
Secret Can Be Public: Low-Memory AEAD
Mode for High-Order Masking

Yusuke Naito1(B), Yu Sasaki2, and Takeshi Sugawara3

1 Mitsubishi Electric Corporation, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan
yu.sasaki.sk@hco.ntt.co.jp

3 The University of Electro-Communications, Tokyo, Japan

sugawara@uec.ac.jp

Abstract. We propose a new AEAD mode of operation for an effi-
cient countermeasure against side-channel attacks. Our mode achieves the
smallest memory with high-order masking, by minimizing the states that
are duplicated in masking. An s-bit key-dependent state is necessary for
achieving s-bit security, and the conventional schemes always protect the
entire s bits with masking. We reduce the protected state size by intro-
ducing an unprotected state in the key-dependent state: we protect only a
half and give another half to a side-channel adversary. Ensuring indepen-
dence between the unprotected and protected states is the key technical
challenge since mixing these states reveals the protected state to the adver-
sary. We propose a new mode HOMA that achieves s-bit security using a
tweakable block cipher with the s/2-bit block size. We also propose a new
primitive for instantiating HOMAwith s = 128 by extending the SKINNY
tweakable block cipher to a 64-bit plaintext block, a 128-bit key, and a
(256+3)-bit tweak. We make hardware performance evaluation by imple-
menting HOMA with high-order masking for d ≤ 5. For any d > 0, HOMA
outperforms the current state-of-the-art PFB Plus by reducing the circuit
area larger than that of the entire S-box.

Keywords: Authenticated Encryption · High-Order Masking ·
Side-Channel Attack · Mode of Operation · Lightweight Cryptography

1 Introduction

There is a growing demand for extending information systems to the physical
world by using network-enabled embedded devices, and lightweight cryptogra-
phy (LWC) is the key technology enabling secure network communication in such
resource-constrained devices. Designing lightweight symmetric-key cryptogra-

phy is arguably the central topic in LWC research because extremely resource-
constrained devices cannot afford the cost of implementing public-key cryptog-
raphy. The National Institute of Standards and Technology (NIST) is currently
conducting the LWC competition to determine the next standard of authenti-
cated encryption with associated data (AEAD) schemes [33].
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13509, pp. 315–345, 2022.
https://doi.org/10.1007/978-3-031-15982-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15982-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-15982-4_11

316 Y. Naito et al.

Such embedded devices that need LWC can be used in a hostile environ-
ment wherein a local attacker mounts power and/or electromagnetic side-channel
attacks (SCAs) [24]. Thus, LWC designers face an even more challenging task of
realizing an SCA-resistant implementation with limited resources. In fact, coun-
termeasures against SCAs are explicitly mentioned as design requirements in
NIST’s competition, and ISAP [13], which was designed with a focus on robust-
ness against SCA, has recently been chosen as a finalist in the competition [34].

Masking, which splits the target value into a number of shares, is arguably
the most common countermeasure against SCA [20,32]. The security of masking
is based on the d̃-probing model, which considers an attacker who can probe d̃
wires [20]. A masking scheme with the protection order d resists attacks with up
to d probes. A common strategy is to design a gadget, typically a secure Boolean
AND operation, that securely maps the input shares into the corresponding
output shares and to construct a target symmetric-key algorithm using them
while ensuring the compositional security.

Large performance overhead is the major drawback of masking. In particular,
the number of shares significantly impacts computational complexity. The early
schemes used (td + 1) shares with t > 1 for achieving the protection order d and
thus called (td + 1)-masking [20]. Later, the researchers invented a new scheme
that achieves the same protection order by using (d+1) shares only [39]. In this
paper, we focus on the (d + 1)-masking schemes because they have a significant
performance advantage over the (td + 1)-masking schemes.

Such a masking scheme is also effective against statistical SCA with several
assumptions regarding the noise level and leakage function; the number of side-
channel traces to mount an attack, which is the key difficulty indicator, increases
exponentially with the protection order d [37]. A sufficient protection order heav-
ily depends on the target, and the recent experimental evaluations suggests that
d ≈ 5 is practical. For example, Cassiers et al. verified their masking scheme up
to d = 3 using 9 million traces which is close to the practical limit [9,10].

1.1 Low-Memory AEAD for Masking

As we reduce the circuit area for combinatorial logic gates by exploiting the
area-latency trade-off with sophisticated serial architectures [26,27], memory
(register) becomes more and more dominant. The overhead of masking is also
critical because it duplicates the target state for shared representation. Since
reducing the memory size within a block cipher is difficult, researchers have been
tackling the problem at the higher layer, and have proposed several masking-
friendly AEAD modes achieving small memory sizes after masking [21,26,29].

We summarize the memory costs for achieving s-bit security in the state-
of-the-art AEAD schemes in Table 1. All conventional schemes, including the
conventional block cipher (BC) based and permutation (P) based schemes [12,
25], use the total memory size of 3s bits without SCA protection (see the column
with d = 0). That is because we need (i) 2s-bit information carried between
blocks to achieve s-bit security against internal-state collisions, and (ii) an s-bit
key indispensable for the security against exhaustive search.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 317

Table 1. Memory size for masking implementations with s-bit security. The security
of the existing schemes are evaluated in the conventional AE-security [30] or its related
notions. HOMA is evaluated in a new security notion, which ensures the same security
properties as the conventional one while leaking unprotected values to adversaries.

Scheme Public Key-Dependent Key† (d + 1) Masking Ref.

Protected† Unprotected d = 0‡ d = 1 d = 2 d = d̂

P-based — 2s — s 3s 6s 9s 3s(d̂ + 1) [12]

BC-based — 2s — s 3s 6s 9s 3s(d̂ + 1) [25]

TBC-based§ s s — s 3s 5s 7s 2s(d̂ + 1) + s [21,26,29]

HOMA 1.5s 0.5s 0.5s s 3.5s 5s 6.5s 1.5s(d̂ + 1) + 2s Ours

†The key and the key-dependent protected state are encoded into (d +1) shares in (d +1)-masking.
‡d = 0 corresponds to an implementation without any SCA countermeasure.
§This category includes PFB, Romulus, and PFB Plus.

In contrast, the schemes have different memory sizes after masking. As sum-
marized in Table 1, the memory is categorized into three types:

– Public: a state that can be computed only with input values to the encryption
or decryption algorithm (without a key),

– Key-dependent: a state that requires knowledge of the key,
– Key: a secret key.

The public state needs no SCA protection, and the scheme with a larger public
state has a smaller memory size after masking (see the column with d > 0). In
particular, the recent beyond-the-birthday-bound schemes using Tweakable BC
(TBC), namely PFB [29], Romulus [21], and PFB Plus [26], use a public tweak
for reducing the size of the key-dependent state within the internal state. These
schemes achieve 2s(d + 1) + s bits of memory with (d + 1)-masking, which is
better than the conventional BC-based or P-based schemes with 3s(d + 1) bits.

In this paper, we pursue this direction and study a new mode of operation
that minimizes the state size after (d+1)-masking. The key technical challenge is
to reduce the key-dependent state beyond the conventional schemes. The existing
masking-friendly AEADs (PFB, Romulus, and PFB Plus) use masking to both
the key-dependent state and the key. The s-bit memory for the secret key has
no room for improvement. Besides, protecting the remaining key-dependent s-
bit state has also been believed to be necessary for achieving s-bit security. We
refer to this as “the s-bit secret barrier” hereafter. The existing masking-friendly
AEADs are optimal under this belief.

