , we must guarantee that they remain moderately hard even
when parameters are chosen maliciously.

Taking into account these considerations, new vertices of the DAG are gener-
ated based on the current view, an inner-state string, and, an unpredictable seed.
As explained earlier, the inner-state string allows parties to focus their work in
the context of DPLS. On the other hand, the seed randomizes the computation
to force the adversary to do work of average-case complexity—in contrast to
possibly selecting “cheap” instances to gain an advantage in block production.
Next, we formally introduce the notion of a DAG computation.

Definition 1. (DAG computation/transcript.) A DAG computation is a
sequence of instance descriptions I = (Λλ)λ. For every value of the security
parameter λ ∈ N, an instance description Λ specifies:

1. a finite, non-empty set Z (inner state);
2. a finite, non-empty set X (output);
3. a deterministic verification algorithm V ; and
4. a deterministic exploration algorithm M .

A transcript of a DAG computation Λ corresponds to a labeled DAG G where
each vertex in G is labeled with a tuple (z, r, x) ∈ Z × {0, 1}λ × X (edges have
no labels). We say that G is valid if and only if V (G) = 1.

Additionally, the following conditions are satisfied:

– (closure) if G and G′ are valid, then G ∪ G′ is also valid1;
– (correctness) for a valid G and x ← M(G, z, r), it holds that G ⊕ (z, r, x) is

valid, where G ⊕ (z, r, x) denotes the transcript resulting by adding a vertex
with label (z, r, x) to G that is connected to all other vertices.

We write Λ[Z,X, V,M] to indicate that Λ specifies Z,X, V,M as above.

1 Closure ensures that concurrently extending a transcript does not break validity.

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 351

We require that the instance descriptions, as well as the elements of the sets
Z,X, can be uniquely encoded as bit strings of length polynomial in λ. For
simplicity, we will sometimes denote by VΛ,MΛ the algorithms corresponding to
instance description Λ.

4.2 Moderate Hardness

Next, we introduce a moderate-hardness (MH) notion for DAG computations.
Our notion builds on ideas found in [21,22]. On a high level, we require that
the time the adversary takes to generate a given number of new vertexes in the
DAG, is proportional to their number.

We proceed to describe the security experiment in more detail. Let t be equal
to the worst-case complexity of M . The adversary has access to three oracles
O,M,V. Its goal is to compute m new vertices for seeds generated at random
from oracle O in less than (1 − ε) · mt steps, where ε reflects the advantage
of the adversary compared to M . The adversary is allowed to query oracle O
more than m times, and possibly use oracles M and V to simulate new honestly
computed vertexes and verify whether a DAG computation is valid, respectively.
ε is parameterized by the respective rates of queries qO/m, qM/m, qV/m to reflect
the possible adversarial advantage. We note, that oracles M and V are provided
to aid composition;2 We require that the property holds with overwhelming
probability for all m greater than some parameter k.

As we want to build a blockchain that can accommodate solving multiple
optimization problems, MH is expressed w.r.t. a family of DAG computations
(per security parameter level), each corresponding to a different instantiation of
the DPLS algorithm.

Definition 2. Let I = ((Λλ,i)i)λ be a family of DAG computations. I is (t, ε, k)-
Moderately Hard (MH) if for any PPT RAM A = (A1,A2), λ ∈ N, and all poly-
nomially large m ≥ k, it holds that the adversary wins with probability negl(λ)
in ExpMH

A,I,ε,t(1
λ,m)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

st ← A1(1λ); ((Λi, Gi, zi, ri, xi))i∈[m] ← AO,V,M
2 (st);

b1 := StepsAO,M,V
2

(1λ, st) < (1 − ε(
qO
m

,
qV
m

,
qM
m

))m · t;

b2 :=
m∧

i=1

((Gi, zi, ri) ∈ QO ∧ VΛi
(Gi ⊕ (zi, ri, xi)) = 1);

return b1 ∧ b2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

where qO queries are made to oracle O(Λ,G, z) =
{
r ← {0, 1}λ; return r

}
, qV

queries are made to oracle

V(Λ,G, z) = {if VΛ(G) = 0, then return 0, else return 1} ,

2 In the blockchain setting, the adversary sees blocks generated by other parties, sim-
ulated by oracle M, and sends out blocks that other parties may drop or adopt
depending on whether they are valid, simulated by oracle V.

352 M. Fitzi et al.

and qM queries are made to oracle

M(Λ,G, z) =

{
if VΛ(G) = 0, then return ⊥
else, r ← {0, 1}λ; return (r,MΛ(G, z, r),StepsMΛ

(G, z, r))

}

.

Remark 1. For simplicity, in the MH experiment the adversary (A2) is given
the power to select the DAG transcript it wants to extend (Gi). However we do
not want this to be an impediment on its running time in case (a part of) Gi

is already defined in the output of A1; for this reason we will allow A2 to also
determine Gi implicitly by referencing the output of A1.

Finally, we argue that for any MH DAG computation the speed-up the adver-
sary gets by seeing extra problem instances is bounded. Looking forward, we
note that this property will be the cornerstone for the protection of our pro-
tocol against grinding attacks. The main idea is that if an attacker A could
get a speed-up on performing DAG computations due to seeing extra problem
instances, then we would be able to construct another attacker A′ that could
break MH by initially running A and then performing any remaining “unsolved
but queried” DAG computations using M . In the language developed above,
extra instances are modeled as extra queries to oracle O, while the adversarial
speed-up can be captured by the adversarial advantage difference ε(1 + a, b, c)
from ε(1, b, c), where a is the percentage of extra queries. We point to the full
version of the paper for the formal proof of the lemma.

Lemma 1. Let I be a family of DAG computations that is (t, ε, k)-MH. Then,
I is also is (t, ε′, k)-MH, where for any a ≥ 0, b, c: ε′(1 + a, b, c) := ε(1, b, c) + a

Remark 2. It is important to note that (t, ε, k)-moderate hardness, for reasonable
parameters, is not achievable for all families of DAG computations. To illustrate
this, consider a family of DAG computations allowing for an instance to be
crafted in the following way: a key pair of a trapdoor permutation is generated
by the adversary, the public key is embedded in the instance, and the exploration
algorithm M is designed such that it implies computing the pre-image of a
random nonce. Clearly, such a DAG computation would not be moderately hard
in any reasonable way.