1.2 Summary of Contributions

This paper makes three main contributions: (i) a new mode HOMA, (ii) an
instantiation for HOMA, including a new TBC as an underlying primitive, and
(iii) concrete implementations and performance benchmarking of HOMA.

(i) New Mode (Sect. 3) and Its Proof (Sect. 4). First, we propose a new
TBC-based AEAD mode-of-operation HOMA that achieves the smallest memory

318 Y. Naito et al.

of all existing schemes for (d + 1) masking (see Fig. 1-(center) and -(right) for
its core procedure). For further reducing memory, we consider dropping SCA
protection from a part of the s-bit key-dependent states. Hence, we decompose
the key-dependent state into “unprotected” and “protected” states.

– Unprotected: a key-dependent state without SCA protection in a raw form
– Protected: a key-dependent state with SCA protection in a shared form

The protected state is protected with high-order masking using (d+1) shares, and
has the protection order d. The unprotected state is represented without shares
and an SCA adversary potentially has unlimited access. To capture this worst-
case scenario, we define a security notion that all the unprotected values are
revealed whereas the protected values are secret. With the leakage of the unpro-
tected state, the secret state becomes smaller than s bits, which allows a birthday
attack with s/2-bit complexity, as we discuss in Sect. 3. HOMA addresses this
attack by introducing random IV without increasing memory size.

A TBC’s internal state, directly updated with a key, must be protected.
Hence, we design a mode such that a TBC’s internal state is the only state that
requires SCA protection. Moreover, the TBC’s block size should be as small as
possible. PFB Plus’s idea of using a small block size is beneficial to our mode.
PFB Plus divides the s-bit key-dependent state and updates a half by a TBC
and another half by XORing the TBC output, as shown in Fig. 1-(left). However,
simply unprotecting the latter s/2 bits in PFB Plus ends up with a trivial attack.
We consider v3 = v1 ⊕v2 in Fig. 1-(left). Unprotecting the latter half of the state
means that both v3 and v1 are revealed. This immediately reveals supposedly
protected v2 because v2 = v1 ⊕ v3. Then, a collision on the whole state can be
generated only by a collision on v3 because the difference in v2 can be canceled
by injecting the difference from Ai+1. Hence, security decreases to s/2 bits.

Addressing the issue, HOMA uses the structure in Fig. 1-(center) and -(right).
Considering that each TBC call produces an s/2-bit random value, HOMA calls
a TBC twice to sufficiently mix the s-bit internal state (and additionally calls a
TBC to encrypt a plaintext block in the encryption), which enables us to prove
the s-bit security of HOMA. In Fig. 1-(center) and -(right), the red lines are pro-
tected and represented with (d+1) shares and the TBC and fix0 implementations
are protected with (d + 1)-masking, and the black lines remain unprotected.

With the above security notion, we prove that by fixing the TBC size to n
bits, HOMA achieves 2n-bit security. As a result, HOMA ensures s-bit security
only with a protected state of size s/2 bits (smaller than s bits) and an s-
bit key. As a drawback, HOMA needs three (resp. two) TBC calls for each data
block for encryption (resp. AD processing). This yields some overhead in latency,
but its impact on memory size is negligible. Another drawback is that HOMA
requires a random IV of s bits, which is crucial to ensure the s-bit security when
the unprotected state is s/2 bits, in addition to a nonce that is an additional
overhead of traffic data. Note that we can comfortably assume the availability
of a random generator because it is necessary for masking1.
1 Some masking implementations use non-cryptographic PRNGs, e.g., a simple LFSR,

insufficient for the random IV. A hardware TRNG for seeding should be used instead.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 319

Twi,1

Ai Ai

Twi,2
Twi

Ai

Twi+1

Ai+1
fix0

s/2

s/2

s/2

s/2

v1 v3
v2

Mi

Ci

Tw'i,2
Ci Ci

Tw'i,3
fix0

s/2

s/2

Tw'i,1
Ci-1

PFB_Plus: Processing AD HOMA: Processing AD HOMA: Encryption

Fig. 1. PFB Plus’s structure (left) and HOMA’s structure (center and right). Aj is an
AD block and Mi/Ci is a plaintext/ciphertext block. The red (resp. black) lines are
protected (resp. unprotected). Twj is a tweak. fix0 is a function fixing a LSB to 0. Each
dotted circle of PFB Plus represents a component of processing one data block. (Color
figure online)

As summarized in Table 1, HOMA uses a 1.5s-bit public state, a 0.5s-bit
protected state, a 0.5s-bit unprotected state, and an s-bit key. Hence, without
masking implementation, the state size is 3.5s bits, which is worse than those of
existing modes. However, with (d + 1) masking, HOMA achieves 1.5(d + 1) + 2s,
which is the smallest for d > 0 and asymptotically reduces memory by 25%.

(ii) Instantiation of HOMA with a New TBC (Sect. 5). HOMA for s = 128
requires a TBC that supports a 64-bit block, a 128-bit key, and a (256 + 3)-bit
tweak, where the 3 bits are for domain separation of the mode. No existing TBC
efficiently supports those configurations. Moreover, tweak- and key-schedules
must be designed so that the tweak (public) is not mixed with the key (key-
dependent) to avoid (d + 1) masking of the tweak state. We found that the
tweak- and key-schedules of SKINNY [3] satisfy this requirement, thus we design
a new TBC “SKINNYee” by basing its structure on SKINNY. The tweaky (a
combination of a tweak and a key) size of SKINNY is 64, 128, or 192 bits, and
SKINNYe [26] extended it to 256 bits, while our TBC needs (128+256+3) = 387
bits of key and tweak. This is challenging because the tweakey size extension done
by SKINNY and SKINNYe cannot exceed 256 bits due to the limited design space.
We resolve it by processing a key and a tweak as independent objects. Moreover,
we absorb the 3-bit tweak by initializing a linear feedback shift register (LFSR)
to a tweak-dependent value, which is more efficient than existing methods to
extend the tweak size by a few bits [11,27]. Besides, we modify the LFSR clocking
method of SKINNY so that the implementation is optimized for small memory.

(iii) Implementation (Sect. 6). We propose a hardware architecture for
HOMA instantiated with SKINNYee and make a concrete performance compari-
son with the conventional state-of-the-art PFB Plus. For the high-order masking,
we use Cassiers et al.’s HPC2 [9,10] for its glitch resistance, composability, and
availability of an open-source implementation [8]. This is also the first HPC2
implementation of the SKINNY-based primitives and its S-box. We make an
ASIC performance evaluation for the protection order d ∈ {0, · · · , 5} using a

320 Y. Naito et al.

45-nm CMOS standard cell library (see Table 3). As a result, HOMA always
outperformed PFB Plus with SCA protection, i.e., for any d > 0. Although the
cost of the S-box circuit grows quadratically with d, in contrast to the memory
size that grows only linearly, the results confirm that the memory elements still
dominate the hardware cost with those practical protection orders. In particu-
lar, for any protection order d > 0, HOMA saved the circuit area larger than
that of the entire S-box. This significant area reduction is impossible with the
conventional approaches focusing on S-box, i.e., reducing S-box’s multiplicative
complexity [1,16,17] and improving each AND gadget [9,10].