Still, moderate hardness seems to be a reasonable assumption for a large class
of computations with sufficiently simple exploration and verification algorithms,
e.g., for the core randomized search computation of stochastic local search algo-
rithms [27]. The adversary now can still craft problems trying to gain compu-
tational advantage in the DAG computation, but the unpredictability of the
randomness seed can help to mitigate this effect to a large extent.

Having given an outline of the DPLS optimization algorithm as well as the
necessary vocabulary for moderate hardness, we proceed to present Ofelimos, the
PoUW blockchain protocol, which builds on the moderate hardness of a generic
useful computation to implement both DPLS and a transaction ledger.

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 353

5 The PoUW Blockchain Protocol

5.1 Protocol Description

We start, by listing a number of (informal) requirements that any protocol imple-
menting DPLS must satisfy to qualify as a candidate protocol for useful-work
mining. We then describe our protocol while motivating the design choices by
these requirements. The requirements are motivated from both sides: blockchain
security, as well as, efficiency of the DPLS algorithm:

1. Blockchain security:
(a) No grinding: the adversary cannot gain mining advantage by cherry-

picking DPLS exploration steps of low complexity.
(b) Precomputation resilience: problem instances cannot be adversarily man-

ufactured such that the adversary gains access to faster block production.
Computation before seeing the head of the chain to be extended cannot
contribute towards computing the respective PoUW.

(c) Adjustable mining difficulty: The block difficulty can be adjusted to the
mining power applied by the network.

2. DPLS efficiency:
(a) Frequent updates: Results about new points explored are published (rel-

atively) fast.
(b) Small overhead: The computational overhead of integrating exploration

algorithm M into PoUW is small (implying that honest mining performs
useful work).

The high-level architecture of the protocol is similar to Bitcoin, i.e., blocks
are chained together by referencing each other by hash, and, during each round,
a miner selects the longest chain from his view, and tries to extend it by a block.
Two modifications are applied: standard PoW is replaced by PoUW, and we
apply 2-for-1 PoW [20] in order to accommodate different types of blocks for
reasons explained below. See Fig. 1 for further reference.

The core of the mining algorithm consists of applying the exploration algo-
rithm M , constituting the ‘useful part’ of the PoUW. To defend against precom-
putation (Requirement 1a), the computation of M is prepended by hashing the
candidate block (first H box in Fig. 1), thereby randomizing the computation
to be performed by M . Similarly to Nakamoto consensus, this ‘pre-hash’ of the
block must lie below an initial target T1, to antagonize grinding for parameters
of M that result in lower-than-average computation complexity: resampling new
parameters must be more expensive than the worst-case complexity of M .

By Requirement 1c, the mining-success probability must be reduced below
the success probability of hashing against T1—which is fully determined by the
computational characteristics of the problem instance and unrelated to mining
participation in the network. One possibility to address this issue would be to
further lower the target T1 to make pre-hashing as hard as required for ledger
security; however, this would come against a big loss in usefulness, as miners
would spend most of their time performing hashing. Instead, we have the miner

354 M. Fitzi et al.

H SNARG
ranking block

store best run of M

H< T1

else

state
< T3

else

nonce

M(G, z, r′) input block

< T2

else

seed

Fig. 1. Diagram of the PoUW mining procedure.

feed the output of M into one single round of ‘post-hashing’ (see second H box in
the figure) that decides, against a threshold T3, whether the block is eligible for
publication. This second threshold adjusts the overall mining difficulty to a level
required by the security analysis to guarantee good and secure blockchain char-
acteristics. Note the additional effect of post-hashing to adapt mining difficulty:
the miner only learns whether a PoUW attempt is successful after executing M ,
i.e., the computation cannot be cut short to speed up block creation.

A miner loops, many times, the computation sequence of pre-hashing (against
T1), useful work, and one post-hash, until the post-hash of a sequence lies below
T3, allowing for the block to be published. To preserve progress, the best point
(by means of scoring algorithm g) from all recent computation sequences is
stored for eventual inclusion in a future block to be published. Note that finding
a good new point is decoupled from mining success, thus helping to establish
Requirement 1b. Furthermore, only publishing the best one from a batch of
new points, rather than greedily publishing all of them incrementally, helps to
accommodate Requirement 2b.

Considering Requirement 2a under Bitcoin parameters, we cannot afford that
a miner waits with his update until he mines a block. For this reason, we incor-
porate 2-for-1 PoW to allow for the publication of different types of blocks,
so-called ranking blocks which are ‘standard’ Bitcoin blocks of high difficulty
(target T2), and so-called input blocks of low difficulty (target T3, i.e., hash
range T2 < h ≤ T3) which are not part of the chain but are rather handled
like transactions to be eventually referenced by a ranking block. A miner now
includes his best point explored whenever he hits either type of a block; and
by setting the input-block difficulty low enough, the update rate per miner is
high enough to distribute progress in the explored points fast, while having no
considerable impact on the blockchain characteristics.

A block contains two points explored using M : the ‘winner’ one that lead to
the small post-hash, and the ‘best’ one that is included to progress the DPLS
algorithm. In order to accommodate 2b, we minimize the cost of block verification
by having the miner append a SNARG proving correctness of both exploration
points contributing to the block, i.e., a SNARG proving membership to the
following language: L = {((Λ,G, z, r′, x′), (Λb, Gb, zb, r

′
b, x

′))|VΛ(G⊕(z, r′, x′)) =
1∧VΛb

(Gb ⊕(zb, r
′
b, x

′
b)) = 1}, where G⊕(z, r′, x′) denotes the graph G extended

with vertex (z, r′, x′) as defined in Sect. 4.
A detailed description of the PoUW procedure is given in Algorithm 2.

The mining algorithm is parametrized by the longest blockchain received C,

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 355

the message to be included in the block m, the problem instance Λ selected by
the miner to work on,3 the related transcript G extracted from C, and the selected
inner state z. The pre-hash input includes these parameters, the hash of the pre-
vious block s, and a random nonce r; and yields a unique seed r′ for M . At this
point, all parameters of M , Λ,G, z, and r′, are fully determined based on the data
initially hashed, thus establishing that each small pre-hash found by the adversary
can only be used to perform one matching post-hash attempt. We note that if, in a
round, a miner does not have enough steps to finish running the PoUW procedure,
e.g., he only manages to find a small pre-hash, he continues the next round from
the point it stopped.

Algorithm 2. The PoUW procedure is parameterized by hardness parameters
T1, T2, T3 ∈ N, the SNARG system, hash function H(·), the explore algorithm
M , and scoring algorithm g.
1: var (scoreb, Λb, stb, com) := (∞, ⊥, ⊥, ⊥) � Best attempt - global variables
2: var z := ⊥ � Inner state
3:
4: function PoUW(C, m, Λ, G)
5: s := H(head(C))
6: if (Λ �= Λb) then z ← F(Λ, G) � Reset inner state
7: r ← Uλ � Sample nonce
8: h := H(s, m, com, Λ, G, z, r)
9: if (h < T1) then � Pre-hash

10: r′ := H(h) � Seed
11: x′ := MΛ(G, z, r′) � DAG computation
12: h′ := H(r′, x′)
13: if (h′ < T3) then � Post-hash
14: st := (s, m, com, Λ, G, z, r, x′)
15: π := SNARG.P(Σ, (st, stb)); � Correctness proof
16: B := 〈st, stb, π〉
17: if (h′ < T2) then C = CB � New ranking block
18: else Diffuse((input, B)) � New input block
19: (scoreb, Λb, stb, com) := (∞, ⊥, ⊥, ⊥) � Reset best attempt
20: else
21: if ((Λ �= Λb) or (gΛ(x′) > scoreb)) then � New best found
22: (scoreb, Λb, stb, com) := (gΛ(x′), Λ, st, H(stb))

23: return C

Moreover, ranking blocks are also treated as input blocks, and can be included
in the payload of other ranking blocks. As in [20], an input block can be included
in the payload of different ranking blocks in diverging chains, which ensures that

3 Even if there are no problem instances posted by clients on the blockchain, e.g., during
bootstrapping, miners can always generate a MH problem based on the hash of the
block they are extending (a fixed-time hash-based PoW ([4,12]) is sufficient for this
purpose). This amounts to a ‘fall-back’ DPLS computation.

356 M. Fitzi et al.

all input blocks mined by an honest party will eventually be included in the
main chain, and no progress is ever lost. The full pseudo-code of the protocol is
presented in the full version of the paper [18].

Remark 3. (SNARG overhead) Note that usefulness is not necessarily substan-
tially impacted by a large SNARG-computation overhead as each state update
involves a large number of exploration steps (on average) but SNARGs for only
two of the M -computations performed. This average number of exploration steps
can thus be raised in a trade-off against the state-update frequency in the system,
helping to establish Requirement 2b.

5.2 Deployment Considerations

The following two practical aspects are of special importance when deploying
our PoUW blockchain:

Multiple Problem Instances. The system must be able to handle multiple
problem instances as the computation of a particular instance will eventually ter-
minate. Also, multiple instances should be able to be computed concurrently to
give them fair chances to progress. We achieve this concurrency by running the pro-
tocol in epochs, and interleaving different problem instances by assigning exactly
one instance to each epoch. As exposed in the full version of the paper, interleaving
has an additional advantage: during the epoch, unconfirmed input blocks can be
immediately extended in the DAG without risking that the referrer block becomes
invalid due to possible non-inclusion of the referenced block in the main chain—
thus facilitating fast progress during the time slots allocated to the problem.

Incentive Structure. The participation of miners in the system must be incen-
tivized to guarantee blockchain security and progress in the useful computation.
Also, since the miner is free in choosing which one of their state updates to
publish in their block, choosing a good solution should be rewarded in order to
expedite progress in the useful computation. In the full version, we elaborate on
meeting these conditions as well as on guaranteeing reward fairness along the
lines of the Fruitchains construction [42].

6 Security Analysis

Next, we formally analyze the security of our protocol. First, we show that—
assuming that the underlying DAG computation is moderately hard and that
honest parties control the majority of the computational power in the network—
our protocol implements a robust transaction ledger. Then, we define and analyze
its usefulness rate.

6.1 Ledger Security

Let Π denote our blockchain protocol. The consistency analysis of the longest
chain rule appearing in Π involves a number of new challenges, including: (i)

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 357

an exotic Markov chain governing the mining dynamics and the possibility of
“restarts” in this chain generated by the delivery of a new block, perhaps by the
adversary, and (ii) basing the hardness of generating new blocks to a problem
satisfying the weak moderate hardness notion introduced in Sect. 4. We adapt
the language of [5,31] to this setting and then develop the tools necessary for
the associated probabilistic analysis. (Our treatment below does not require
familiarity with these previous papers.)

For simplicity, in the main body of the paper, we discuss the case without
restarts, which is to say that the protocol carried out by the honest parties
does not restart the mining process when it learns of a longer chain, but rather
completes the current computation. Intuitively, restarts improve the security
properties of the blockchain, as they help ensure that honest parties are mining
on current chains. However, the situation is somewhat complicated by the fact
that restarts do permit the adversary to correlate the states of the honest par-
ties in the Markov chain. Specifically, note that an adversary holding a chain
that exceeds the length of those chains currently held by honest parties may
strategically release the chain to honest players—perhaps with detailed knowl-
edge about their current state—so as to achieve some short-term control over
the distribution of honest mining successes. Despite such correlations, we show
in the full version of the paper that the intuition above is correct: the adversarial
advantage achieved by exposing adversarial blocks to honest miners is overshad-
owed by the fact that such exposures increase the length of the blockchain held
by the honest recipient; in the language of the analysis below, such an exposure
has an effect just as beneficial as an honest mining victory!

We adopt a discrete time model, dividing time into short “rounds” with dura-
tion cH equal to the time taken to carry out a hash query. We reflect the
essential block-generation events of an execution of the protocol with a char-
acteristic string: this determines, for each round, the number of adversarial and
honest ranking blocks generated. Thus our characteristic strings have the struc-
ture w = w1, . . . , wL where each wi = (hi, ai) ∈ N

2 and hi and ai denotes the
number of honest and adversarial ranking block discoveries, respectively; here L
is the lifetime of the protocol.