1.3 Related Work

Optimization for (td + 1) Masking. PFB Plus is optimized for (td+1) mask-
ing with t > 1, for Nikova et al.’s threshold implementation (TI) [32] in particu-
lar. (td + 1)-masking use the different number of shares between the linear and
non-linear states: those states require (d+1) and (td+1) shares, respectively. To
exploit this property, PFB Plus increases the ratio of a linearly updated state,
within the s-bit secret barrier, and achieves a smaller memory after (td + 1)-
masking. Unfortunately, PFB Plus’s benefit disappears with a (d + 1)-masking,
which uses the same number of shares for non-linearly and linearly updated
states. TI’s extension to d ≥ 2 turned out to be non-trivial [7,38], and researchers
are studying (d + 1)-masking as a viable option for high-order masking [39].
HOMA takes another approach of breaking the s-bit secret barrier and achieves
a smaller memory with (d+1) masking as shown in Table 1. Moreover, even with
the 3-share TI, HOMA achieves the same memory size as PFB Plus.

Leakage-Resilient (LR) Cryptography. LR cryptography studies sym-
metric-key schemes, including AEAD, with provable security against SCA [2,
5,6,13–15,36]. The early LR schemes relied on the bounded leakage model that
limits the amount of leakage for each measurement [15]. However, limiting the
number of measurements turned out to be impractical with a stateless primi-
tive [4]. Addressing the issue, some recent LR schemes, including TEDT [6] and
Spook [5], use a leak-free primitive supposedly realized with masking [14]. These
modes can be faster than HOMA because they efficiently use unprotected prim-
itives. Meanwhile, TEDT/Spook is not optimized for memory usage; protecting
its s-bit TBC with masking requires the similar memory size as the other TBC-
based schemes in Table 1. The additional components, including an independent
unprotected TBC/Permutation implementation, can further increase the mem-
ory size.

Other LR schemes, including ISAP [13], pursue exclusive use of leaky prim-
itives by limiting the target to non-adaptive attackers. ISAP can go beyond
Table 1 because it does not rely on masking, and the memory size is indepen-
dent of the protection order d. Meanwhile, the security of these schemes relies
entirely on the restricted input space to the leaky primitives, which has several
limitations compared with masking. In particular, they provide no guarantee
against template attacks [14] and single-trace attacks [23].

Masking-Friendly Primitives. Those primitives use the S-box with a small

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 321

multiplicative complexity to be easy to mask [1,16,17]. HOMA has a high affinity
for masking-friendly primitives. Most of designs as stand-alone primtives are
for block ciphers, while there are several TBCs designed along with a mode.
Clyde-128 [5], Scream, and iScream [18] are such examples. Here we design a
SKINNY variant for making the performance comparison clearer.

2 Preliminaries

Notation. Let ε denote the empty string. For a positive integer i, let {0, 1}i

denote the set of all i-bit strings. Let {0, 1}∗ denote the set of all bit strings.
For integers i ≤ j, let [i, j] := {s | i ≤ s ≤ j} be the set of integers from i to j.

For a positive integer i, let [i] := [1, i] and (i] := [0, i]. For a finite set T , T
$← T

denotes an element is chosen uniformly at random from T and is assigned to T .
The concatenation of two bit strings X and Y is written as X‖Y or XY when no
confusion is possible. For integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) resp.
lsbi(X) be the most resp. least significant i bits of X, and |X| be the number of
bits of X, i.e., |X| = j. For an integer n > 0 and a bit string X, we denote the
parsing into fixed-length n-bit strings as (X1,X2, . . . , X�)

n←− X, where if X 	= ε
then X = X1‖X2‖ · · · ‖X�, |Xi| = n for i ∈ [� − 1], and 0 < |X�| ≤ n; if X = ε
then � = 1 and X1 = ε.

TBC. Let n be a block size. A TBC is a set of n-bit permutations indexed
by a key and a public input called tweak, that is, fixing a key and a tweak,
it becomes an n-bit permutation. Let K be the set of keys, T W be the set
of tweaks, and n be the input/output-block size. An encryption is denoted by
˜E : K × T W × {0, 1}n → {0, 1}n, ˜E having a key K ∈ K is denoted by ˜EK . For
an input (K,Y,X) ∈ K × T W × {0, 1}n, the output is denoted by ˜EK(Y,X).

In this paper, a TBC is assumed to be a secure tweakable-pseudo-random
permutation (TPRP), i.e., indistinguishable from a tweakable random permu-
tation (TRP). A tweakable permutation (TP) ˜P : T W × {0, 1}n → {0, 1}n

is a set of n-bit permutations indexed by a tweak in T W. A TP ˜P having a
tweak TW ∈ T W is denoted by ˜PTW . Let ˜Perm(T W, {0, 1}n) be the set of all

TPs: T W × {0, 1}n → {0, 1}n. A TRP is defined as ˜P
$← ˜Perm(T W, {0, 1}n). In

the TPRP-security game, an adversary A has access to either ˜EK or ˜P , where
K

$←K and ˜P
$← ˜Perm(T W, {0, 1}n), and after the interaction, A returns a deci-

sion bit ∈ {0, 1}. The output of A with access to O is denoted by AO ∈ {0, 1}.
Then, the TPRP-security advantage function of A is defined as Advtprp

˜EK
(A) :=

Pr[A ˜EK = 1] − Pr[A ˜P = 1], where the probabilities are taken over K, ˜P , and
A. The maximum advantage over all adversaries, running in time at most t and
making at most q queries, is denoted by Advtprp

˜EK
(q, t) := maxA

(

Advtprp
˜EK

(A)
)

.

AEAD. An AEAD scheme based on a TBC ˜EK , denoted by Π[˜EK], is a pair
of encryption and decryption algorithms (Π.Enc[˜EK],Π.Dec[˜EK]). K, IV, M,
C, A, and T are the sets of keys, initialization vectors, plaintexts, ciphertexts,

322 Y. Naito et al.

associated data (AD), and tags of Π[˜EK], respectively. For our scheme, the set of
keys of Π[˜EK] is equal to that of the underlying TBC. The encryption algorithm
takes an initial vector IV ∈ IV, an AD A ∈ A, and a plaintext M ∈ M,
and returns, deterministically, a pair of a ciphertext C ∈ C and a tag T ∈ T .
The decryption algorithm takes a tuple (IV,A,C, T) ∈ IV × A × C × T and
returns, deterministically, either the distinguished invalid symbol reject 	∈ M
or a plaintext M ∈ M. We require that for any (IV,A,M), (IV ′, A′,M ′) ∈
IV × A × M, |Π.Enc[˜EK](IV,A,M)| = |Π.Enc[˜EK](IV,A,M ′)| is satisfied if
|M | = |M ′|. We also require that Π.Dec(IV,A,Π.Enc[˜EK](IV,A,M)) = M for
IV ∈ IV, A ∈ A, and M ∈ M.

In this paper, IV consists of a set of nonces denoted by N and a set of random
IVs denoted by R thus IV = N × R. For nonces of Π.Enc[˜EK], repeating the
same nonce is forbidden within the same key.2 For an input tuple (N,R,A,M) ∈
N ×R×A×M of Π.Enc[˜EK], a random IV R is chosen independently of other
elements (N,A,M) and uniformly at random from R. Then, (N,R,A,M) is
passed to Π.Enc[˜EK].