Ultimately, our protocol Π determines a blockchain of ranking blocks, which
themselves refer to input blocks. Such a structure determines a linear order on
the collection of input blocks referenced in the blockchain of ranking blocks (by
ordering input blocks referenced in a particular ranking block according to the
order of their references in the ranking block). Ultimately, we wish to establish
the two fundamental ledger properties: liveness and persistence.

Persistence with parameter k ∈ N. Once a node of the system proclaims
a certain input block in the stable part of its ledger L, the remaining nodes
either report the input block in the same position of their ledgers, or report a
stable ledger which is a prefix of L. Here the notion of stability is a predicate
that is parametrized by a security parameter k; specifically, an input block
is declared stable if and only if it is in a (ranking) block that is more than k
(ranking) blocks deep in the ledger.

358 M. Fitzi et al.

Liveness with parameter u ∈ N. If all honest nodes in the system attempt to
include a certain input block then, after the passing of time corresponding to
u rounds, all nodes report the input block as stable.

We establish these properties as consequences of three more elementary prop-
erties of the blockchain of ranking blocks, originally formulated in [20] (we use
a slightly adapted formulation from [15]):

– Common Prefix (CP); with parameter k ∈ N. The chains C1, C2 adopted
by two honest parties at the onset of rounds r1 ≤ r2 are such that C�k

1 ≺ C2,
where C�k

1 denotes the chain obtained by removing the last k blocks from C1,
and ≺ denotes the prefix relation.

– Existential Chain Quality (ECQ); with parameter s ∈ N. Consider the
chain C adopted by an honest party at the onset of a round and any portion of
C spanning s prior rounds; then at least one honestly-generated block appears
in this portion.

– Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider the
chain C possessed by an honest party at the onset of a round and any portion
of C spanning s contiguous prior rounds; then the number of blocks appearing
in this portion of the chain is at least τs. We call τ the speed coefficient.

One of the important conclusions of previous work is that these properties
(CP, CG, and ECQ) directly imply liveness and persistence and—from an ana-
lytic perspective—can be guaranteed merely based on the characteristic string
associated with a particular execution. This fact is fairly immediate for CG and
ECQ, whereas identification of the properties of the characteristic string that
guarantee CP is more delicate.

In the full version of the paper we give a summary of this theory and describe
an extension with restarts. Fortunately, it is possible to succinctly reflect the
conclusions of this theory as they relate to our needs, which is done below.

To continue, we first introduce two assumptions related to the level of mod-
erate hardness of the underlying DAG-computation family I used by Π, and the
complexity of the SNARG system used.

Assumption 1. For parameters t̂, ε̂, k̂, we assume that the DAG computation
family I used in Π is (t̂, ε̂, k̂)-moderately hard.

Assumption 2. For parameters cP, cV, cS, we assume that there exists a
SNARG system SNARG where running the prover (resp., verifier, setup) takes
cP (resp. cV, cS) steps.

Let w = w1, . . . , wL be a characteristic string, as above. We fix a constant Γ ,
a time period with the following Γ -serializing guarantee: if a ranking block B2 is
generated by an honest party P at least Γ rounds after the honestly-generated
ranking block B1 is diffused, then the full computation supporting B2 (including
the prehash) was carried out while P was aware of B1. In our setting, Γ can be
set to 2 + Δ + cP/cH + t̂/cH (corresponding to the number of rounds taken to

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 359

produce the prehash (≤ 1), useful work (≤ t̂/cH), post-hash (≤ 1), and SNARG
(cP/cH) for block B2 in addition to any network delay). With this in mind, we say
that t is a Γ -isolated uniquely successful round if the region wt−Γ . . . wt . . . wt+Γ

satisfies ht = 1 and, furthermore, that the sum
∑

hi = 1 over this region (recall
wi = (ai, hi)). Note that a round cannot be isolated if it is not followed by at
least Γ symbols. For each t define It to be an indicator variable for the event
that t is an isolated uniquely successful round.

The basic quantities of interest are given by two conventions for accounting
for the balance of adversarial and honest successes.

Definition 3 (The barrier walk; the free walk). Let x = x1, . . . , xn ∈ N
∗.

Define the barrier walk B(x) by the recursive rule B(ε) = 0 (for the empty string
ε) and, for any x ∈ N

∗ and a ∈ N, B(xa) = max(B(x) + a, 0). Likewise, define
the free walk F (x) =

∑
i xi.

Definition 4. For a characteristic string w ∈ (N2)L and 0 < t ≤ L, define the
margin effect w∗

t = at −It ∈ N (and w∗ to be the sequence of elements of N given
by this rule). We then define B∗(w) = B(w∗) and F (w) = F (w∗). Finally, for a
characteristic string w = xy with |x| =
, we define the
-isolated margin of w
to be β�(w) = B(x∗) + F (y∗).

The role of
-isolated margin is clarified by the following, which establishes
a direct connection to common prefix.

Theorem 1. Let w ∈ (N2)L be the characteristic string associated with an exe-
cution satisfying the Γ -serializing guarantee. Suppose, further, that (i.) the exe-
cution satisfies (k/s, s)-CG, and (ii.) for any prefix xy of w for which |y| ≥ s,
we have β|x|(xy) < 0. Then the execution satisfies k-CP.

This is the major component in the following theorem; as noted, the details
of this existing theory are discussed in the full version of the paper.

Theorem 2. Let DΠ be a distribution on characteristic strings of length L
(induced by a protocol Π), λ a security parameter, and α > β two constants
corresponding to the rate of uniquely isolated blocks and the rate of adversar-
ial blocks, respectively. Assume that for a constant δ < (α − β)/2, when w is
drawn from DΠ , every interval of w of length poly(λ) has at least α− δ uniquely
isolated blocks and no more than β + δ adversarial blocks except with negligible
probability. Then, except with negligible probability, the protocol satisfies (i.) CG
with s = poly(λ) and constant speed coefficient, (ii.) ECQ with s = poly(λ), and
(iii.) CP with parameter k = poly(λ).