AE Security. We explain the AE-security notion [30], on which our security
goal is based.3

The AE-security is the indistinguishability between the real and ideal worlds.
The real-world oracles are (Π.Enc[˜EK],Π.Dec[˜EK]) wherein the key K is defined

as K
$←K. The ideal-world oracles are ($,⊥) wherein $ is a random-bits ora-

cle that returns a random bit string of length |Π.EncK [˜E](N,R,A,M)| for an
encryption query (N,A,M), and ⊥ is a reject oracle that returns reject for any
decryption query. Note that for each encryption query (N,A,M), the random

IV is defined as R
$← R. The AE-advantage function of an adversary A that

returns a decision bit after interacting with Π[˜EK] in the real world or with
($,⊥) in the ideal world is defined as Advae

Π[˜EK]
(A) = Pr[AΠ.Enc[˜EK],Π.Dec[˜EK] =

1] − Pr[A$,⊥ = 1], where the probabilities are taken over K, $, A, and random
IVs. A is nonce-respecting, that is, all nonces in queries to Π.Enc[˜EK]/$ are
distinct. In this game, making a trivial query (N,R,A,C, T̂) to Π.Dec[˜EK]/⊥ is
forbidden, which is defined by some previous query to Π.Enc[˜EK]/$.

3 Design of AEAD Mode for High-Order Masking

3.1 Intuition and Design of HOMA

High-Level Structure. To design an s-bit secure mode, the size of the key-
dependent state must be at least s bits, whereas to design a masking-friendly
mode, the size of the protected state must be less than s bits to be smaller
than the existing designs. The minimum size of the protected state is the block
size of the underlying TBC, since a state in a TBC includes information of the

2 For Π.Dec[˜EK], nonces and random IVs can be repeated.
3 The AE-security notion does not take into account SCA.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 323

DPFA

A1

IS DPFA

Aa

DPFM

M1

DPFM

Mm-1

C1 Cm-1

n

n

protected

unprotected

DPFT

Mm

Cm

T

Fig. 2. The high-level structure of HOMA.

key. Thus, the security of a masking-friendly mode must be beyond the block
size. HOMA is designed so that, with a TBC of n-bit block, the security level is
2n bits, the key-dependent state size is 2n bits, and the unprotected state size
is n bits. In other words, for the target security level s, HOMA has the s-bit
key-dependent state with s/2-bit protected and s/2-bit unprotected ones.

Figure 2 shows the high-level structure of HOMA. It starts from the 2n-bit
initial state IS and updates the state by iterating a data processing function
(DPF). In this iteration, we first process AD blocks A1, . . . , Aa and then pro-
cess plaintext blocks M1, . . . ,Mm while generating ciphertext blocks C1, . . . , Cm.
Each DPF takes as input a public state, including a nonce and a counter, but
we omit them from the figure for simplicity. In the process of the last plaintext
block Mm, we define a tag T as well as the last ciphertext block Cm.

We then specify DPFs. DPFs for processing AD, plaintext blocks before the
last block, and the last plaintext block (with tag generation) are similar but
slightly different. We denote them by DPFA, DPFM, and DPFT, respectively. To
design DPFs, we need to carefully define protected and unprotected states. This
is because once a protected value vp is mixed with an unprotected value vup and
the resulting value v is unprotected, the protected value can be leaked (e.g., if
v = vp ⊕ vup, then one can obtain vp (= v ⊕ vup)). With this important point in
mind, we designed DPFA, DPFM, and DPFT, which are depicted in Fig. 3.

DPFA. Each DPFA must randomize the entire 2n-bit state to avoid a state col-
lision so that the protected state must not be mixed with the unprotected one.
We thus call a TBC twice to provide 2n-bit randomness as Fig. 3(top,left). For
each TBC call, the tweak is a concatenation of a domain separation di, a nonce
N , a counter, the AD block Ai, and the current unprotected state value. fix0 is
a function that fixes the LSB to 0.4

DPFM. To process each plaintext block, we first call a TBC to generate an n-bit
key stream, then the same procedure as DPFA is performed to update the whole
state. DPFM is shown in Fig. 3(top,right).

DPFT. The DPF encrypts the last plaintext block and generates a tag simultane-
ously. As shown in Fig. 3(bottom), we first call a TBC to generate an n-bit key
stream to encrypt the plaintext block, then a TBC is iteratively applied twice to
4 The function is introduced for the security proof that ensures that the TBC output

provides a randomness to the unprotected state. It ensures that the output is chosen
uniformly at random from at least 2n−1 elements. Note that fix0 can be removed by
reserving a bit in a tweak space that takes the LSB of the TBC input.

324 Y. Naito et al.

fix0

di,N,2i-2
Ai

di,N,2i-1
Ai Ci CiCi-1

Ci

Mi

DPFM: Processing i-th plaintext block Mi

DPFT: Processing last plaintext block Mm and generating tag T

msb |Mm|

ozp(Cm) ozp(Cm)Cm-1

Cm

Mm T1 T2

DPFA: Processing i-th AD block Ai

3,N,3i-3 3,N,3i-2 3,N,3i-1

y,N,3m-23,N,3m-3 y,N,3m-1

n

n

n

n

n

n

di =0 if i<a; di =x if i=a

Xi,1

Yi,1 Zi,1

Xi,2

Yi,2 Zi,2

Xa+i,0

Ya+i,0 Za+i,0

Xa+i,1

Ya+i,1 Za+i,1

Xa+i,2

Ya+i,2
Za+i,2

X ,0

Y ,0 Z ,0

X ,1 X ,2

Y ,1 Y ,2Z ,1
Z ,2

fix0

Fig. 3. DPFs of HOMA. The red lines are protected and the others are unprotected.
(Color figure online)

DPFA

A1

DPFA

A2

IS T = T*DPFM

M1

DPFM

M2

DPFT

M3

DPFA

A1

DPFA

A2

DPFM

M1

DPFM

M2

DPFT

M3

T = T'

' '

C1 C2 C3

C1 C2 C3

IS

?

?

reject

reject

revealed
to adversary

Fig. 4. A collision in decryption procedures.

generate the 2n-bit tag. For the encryption, a tag is a conventional output, thus
no protection is required, while for the decryption, the tag must be protected,
since no information should be output for an invalid tag.

Random IV. For the encryption, we use a random IV of 2n − 1 bits as the
initial state IS. This is because, without a random IV, the AEAD in Fig. 2 is
vulnerable against a state-collision attack. The details are as follows.