Analysis of the Markov Chain. In light of the description above, we are
specifically interested in analyzing the sequence of (i.) adversarial mining suc-
cesses and (ii.) uniquely isolated honest successes. The analysis is simplified by
the fact that the time evolution of the honest parties is independent. We focus
on the Markov chain pictured below, showing nodes for “pre-hash”, “post-hash”,

360 M. Fitzi et al.

and both “ranking” and “input” block production. It is convenient for us to fur-
ther decorate our transitions with delays: orange edges are traversed in a single
round (or cH time, corresponding to hash queries), the gray edges are traversed
instantaneously, and the blue edges have transition times given by the distribu-
tion of useful work (upper bounded by t̂) and SNARG times (cP). (Note that
the timing delays indicated in this chain could be implemented with paths of
individual states connected by edges with unit delay, so this presentation can be
reflected with a standard Markov chain.) While the basic security properties of
the protocol depend only on the production of ranking blocks, the dynamics of
the Markov chain depends on both ranking and input block production.

qpre qpost

qrank

qinputp1

1 − p1

1 − (p2 + p3)

p2

p3

We begin by establishing that—despite the fact that honest parties begin the
protocol synchronized (in “pre”)—they quickly converge to mutually independent
positions in the mining chain. Looking ahead, this mixing argument will be
instrumental to establish bounds on uniquely isolated block production.

The Mixing Time; Convergence to Mutual Independence. By a standard
coupling argument we get the following:

Lemma 2. Consider m particles P1, . . . , Pm independently evolving on the
Markov chain with any fixed initial states. Let (S1, . . . , Sm) denote a random
variable so that each coordinate is independent and stationary on the chain.
Then letting T = L(1 + (t̂ + cP)/cH),

‖(PT
1 , . . . , PT

m) − (S1, . . . , Sm)‖t.v ≤ m(1 − pcouple)L,

where ‖X − Y ‖t.v denotes the distance in total variation between the random
variables X and Y . Here pcouple > 0 is a constant that depends only on cP/t̂.

Proof. We proceed with a standard coupling argument. Consider m particles
(parties) P1, . . . , Pm, initially in the state qpre, that carry out simultaneous, inde-
pendent evolution according to the dynamics of the chain. We wish to show that
the joint distribution of positions of all the particles quickly converges to m
independent copies of the stationary distribution. For this purpose, consider
m additional particles R1, . . . , Rm on the chain, initially distributed indepen-
dently according to the stationary distribution. We let P t

i and Rt
i denote the

positions of the particles at time t. We give a simple coupling C of the evolu-
tion of P t

1 , . . . , P
t
m with Rt

1, . . . , R
t
m, and apply the standard “coupling lemma”

which establishes convergence to the stationary distribution. The coupling C
is described, at each time step, by a family of random variables U t

i ; for each

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 361

i ∈ {1, . . . , m}, U t
i : Q → Q is a function where Q is the set of states of the

chain (which is in fact larger than the diagram indicates as a result of imple-
menting the “long” transitions). The “update functions” Ui are chosen so that
the full ensemble of entries (U t

i (q)) (over all t, i, and q ∈ Q) are independent
and each Ui(q) is distributed according to the defining distribution for the state
q. Then Pi and Ri are updated according to the same update: P t+1

i = Ui(P t
i)

and Rt+1
i = Ui(Rt

i). Observe that the dynamics of the P t
i are as promised, each

independently evolving according to the chain; the same is true of the Rt
i, which

of course continue to be independent and stationary. Observe that if Rt
i = P t

i

at some time t this property will be retained by the coupling in the future (as
they are subject to the same update function). Now, consider any time period of
length E = 1+ (t̂+ cP)/cH rounds and any pair of particles Pi and Qi. Observe
that both particles must visit the state qpre during this time period (as t̂ and cP
are upper bounds on the transition times of the blue transitions); it follows that
if the first of the two particles to visit qpre remains in that state for the remain-
der of the E time steps then the two particles must couple (that is, coincide
during this time period and forever after). Recalling that we take T1 ≥ t̂/cH ,
we find that the probability that that first particle remains in qpre when the
second one arrives is at least pcouple := (1 − p1)E/cH = (1 − p1)(t̂+cP)/cH =
[(1 − p1)t̂/cH](1+cP/t̂) ≥ [(1 − 1/T1)T1](1+cP/t̂) ≥ (1/e − O(1/T1))(1+cP/t̂). Thus
pcouple is a constant larger than zero (and can be lower bounded as a function of
the constant cP/t̂). Note that the events that Pi couples with Ri (for distinct i)
during such an epoch are independent, and it follows that after L such epochs
the probability that there is a pair (Pi, Ri) that has not coupled is no more
than n(1 − pcouple)L. By the standard coupling lemma (see, e.g., [3, §12]), after
L epochs the distance in total variation between (P1, . . . , Pm) and the indepen-
dent stationary distribution in each coordinate is no more than m(1− pcouple)L,
which tends to zero exponentially quickly in L. This proves the lemma. ��

Bounds on the Events of Interest. Consider, as above, the population of
particles (players) P1, . . . , Pn on the Markov chain. According to an evolution of
these particles, given by the random variables P t

i , we are interested in establish-
ing upper bounds on the rate at which the adversary produces ranking blocks,
and a lower bound on the rate at which the honest players produce uniquely
isolated blocks.

Lemma 3. Consider m parties, with arbitrary initial conditions but evolving
independently on the Markov chain. Let S = (t̂ + cP)/cH + 1 and consider any
interval of R rounds, the first of which starts at least S steps after the evolution
begins. Then the probability that a particular player generates at least k ranking
blocks in this interval is no more than

(
R+S

k

)
(p1p2)k ≤ (R + S)k(p1p2)k.

Lemma 4. Consider m independent parties walking on the Markov chain in the
stationary distribution. Let p∗

rank denote the stationary probability of qrank, then

Pr[t is a uniquely isolated round] ≥ m(1 − (3Γ)p1p2)mp∗
rank.

362 M. Fitzi et al.

In light of Lemma 2, the following is immediate.

Lemma 5. Consider m players evolving according to the Markov chain, where
the players are initially stationary and independent. Let pcouple denote the cou-
pling constant of Lemma 2. Consider two rounds š < s for which |š − s| ≥
L(1 + (t̂ + cP)/cH). Let Is denote the indicator random variable for the event
that s is uniquely isolated. Let C denote an arbitrary event depending only on
the players trajectories prior to š. Then |Pr[Is|C] − Pr[Is]| ≤ (1 − pcouple)L.

Lemma 6. Consider m players evolving on the Markov chain with any fixed
initial states. Let piso denote the probability that a round is uniquely isolated
under the stationary distribution, bounded below by Lemma 4. Fix a parameter
σ > 0 and define L = ln(pisoσ/2)/ ln(1 − pcouple) and E = L(1 + (t̂ + cP)/cH).
Let {R, . . . , R + S − 1} be a sequence of rounds for which R ≥ E. Let Is be the
event that the players produce a uniquely isolated block in round s. Then

Pr

[
∑

s

Is ≤ (1 − σ)pisoS

]

≤ E exp
(

− (1 − σ/2)σ2piso · S

8E

)

.

Analysis of the Adversarial Successes. Next, we proceed to bound the rate
of adversarial mining successes. Our analysis is going to depend on the level of
moderate hardness of the underlying DAG computations family.

By Lemma 1 we argued that the speed-up the adversary gets by each extra
queries to oracle O is bounded. In fact for a single extra query, the lemma
tells us that the adversary can speed up its computation by t̂ steps. Thus, in
order to protect our protocol from grinding attacks, we set the pre-hash hardness
parameter p1 to cH/((1 + σ)t̂ + 4), where σ ∈ (0, 1) is a parameter associated
with the concentration bounds we use later in our analysis. This implies that
finding a small pre-hash takes on expectation cH/p1 = (1 + σ)t̂ + 4 > t̂ steps,
i.e., it is more expensive than running M directly to compute a new PoUW; the
extra steps added are related to costs occurring in our reduction later.

To aid our presentation, we define t′ := t+(2n+4(p2+p3)(ncP+tcV)) ·p1/cH

to be the increased corruption power the adversary gets, due to fact that our
reduction to the MH of I is not tight, mainly because of the cost of generating
and verifying SNARG proofs. With foresight, we let β be an estimation of the
rate at which the adversary produces ranking blocks

β := p2/
[
(1 − ε̂(1, 2, 2n/t′)) · t̂ + (1/((1 + σ)p1) + 1) · (cH − 4p1)

]
.

The expected number of steps to find a block, β−1, is basically the number of
attempts needed to find a small post-hash (1/p2), times the number of steps
needed to find a small pre-hash (cH/p1) plus the time needed to perform the
DAG computation ((1− ε̂) · t̂). The other constants of the formula are related to
our security analysis, i.e., our reduction from an attacker against the blockchain
to an attacker against MH. Finally, the parameters 0, 2, 2n/t′ of ε̂ relate to the
rate at which the adversary queries oracles qO, qV , qM as explained in Sect. 4.

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 363

Table 1. The parameters of our analysis.

λ : security parameter
n : number of parties
t : adversarial corruption bound
t′ : amplified adversarial corruption bound
cH : “mining” steps each party takes per round
cP, cV : SNARG prover/verifier cost
ε̂, t̂, k̂ : MH DAG parameters
T1, p1 = T1/2λ : target/success probability of prehash
T2, p2 = T2/2λ : ” of ranking block posthash
T3, p3 =

T3−T2
2λ : ” of input block posthash

σ : concentration-bound parameter
Δ, Γ : network/serialization worst-case delay
β : upper bound on ranking-block computation rate
δMH : adversarial advantage in DAG computation rate
δSteps : honest advantage in number of steps per round
δtot : upper bound on the total block generation rate

Let r.v. Z(S) denote the maximum number of distinct blocks computed by
the adversary during S, where the pre-hash query for each of these blocks was
also issued to the RO during S. We prove in the full version that the adversary
cannot mine fresh ranking blocks with rate and probability better than that of
breaking the moderate hardness experiment. The main proof idea is to use an
adversary that creates blocks fast, to create another adversary that breaks the
moderate hardness of I. A summary of our notation is given in Table 1.

Lemma 7. For any set of consecutive rounds S, where |S| ≥ k̂(1 + σ)p2/(β ·
t′cH), it holds that Z(S) ≥ (1 + σ)β · t′cH |S| with probability negl(λ).

Putting Everything Together. Next, we show that the probability that a
uniquely successful round happens is larger than the expected adversarial min-
ing rate per round. Towards this purpose, our next assumption ensures that
the computational steps advantage of honest parties outperforms the moderate
hardness advantage of the adversary, while at the same time the rate at which
blocks are produced is upper bounded.

Assumption 3. There exist constants δMH, δSteps and δtot ∈ (0, 1), such that for
sufficiently large λ ∈ N:
- (n − t)(1 − δSteps) ≥ t′ (Steps per round gap)
- p∗

rank ≥ (1 − δMH)β · cH (Moderate hardness gap)
- δSteps − δMH ≥ δtot (Steps vs. Moderate hardness gap)
- δtot > 3Γ · βcH(n − t) (Bounded block generation rate).

Based on Assumption 3, we can prove that the rate of uniquely successful rounds
is bigger than the rate at which the adversary generates blocks.

Lemma 8. It holds that piso > (1 + δtot)βt′cH .

364 M. Fitzi et al.

Together with the appropriate concentration bounds proved in Lemmas 6
and 7, Lemma 8 is sufficient to apply Theorem 2 for Π, which in turn implies
that Π satisfies both Persistence and Liveness with overwhelming probability.

Corollary 1. Given Assumptions 1, 2 and 3, Ofelimos satisfies Persistence and
Liveness for k, u ∈ poly(λ), except with negligible probability.

Finally, in the full version, we argue that under ideal conditions, i.e. optimal
MH, small SNARG costs, etc., Ofelimos can tolerate any dishonest minority.

A More Detailed Treatment of Useful Work Completion Times. The
analysis above calibrates pre-hash hardness as a function of t̂, the worst-case
completion time of useful work. In certain settings of interest, the time com-
plexity of the useful work task may satisfy a significantly stronger bound with
very high probability, in which case this reduced bound can take the place of t̂
with only minimal changes to the development above. Specifically, if the time
complexity is t < t̂ except with negligible probability, the value t can be uni-
formly substituted for t̂ above with the addition of negligible error terms in the
theorems above.