Assume that IS is not random. Then an adversary can fix IS to some con-
stant in both the encryption and decryption procedures. The SCA adversary
first interacts with the decryption oracle to cause a collision of DPF, which is
shown in Fig. 4. In decryption queries, the adversary can make IS values the
same even in the nonce-respect setting. In this attack, distinct ADs, an identical
ciphertext, and any tag are used to cause a collision of the state after processing
AD (after the second AD block in Fig. 4). The key point here is that the SCA
adversary can access to the unprotected state, which enables to detect the oc-

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 325

Algorithm 1. HOMA

Encryption HOMA.Enc[˜EK](N, R, A, M)

1: (H1, H2, C0) ← HOMA.Hash[˜EK](N, R, A)

2: (C, T) ← HOMA.Main[˜EK](N, H1, H2, C0, M); return (R, C, T)

Decryption HOMA.Dec[˜EK](N, R, A, C, T̂)

1: (H1, H2, C0) ← HOMA.Hash[˜EK](N, R, A)

2: (M, T) ← HOMA.Main[˜EK](N, H1, H2, C0, C)
3: if T̂ = T then return M ; else return reject

Processing AD HOMA.Hash[˜EK](N, R, A)

1: St ← msbn−1(R)‖0; Sb ← lsbn(R); (A1, . . . , Aa)
n←− A

2: for i = 1, . . . , a − 1 do (St, Sb) ← SUF[˜EK](0, N, 2(i − 1), Ai, St, Sb)
3: if |A| mod n = 0 then x = 1; else x = 2

4: (St, Sb) ← SUF[˜EK](x, N, 2(a − 1), ozp(Aa), St, Sb); return (St, Sb, ozp(Aa))

Main HOMA.Main[˜EK](N, H1, H2, C0, D) � If D is a plaintext M (resp. ciphertext
C), then D′ is the ciphertext C (resp. plaintext M).

1: D′ ← ε; St ← H1; Sb ← H2; (D1, . . . , Dm)
n←− D

2: for i = 1, . . . , m − 1 do
3: St ← ˜EK((3, N, 3(i − 1), Ci−1, Sb), St); D′

i ← St ⊕ Di

4: (St, Sb) ← SUF[˜EK](3, N, 3(i − 1) + 1, Ci, St, Sb)
5: end for
6: St ← ˜EK((3, N, 3(m − 1), Cm−1, Sb), St); D′

m ← msb|Dm|(St) ⊕ Dm

7: if |D| mod n = 0 then y = 4; else y = 5

8: T1 ← ˜EK((y, N, 3(m − 1) + 1, ozp(Cm), Sb), St)

9: T2 ← ˜EK((y, N, 3(m − 1) + 2, ozp(Cm), Sb), T1); return (D′
1‖ · · · ‖D′

m, T1‖T2)

State Update SUF[˜EK](d, N, u, D, St, Sb)

1: St ← fix0(St); St ← ˜EK((d, N, u, D, Sb), St) � The TBC output is unprotected

2: Sb ← St ⊕ Sb; St ← ˜EK((d, N, u + 1, D, Sb), St); return (St, Sb)

currence of the collision of the entire state without knowing the protected state
by observing if collisions on the unprotected state occur in all subsequent blocks.
After finding a collision, an adversary makes an encryption query with the same
(A1, A2), and the modified plaintext (M∗

1 ,M∗
2 ,M∗

3) under the same IS to obtain
the tag T ∗. Since T ∗ is also valid for (A′

1, A
′
2) and (M∗

1 ,M∗
2 ,M∗

3), the integrity
is broken by O(2n) queries (from the birthday analysis).

By introducing a random IV, the adversary cannot perform the attack unless
a random IV of 2n bits is predicted by spending O(22n) complexity.

3.2 Specification of HOMA

The specification of HOMA is given in Algorithm 1. Let ν and c be nonce and
counter sizes. Thus, N := {0, 1}ν . Let R := {0, 1}2n−1, A := {0, 1}∗, M :=

326 Y. Naito et al.

{0, 1}∗, C := M, and T := {0, 1}2n. Let ozp : {0, 1}≤n → {0, 1}n be the one-
zero padding function: for X ∈ {0, 1}≤n, ozp(X) = X if |X| = n; ozp(X) =
X‖10n−1−|X| if |X| < n. The set of tweaks is defined as T W := (5] × N ×
{0, 1}c×{0, 1}n×{0, 1}2n. HOMA.Enc (resp. HOMA.Dec) is the encryption (resp.
decryption) of HOMA. HOMA.Enc takes a nonce N ∈ N , a random IV R ∈ R,
an AD A ∈ A, and a plaintext M ∈ M, and returns the ciphertext C ∈ {0, 1}|M |

and the tag T ∈ T , where it is required that R is chosen uniformly at random
from R and N is a non-repeated value within the same key. HOMA.Dec takes
a nonce N ∈ N , an IV R ∈ R, an AD A ∈ A, a ciphertext C ∈ C and a tag
T̂ ∈ T , and returns the plaintext M ∈ {0, 1}|C| if the tag is valid and reject if
the tag is invalid. HOMA.Hash is a function that processes a nonce N ∈ N , an
IV R ∈ R, and an AD A ∈ A. HOMA.Main is a function that processes a nonce
N ∈ N , a plaintext/ciphertext and generates a tag. SUF[˜EK] is a function that
updates the 2n-bit state,5 where d is a domain separation value, u is a counter
value, D is a data block, St is the protected state, and Sb is the unprotected
state. In HOMA, domain separation values are 0 when processing AD blocks
except for the last AD block, x ∈ {1, 2} when processing the last AD block,6 3
when processing the plaintext/ciphertext blocks except for the last block, and
y ∈ {4, 5} when processing the last plaintext/ciphertext block and generating
a tag.7 The counter value at the i-th TBC call in HOMA.Hash/HOMA.Main is
i − 1. In Algorithm 1, counter values are denoted by integers for simplicity, but
the values are handled as the c-bit strings.

3.3 Protected and Unprotected Values of HOMA

We define unprotected TBC outputs in each DPF: DPFA: the first TBC output;
DPFM: the second TBC output; DPFT: none. These outputs are the colored
TBC one in SUF of Algorithm 1. Other TBC outputs are protected. In HOMA,
all tweaks and a state updated with an unprotected TBC output are unprotected
except for TBC computations. In Fig. 3, the colored lines are protected and other
lines are unprotected.8

4 Security Claim and Proof of HOMA

4.1 AE Security for Masking

We define AEL-security, the security for masking, by extending the conventional
AE-security [30] so that SCA adversaries for AEAD schemes with masking imple-
mentations can be considered. AEL-security is defined so that for a query to the
5 The function SUF is the same for DPFA. In DPFM, a TBC is performed to

encrypt/decrypt a plaintext/ciphertext block, then SUF is performed.
6 If the length of the last block equals n, then x = 1, and otherwise x = 2.
7 If the length of the last block equals n, then y = 4, and otherwise y = 5.
8 For the encryption, T0 and T1 can be unprotected but plaintext blocks must be

protected. The latter is necessary to ensure the privacy of plaintexts in real-world
implementations but not in the security proof as an adversary chooses a plaintext.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 327

target AEAD scheme Π[˜EK], the adversary can obtain the unprotected values
as well as the conventional output. Unlike the existing extension of the conven-
tional AE-security in [2], our extension covers a larger class of leakage functions.
Below, we define real-world and ideal-world oracles with leakage functions to
access unprotected values.

First, the real-world oracles are defined. Let EncUPV[˜EK](N,R,A,M)
resp. DecUPV[˜EK](N,R,A,C, T̂) be a leakage function for the encryption
resp. the decryption, which returns unprotected values in the process of
Π.Enc[˜EK](N,R,A,M) resp. Π.Dec[˜EK](N,R,A,C, T̂).

– Enc. oracle EncLR[˜EK]: For a query (N,A,M) ∈ N × A × M,

R
$← R, and returns the outputs of Π.Enc[˜EK](N,R,A,M) and of

EncUPV[˜EK](N,R,A,M).
– Dec. oracle DecLR[˜EK]: For a query (N,R,A,C, T̂) ∈ N × R ×

A × C × T , returns the outputs of Π.Dec[˜EK] (N,R,A,C, T̂) and of
DecUPV[˜EK](N,R,A,C, T̂).