Security Against Multiple Problem Instances. As discussed in Sect. 5.2,
our protocol can handle multiple problem instances by interleaving them. Note,
that our security analysis extends to this case, since it is agnostic of the level of
MH of problem instances. Instead of trying to detect the hardness level of the M
computation corresponding to each submitted problem instance, our approach
is to keep pre-hash hardness fixed throughout the execution of the protocol, at
a level where even if the submitted computation is not MH we still retain some
security guarantees.

DPLS Against Adversarial Participation. Executing DPLS in our permis-
sionless PoUW setting potentially implies substantial adversarial participation
which can negatively influence the algorithmic performance. In particular, the
adversary may not follow Algorithm 1, e.g., by publishing the result of the worst
execution of M , instead of the best one.

While the presentation of DPLS is agnostic to adversarial participation, its
embedding PoUW protocol is responsible to provide the respective defenses. In
the full version of the paper, we present two important quality guarantees of our
implementation of DPLS by our PoUW protocol as long as the adversary only
controls a minority of the computational power: (i) during any sufficiently large
round interval, honest parties contribute new updates at least proportionally to
their relative mining power —in particular, the honest parties contribute more
updates than the adversary; (ii) the adversary cannot extensively manipulate
the score of its updates, as we enforce each update to additionally include the
result of a “random” execution of M from the batch (the one that resulted in a
small post-hash), which can be used to replace “best” execution if it had worse
score in comparison.

Remark 4. (Grinding resistance amplification) As a corollary of our main hard-
ness lemma, we can argue about the amplification of grinding resistance of a
MH DAG computation achieved by the following construction: first, the new

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 365

exploration algorithm tries to find a small pre-hash, which then uses to seed the
initial (potentially weakly grinding resistant) DAG computation4. Similarly to
our PoUW, we set the hardness of finding the pre-hash to be approximately equal
to the worst-case complexity of the initial DAG computation. By our lemma,
it easily follows that this construction is maximally grinding resistant, i.e., the
adversary gains no advantage by seeing extra problem instances, while incur-
ring only a small loss on MH and ensuring that the (potentially useful) initial
computation remains a substantial part of the exploration algorithm. In fact, we
can do even better in the case where the initial DAG computation enjoys some
limited form of grinding resistance, by downgrading the hardness of finding a
small pre-hash proportionally to the grinding resistance parameter.

Having argued about the security of Ofelimos as a transaction ledger, we
turn our attention to its usefulness as a problem solving system.

6.2 Protocol Usefulness

The goal of any PoUW-based blockchain protocol is to be used to solve some,
external to the blockchain, computational problem. We say that such a proto-
col has a high usefulness rate if the total computational work spent to run the
blockchain and solve the external problem is not much bigger than just solv-
ing the problem with the best possible algorithm (for the setting considered),
denoted by Abest. We study this rate for our protocol using two metrics. The
first metric, Ueng, measures the overall ratio of computational steps, performed
by honest parties, that the engine directs towards running the DPLS algorithm.
Intuitively this metric captures how effective the protocol is as a DPLS engine.
We generically define Ueng as follows:

Ueng := E[DPLS steps per block]/E[total steps per block]

Next, we analyze Ueng for Ofelimos. First, note that since we set pre-hash
hardness based on the worst-case complexity of M , Ofelimos’s Ueng naturally
depends on M ’s runtime distribution being concentrated close to t̂. Fortunately,
the core search function of local search algorithms, which M aims to model, usu-
ally boils down to iteratively evaluating candidate solutions in a neighborhood,
thus making it easy for us to exactly calibrate its runtime, e.g., by counting the
number of candidates evaluated. Assuming that this is indeed true, and M ’s
running time is almost always t̂, we show that for appropriate protocol param-
eters Ofelimos has a Ueng close to 1/2, i.e., half of the total work mining a new
block goes to running the DPLS engine. The intuition is that as we decrease the
probability of finding a new (input or ranking) block, hashing and running M
costs dominate the cost of running the SNARG prover. Given now that for our
scheme the cost of hashing is approximately equal to the cost of running M , the
result is immediate. We formalize this in the next lemma.

4 Our PoUW “collapses” to this construction if we set p2 := 1, p3 := 0.

366 M. Fitzi et al.

Lemma 9. Assume M has a fixed running time. Then, for any ρ > σ + 4/t̂, if
p2 + p3 < (ρ−σ)t̂−4

2·cP , Ueng is greater than 1
2+ρ .

The second metric, Ualg, compares the complexity of DPLS to algorithm
Abest. Note, that for Ualg we only take into account the DPLS computation steps
and no other steps related to the protocol, e.g., hashing, computing SNARGs.

Ualg := E[total steps of Abest]/E[total steps of DPLS]

Ualg cannot be studied generically as it depends on the specific external problem
solved as well as the computational model we consider. For example, we expect
Ualg to be much larger when we consider the best algorithm in a distributed
setting compared to the best one in the single machine setting. Instead, in the
full version of the paper, we showcase how Ualg can be estimated experimentally
for our WalkSAT DPLS variant.

The two metrics that we introduced clearly separate costs associated with
the ledger protocol (hashing and SNARGS) from costs that are induced by the
specific algorithm implement. In fact, in the case where blocks are computed
using the honest mining algorithm, the product of the two metrics is a good
approximation of the usefulness rate.

Remark 5. (Improved Ueng) In the analysis of our protocol we did not make any
assumptions about the grinding resistance of the underlying DAG computation
I. This had the effect of setting the pre-hash hardness (cH/p1) to be approxi-
mately equal to t̂, in turn leading to Ueng being less than 1/2. If I enjoys some
non-trivial level of grinding resistance, we can take advantage of it and down-
grade the pre-hash hardness, with the effect of having exactly the same security
guarantees but with potentially much less work invested in hashing. In the case
where I is maximally grinding resistant, this leads to Ueng being close to 1.

Acknowledgments. We thank Laurent Michel for providing us with valuable infor-
mation about state-of-the-art stochastic local-search algorithms and their application
to real-world problems.