Next, the ideal-world oracles are defined. The leakage of unprotected val-
ues is supported by introducing a simulator S = (SencL,SdecL) that simulates
(EncUPV[˜EK],DecUPV[˜EK]).

– Enc. oracle EncLI: For a query (N,A,M) ∈ N ×A×M, EncLI returns the out-
puts of $(N,A,M) and of SencL(N,R,A,C, T) where (R,C, T) = $(N,A,M).

– Dec. oracle DecLI: For a query (N,R,A,C, T̂) ∈ N × R × A × C × T , returns
the outputs of ⊥ and of SdecL(N,R,A,C, T̂).

The simulator’s task is to simulate unprotected values of the real world by using
only public values.9 If such simulator exists, i.e., the real and ideal worlds are
indistinguishable, then one can ensure that the unprotected values provide noth-
ing to differentiate the AEAD scheme from an ideal AEAD ($,⊥). Note that the
simulator must be a polynomial-time algorithm, since the simulator represents
a procedure of some polynomial-time adversary in the ideal world.

The AEL-security advantage function of an adversary A, that returns a deci-
sion bit, after making all queries, is defined as

Advael
Π[˜EK],S(A) = Pr[AEncLR[˜EK],DecLR[˜EK] = 1] − Pr[AEncLI,DecLI = 1],

where the probabilities are taken over K,R, $,S,A. Hereafter, we refer a query
to EncLR[˜EK]/EncLI (resp. DecLR[˜EK]/DecLI) an encryption (resp. decryption)
query. This game forbids A making a trivial query: some encryption query-
responses are forwarded to the decryption oracle.

A scheme Π[˜EK] is AEL-secure if there exists a simulator such that the
advantage function is bounded by a negligible probability. The goal of HOMA is
to obtain a bound of 2n-bit security (negligible up to O(22n) query complexity).
9 To ensure the privacy, a plaintext M must be kept private to an adversary. Thus,

the plaintext must not be included in a tuple of simulator’s inputs.

328 Y. Naito et al.

Comparisons with Existing Notions. Barwell et al. [2] extended the con-
ventional AE-security notion, where two oracles �(Π.Enc[˜EK]), �(Π.Dec[˜EK]) are
introduced in addition to the standard oracles Π.Enc[˜EK], Π.Dec[˜EK], $, and
⊥. �(Π.Enc[˜EK]) (resp. �(Π.Dec[˜EK])) returns leak values of Π.Enc[˜EK] (resp.
Π.Dec[˜EK]) as well as the output of Π.Enc[˜EK] (resp. Π.Dec[˜EK]). The real-
world oracles are (Π.Enc[˜EK],Π.Dec[˜EK], �(Π.Enc[˜EK]), �(Π.Dec[˜EK])) and the
ideal-world ones are ($,⊥, �(Π.Enc[˜EK]), �(Π.Dec[˜EK])). Hence, this notion does
not permit adversaries to obtain leak values of the first or second oracle. AEL-
security is defined so that there is no such restriction.

Berti et al. [6] defined two notions for privacy and integrity. The notion
for integrity, called CIML2, is the integrity part of the AE-security one with
encryption and decryption leakages. The notion for privacy, called muCIML2, is
different from the privacy part of the AE-security one. The adversary’s goal of
muCIML2 is to guess a bit b of a challenge ciphertext Cb while having access to
leakage functions as well as the encryption and decryption oracles, where two
plaintext M1 and M2 are chosen by an adversary, b is a random bit, and Cb

is the encrypted value of Mb. Since $ and ⊥ leak no information of plaintexts,
any scheme indistinguisbale from ($,⊥) is secure in the sense of the goal of
muCIML2. Hence, the AEL-security notion covers the security goals of CIML2
and of muCIML2. Berti et al. designed an AEAD mode secure regarding CIML2
and muCIML2 in the multi-user setting and the misuse setting. On the other
hand, our security proof of HOMA don’t consider these settings. Note that the
AEL-security notion can be extended to the one covering these settings by adding
multiple users and permitting adversaries to make misuse queries.

4.2 AEL-Security of HOMA

The following theorem shows that HOMA[˜EK] is AEL-secure up to O(22n)
decryption query complexity.

Theorem 1. (Security of HOMA) There exists a simulator S such that for any
adversary A running in time t, Advael

HOMA[˜EK],S(A) ≤ Advtprp
˜E

(σ, t + O(σ)) +
19σD
22n , and S runs in time t + O(σ) and requires an O(σ)-bit memory, where σD
(resp. σ) is the number of TBC calls in all HOMA.Dec (resp. HOMA) procedures.

Intuition of the Security of HOMA. Assume that the TBC is a TRP. Then,
there are the following differences between the real and ideal worlds.

1. Enc.: (real) ciphertexts and tags are defined by a TRP; (ideal) those are
defined by $.

2. Dec.: (real) a plaintext might be returned; (ideal) all responses are reject.
3. Unprotected values: (real) the values are defined by HOMA; (ideal) the values

are defined by a simulator.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 329

For the difference (1), in the real world, since each tweak includes a nonce
and a counter, each output of ˜P in the encrypt is random. Thus, the difference
yields no attack.

For the difference (2), we consider two-types of decryption query in the real
world: In a decryption query, (2)-1: the nonce is not in the previous encryption
queries; (2)-2: the nonce is in some previous encryption query. In the type (2)-1,
the tag is chosen independently from all tags in encryption queries, and thus
the probability of forging the tag is O(1/22n). In the case (2)-2, forging the
tag implies that an internal state collision occurs between the encryption and
decryption queries (the nonces are the same).10 As mentioned in Sect. 3, a colli-
sion in previous decryption queries with the same nonce cannot be used without
detecting the random IV in the encryption query. The probability of detecting
the random IV is O(1/22n). Then, to obtain the internal state collision, some
2n-bit internal state, which is freshly defined in the decryption query, must col-
lide with some internal state in the encryption query. The collision probability is
at most O(�/22n) for the data length �. Summing the bound O(�/22n) for each
decryption query, the probability of forging a tag in some decryption query, i.e.
the distinguishing probability from the difference is at most O(σD/22n).

For the difference (3), we define a simulator so that unprotected values include
no information differentiating the real and ideal worlds. The detail is given in
Sect. 4.

Hence, we obtain the AEL-Security bound O(σD/22n).

4.3 Proof of Theorem 1

First, the TBC ˜EK is replaced with a TRP ˜P . Then, for any adversary A, there
exists an adversary A′ such that Advael

HOMA[˜EK],S(A) ≤ Advtprp
˜E

(σ, t + O(σ)) +

Advael
HOMA[˜P],S(A′). Hereafter, we bound Advael

HOMA[˜P],S(A′), the AEL-security

advantage of HOMA using ˜P .

Simulator S. Our simulator is defined below. Both of SencL and SdecL run
the decryption procedure HOMA.Dec and return unprotected values defined
in this procedure. The underlying TBC is instantiated with a TRP ˜P ′ ∈
˜Perm(T W, {0, 1}n), which the simulators realize by lazy sampling.11

10 A TRP offers independent permutations if the tweaks are distinct. In HOMA, a nonce
is a tweak element, thus HOMA procedures with distinct nonces are independently
performed (even if the R values are the same). Thus, encryption queries whose nonces
are different from the nonce of the decryption query do not affect the internal state
collision probability.