References

1. Aggarwal, A., Chandra, A.K., Snir, M.: Communication complexity of prams.
Theor. Comput. Sci. 71(1), 3–28 (1990)

2. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discret. Appl. Math. 123(1–3), 75–102 (2002)

3. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs (2002,
Unfinished monograph). http://www.stat.berkeley.edu/~aldous/RWG/book.html

4. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with
no trusted setup. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 379–399. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_19

http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1007/978-3-662-48000-7_19

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 367

5. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Consensus redux:
distributed ledgers in the face of adversarial supremacy. IACR Cryptology ePrint
Archive, Report 2020/1021 (2020)

6. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7_11

7. Baldominos, A., Saez, Y.: Coin. AI: a proof-of-useful-work scheme for blockchain-
based distributed deep learning. Entropy 21(8), 723 (2019)

8. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_26

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, Fairfax, Virginia, USA, pp. 62–73 (1993)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

11. Chatterjee, K., Goharshady, A.K., Pourdamghani, A.: Hybrid mining: exploiting
blockchain’s computational power for distributed problem solving. In: Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing (2019)

12. Coelho, F.: An (almost) constant-effort solution-verification proof-of-work protocol
based on Merkle trees. Cryptology ePrint Archive, Report 2007/433 (2007)

13. Coventry, A.: Nooshare: a decentralized ledger of shared computational resources
(2012). https://web.archive.org/web/20220620105201/. http://web.mit.edu/alex_
c/www/nooshare.pdf

14. Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7_2

15. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8_3

16. Dotan, M., Tochner, S.: Proofs of useless work-positive and negative results for
wasteless mining systems. arXiv preprint arXiv:2007.01046 (2020)

17. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_29

18. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: combinatorial opti-
mization via proof-of-useful-work–a provably secure blockchain protocol. Cryptol-
ogy ePrint Archive, Paper 2021/1379 (2021)

19. Gapcoin. Gapcoin (2014). https://gapcoin.org/
20. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis

and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_10

21. Garay, J.A., Kiayias, A., Panagiotakos, G.: Consensus from signatures of work. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 319–344. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3_14

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_25
https://web.archive.org/web/20220620105201/
http://web.mit.edu/alex_c/www/nooshare.pdf
http://web.mit.edu/alex_c/www/nooshare.pdf
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
http://arxiv.org/abs/2007.01046
https://doi.org/10.1007/978-3-662-48000-7_29
https://gapcoin.org/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-40186-3_14

368 M. Fitzi et al.

22. Garay, J.A., Kiayias, A., Panagiotakos, G.: Blockchains from non-idealized hash
functions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 291–
321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_11

23. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68 (2017)

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

25. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

26. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artif. Intell.
56(2–3), 223–254 (1992)

27. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, Amsterdam (2004)

28. Kautz, H., Selman, B., McAllester, D.: Walksat in the 2004 SAT competition.
In: Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (2004)

29. Kerber, T., Kiayias, A., Kohlweiss, M.: Mining for privacy: how to bootstrap a
snarky blockchain. Cryptology ePrint Archive, Report 2020/401 (2020)

30. Kiayias, A., Quader, S., Russell, A.: Consistency of proof-of-stake blockchains with
concurrent honest slot leaders. IACR Cryptology ePrint Archive, Report 2020/041
(2020)

31. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

32. King, S.: Primecoin: cryptocurrency with prime number proof-of-work (2013)
33. Lihu, A., Du, J., Barjaktarevic, I., Gerzanics, P., Harvilla, M.: A proof of useful

work for artificial intelligence on the blockchain. arXiv:2001.09244 preprint (2020)
34. Loe, A.F., Quaglia, E.A.: Conquering generals: an NP-hard proof of useful work.

In: Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Dis-
tributed Systems, pp. 54–59 (2018)

35. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: ACM CCS
2019, London, UK, pp. 2111–2128 (2019)

36. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: 2014 IEEE S&P, pp. 475–490. IEEE (2014)

37. Moran, T., Orlov, I.: Simple proofs of space-time and rational proofs of storage.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp.
381–409. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_14

38. Oliver, C.G., Ricottone, A., Philippopoulos, P.: Proposal for a fully decentralized
blockchain and proof-of-work algorithm for solving NP-complete problems. arXiv
preprint arXiv:1708.09419 (2017)

39. Papadimitriou, C.H., Ullman, J.D.: A communication-time tradeoff. SIAM J. Com-
put. 16(4), 639–646 (1987)

40. Park, S., Kwon, A., Fuchsbauer, G., Gaži, P., Alwen, J., Pietrzak, K.: SpaceMint: a
cryptocurrency based on proofs of space. In: International Conference on Financial
Cryptography and Data Security (2018)

https://doi.org/10.1007/978-3-030-64375-1_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://arxiv.org/abs/2001.09244
https://doi.org/10.1007/978-3-030-26948-7_14
http://arxiv.org/abs/1708.09419

Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 369

41. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6_22

42. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) ACM PODC 2017, Washington, DC, USA, 25–27 July 2017, pp. 315–
324. ACM (2017)

43. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI
1994, USA, vol. 1, pp. 337–343 (1994)

44. Zhang, F., Eyal, I., Escriva, R., Juels, A., Van Renesse, R.: REM: resource-efficient
mining for blockchains. In: 26th USENIX Security Symposium USENIX Security
2017, pp. 1427–1444 (2017)

45. Zheng, W., Chen, X., Zheng, Z., Luo, X., Cui, J.: AxeChain: a secure and
decentralized blockchain for solving easily-verifiable problems. arXiv preprint
arXiv:2003.13999 (2020)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
http://arxiv.org/abs/2003.13999

	Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work*1mm
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization of the Paper

	2 Preliminaries
	3 Doubly Parallel Local Search
	3.1 Overview
	3.2 DPLS Modeled in a Blockchain Setting
	3.3 An Example
	3.4 Generality of the Approach

	4 Moderately Hard DAG Computations
	4.1 Syntax
	4.2 Moderate Hardness

	5 The PoUW Blockchain Protocol
	5.1 Protocol Description
	5.2 Deployment Considerations

	6 Security Analysis
	6.1 Ledger Security
	6.2 Protocol Usefulness

	References