11 A TRP ˜P keeps a table L that is initially empty. For an input (X, Y) ∈ {0, 1}n×T W
to ˜P , the output Z is defined as follows: if L(X, Y) = ε then Z

$←{0, 1}n\L(∗, Y)
and L(X, Y) ← Z, where L(∗, Y) is the set of all outputs whose tweaks are Y , and
otherwise Z ← L(X, Y).

330 Y. Naito et al.

– SencL(N,R,A,C, T): runs HOMA.Dec[˜P ′](N,R,A,C, T); returns the unpro-
tected values defined in HOMA.Dec[˜P ′](N,R,A,C, T).

– SdecL(N,R,A,C, T̂): runs HOMA.Dec[˜P ′](N,R,A,C, T̂); returns the unpro-
tected values defined in HOMA.Dec[˜P ′](N,R,A,C, T̂).

S runs in time t + O(σ) and requires an O(σ)-bit memory. Note again that
the TRP ˜P ′ is realized by the simulators as well as the decryption procedure
HOMA.Dec[˜P ′], which is given in Algorithm 1 where ˜EK is replaced with ˜P ′.

Notations. Let qE (resp. qD) be the number of encryption (resp. decryption)
queries, and q := qE + qD. Let σD,A (resp. σD,C) be the total number of TRP
calls in HOMA.Hash (resp. HOMA.Main) by decryption queries, thus σD = σD,A+
σD,C . For convenience, we express the α-th encryption (resp. β-th decryption)
query as the α-th (resp. (β+qE)-th) query. For α, β ∈ [q] such that the β-th query
is made after the α-th query, the relation is denoted by α � β. Let � := a + m
denote the total length of data blocks by a query. For the j-th TRP call at
the i-th DPF call in HOMA, the input block, the output block, and the tweak
in HOMA.Hash (resp. HOMA.Main) are denoted by Xi,j , Zi,j , and Yi,j , (resp.,
Xi,j−1, Zi,j−1, and Yi,j−1). See also Fig. 3. Let XYi,j := Xi,j‖Yi,j . Note that in
the ideal world, these values are defined by S. For α ∈ [q], a value V defined at
the α-th query is denoted by V (α). The lengths a,m and � of the α-th query are
denoted by aα,mα and �α. For α ∈ [q], let C(α)

i := (XY
(α)
aα,1, C

(α)
1 , . . . , C

(α)
i) be an

array of an input to the second last TRP call in HOMA.Hash and the ciphertext
blocks up to the i-th block defined at the α-th query, C(α)

0 := (XY
(α)
aα,1).

Transcript. In the following proof, for each encryption query, if |C| mod n 	= 0,
i.e., |Cm| < n, then a (n−|Cm|)-bit string CL is appended to the ciphertext C and
the modified ciphertext C̃ = C‖CL is returned instead of C. In the real world,
CL := lsbn−|Cm|(Z�,0) (thus, Z�,0 = (Mm‖0n−|Cm|)⊕ (Cm‖CL)), and in the ideal

world CL
$←{0, 1}n−|Cm|. For i ∈ [m − 1], let C̃i := Ci and C̃m := Cm‖CL, thus

C̃ = C̃1‖ · · · ‖C̃m. Let M̃i := Mi and M̃m := Mm‖0n−|Mm|.
The following proof, in addition to the standard outputs, permits A′ to obtain

the following protected values after making all queries but before returning a
decision bit.

– Z2 := {Z
(α)
i,2 | α ∈ [q], i ∈ [�α − 1]}.

– Z0,1 := {Z
(β)
aβ+i,0 | β ∈ [qE +1, q], i ∈ [mβ −1] s.t. ∀α ∈ [qE] s.t. α�β : N (α) 	=

N (β)}.
– Z0,2 := {Z

(β)
aβ+i,0 | β ∈ [qE +1, q], i ∈ [mβ −1] s.t. ∃α ∈ [qE] s.t. α�β ∧N (α) =

N (β) ∧ C(α)
i−1 	= C(β)

i−1}.
– Zt := {T

(β)
1 , T

(β)
2 | β ∈ [qE + 1, q]}.

Note that the TBC outputs Z
(α)
aα+i,0, Z

(α)
�α,1, Z

(α)
�α,2 for α ∈ [qE], i ∈ [mα] (defined

by encryption queries) remain secret (in the ideal world). Then, a transcript τ
that A′ obtains in the game consists of

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 331

–
(

(N (α), A(α),M (α)), (R(α), C̃(α), T (α))
)

for α ∈ [qE],
–

(

(N (β), R(β), A(β), C(β), T̂ (β)), RV (β)
)

for β ∈ [qE + 1, q], where RV (β) is an
output of the β-th query: plaintext M (β) or reject,

– Z
(α)
i,1 for α ∈ [q] and i ∈ [�α − 1],

– Z2,Z0,1,Z0,2, and Zt.

Bound of the Advantage. Let τ be a transcript that A′ obtains by queries
in the game. Let TR be a transcript in the real world obtained by sampling
˜P and R. Let TI be a transcript in the ideal world obtained by sampling $,
˜P ′, and R. We call a transcript τ valid if Pr[TI = τ] > 0. Let T be all valid
transcripts such that ∀τ ∈ T : Pr[TR = τ] ≤ Pr[TI = τ]. Then, we have
Advael

HOMA[˜P],S(A′) = SD(TR,TI) =
∑

τ∈T (Pr[TI = τ]−Pr[TR = τ]). We bound
the statistical distance SD(TR,TI) using the following collision event: collm:

– collm: ∃α ∈ [qE], β ∈ [qE + 1, q], i ∈ [mα] s.t.
XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1 ∧ XY

(α)
aα+i,1 = XY

(β)
aβ+i,1.

Let collrm (resp. collim) be the real (resp. ideal) world event. Using the event, we
have SD(TR,TI) ≤ Pr[collrm] + Pr[collim] + SD(T∗

R,T∗
I), where T∗

R (resp. T∗
I) is

the transcript TR (resp. TI) conditioned on ¬collrm (resp. ¬collim). The bounds of
Pr[collrm], Pr[collim], and SD(T∗

R,T∗
I) are given in the following analyses, ensuring

Advael
HOMA[˜P],S(A′) ≤ 8σD,C

22n + 11σD
22n ≤ 19σD

22n .

Bounds of Pr[collrm], Pr[collim]. The following analysis holds for both worlds.
Fix α ∈ [qE], β ∈ [qD + 1, q], and i ∈ [mα] such that XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1

and N (α) = N (β). For γ ∈ {α, β}, X
(γ)
aγ+i,1 = fix0(Z(γ)

aγ+i,0) is satisfied, and

Z
(α)
aα+i,0 and Z

(β)
aβ+i,0 are sampled separately and uniformly at random from at

least 2n − 1 elements. We thus have Pr[X(α)
aα+i,1 = X

(β)
aβ+i,1] ≤ 2/2n. Z

(α)
aα+i−1,1

and Z
(β)
aβ+i−1,1, which are used to define Y

(α)
aα+i,1 and Y

(β)
aβ+i,1, respectively, are

sampled separately and uniformly at random from at least 2n−1 elements due
to fix0. We thus have Pr[Y (α)

aα+i,1 = Y
(β)
aβ+i,1] ≤ 2/2n. Summing the bound 4/22n

for each β, i, we have Pr[collrm] ≤ 4σD,C/22n and Pr[collim] ≤ 4σD,C/22n.

Bound of SD(T∗
R,T∗

I). We bound SD(T∗
R,T∗

I) by using the coefficent H tech-
nique [35]. Here, T is partitioned into two transcripts: good transcripts Tgood

and bad transcripts Tbad.

Lemma 1. (Coefficent H technique [35]) If ∀τ ∈ Tgood : Pr[T∗
R=τ]

Pr[T∗
I=τ] ≥ 1 − μ

s.t. 0 ≤ μ ≤ 1, then SD(T∗
R,T∗

I) ≤ Pr[T∗
I ∈ Tbad] + μ.

In the following proof, good and bad transcripts are defined. Then Pr[T∗
I ∈ Tbad]

is upper-bounded, and Pr[T∗
R=τ]

Pr[T∗
I=τ] is lower-bounded. Finally, an upper-bound of

SD(T∗
R,T∗

I) is obtained, putting the bounds into the above lemma.

332 Y. Naito et al.

Good and Bad Transcripts. We define bad events below.

– forge: ∃α ∈ [qD + 1, q] s.t. T (α) = T̂ (α).
– colliv: ∃α ∈ [qE], β ∈ [qE + 1, q] s.t. β � α ∧ (N (α), R(α)) = (N (β), R(β)).
– collh: ∃α ∈ [qE], β ∈ [qE + 1, q] s.t.

(R(α), A(α)) 	= (R(β), A(β)) ∧ XY
(α)
aα,1 = XY

(β)
aβ ,1.

– collc: ∃α ∈ [qE], β ∈ [qE + 1, q], i ∈ [mα] s.t.
C(α)

i−1 	= C(β)
i−1 ∧ (fix0(M̃ (α)

i ⊕ C̃
(α)
i), Y (α)

aα+i,1) = (X(β)
aβ+i,1, Y

(β)
aβ+i,1).

Note that if i > mβ , then X
(β)
aβ+i,1 := ε and Y

(β)
aβ+i,1 := ε.

We define bad transcripts Tbad that satisfy one of the bad events. Good
transcripts are defined as Tgood := T \Tbad.

Lower-Bound of Pr[T∗
R = τ]/ Pr[T∗

I = τ]. We give an overview of this
evaluation. The detail is given in the full version of this paper [28].

There are the following differences between the real and ideal worlds.

1. Dec.: (real) a plaintext might be returned; (ideal) all responses are reject.
2. Enc.: (real) ciphertexts and tags are defined by a TRP; (ideal) those are

defined by $.
3. Protected and unprotected values: (real) the values are defined by HOMA;

(ideal) the values are defined by the simulator.

We thus show that as long as no bad event occurs, the differences yield no
distinguishing attack.

For the difference (1), by ¬forge, the difference yields no attack.
For the difference (2), in the real world, since each tweak includes a nonce

and a counter, each output of ˜P , which is used to encrypt a plaintext, is random.
Thus, the difference yields no attack.

For the difference (3), in the real world, protected values and unprotected
values are defined by a TRP as well as ciphertext blocks, whereas in the
ideal world, these values are defined by a TRP but independently of cipher-
text blocks that are defined by $. The detail of the difference is shown below,
where α ∈ [qE], β ∈ [qE + 1, q] and i ∈ [mα] such that N (α) = N (β) and
(R(α), A(α), C

(α)
1 , . . . , C

(α)
i−1) 	= (R(β), A(β), C

(β)
1 , . . . , C

(β)
i−1).

– Real: If (fix0(M̃ (α)
i ⊕ C̃

(α)
i), Y (α)

i,1) = (X(β)
i,1 , Y

(β)
i,1) then Z

(α)
i,1 = Z

(β)
i,1 , since

X
(α)
i,1 = fix0(Z(α)

i,0) ∧ Z
(α)
i,0 = M̃

(α)
i ⊕ C̃

(α)
i .

– Ideal: It occurs that (fix0(M̃ (α)
i ⊕ C̃

(α)
i), Y (α)

i,1) = (X(β)
i,1 , Y

(β)
i,1) ∧ Z

(α)
i,1 	= Z

(β)
i,1 ,

since X
(α)
i,1 = fix0(Z(α)

i,0) but C̃
(α)
i is defined independently of Z

(α)
i,0 .

In both worlds, by ¬collh ∧ ¬colliv, C(α)
i−1 	= C(β)

i−1 is satisfied. Then, in the real
world, by ¬collm, (fix0(M̃ (α)

i ⊕ C̃
(α)
i), Y (α)

i,1) 	= (X(β)
i,1 , Y

(β)
i,1) is satisfied, thus the

real-word event does not occur. By ¬collc, the ideal-world event does not occurs.
Hence, no attack using the difference (3) exists.

Hence, the real and ideal worlds are indistinguishable, that is, ∀τ ∈ Tgood :
Pr[T∗

R = τ]/Pr[T∗
I = τ] ≥ 1.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 333

Upper-Bound of Pr[TI ∈ Tbad]. Pr[TI ∈ Tbad] is bounded by Pr[forge] +
Pr[colliv] + Pr[collh] + Pr[collc] ≤ qD

22n + 2qD
22n + 2σD,A

22n + 8σD,C

22n ≤ 11σD
22n , where for

each event ev of the four events, Pr[ev] is the probability that ev occurs as long as
other events have not occurred. The bounds are given in the following analyses.

Pr[forge]. For each α ∈ [qE + 1, q], each of T
(α)
1 and T

(α)
2 is chosen uniformly at

random from {0, 1}n, thus Pr[forge] ≤ qD/22n.

Pr[colliv]. For each α ∈ [qE], β ∈ [qE + 1, q] such that β � α and N (α) = N (α),
R(α) is chosen uniformly at random from {0, 1}2n−1, thus Pr[colliv] ≤ 2qD/22n.

Pr[collh]. We first fix α ∈ [qE], β ∈ [qD + 1, q] such that N (α) = N (β) ∧
(R(α), A(α)) 	= (R(β), A(β)), and consider an event collh[α, β]: collh occurs due
to the α-th and β-th queries. By (R(α), A(α)) 	= (R(β), A(β)), collh[α, β] implies
that an internal-state collision occurs in HOMA.Hash[˜P]: ∃i ∈ [aβ] s.t. XY

(α)
i−1,1 	=

XY
(β)
i−1,1 ∧ XY

(α)
i,1 = XY

(β)
i,1 . If XY

(α)
i−1,1 	= XY

(β)
i−1,1, then the outputs Z

(α)
i−1,1 and

Z
(β)
i−1,1 are sampled separately, and the next outputs Z

(α)
i−1,2 and Z

(β)
i−1,2 are sam-

pled separately. We thus have Pr[XY
(α)
i,1 = XY

(β)
i,1] ≤ (2/2n) · (1/2n) = 2/22n.

Using the bound 2/22n, we have Pr[collh] ≤
∑qD

β=1 2aβ/22n ≤ 2σD,A/22n.

Pr[collc]. Fix α ∈ [qE], β ∈ [qD + 1, q], i ∈ [mα] s.t. N (α) = N (β) ∧ C(α)
i−1 	= C(β)

i−1.

For the condition Y
(α)
aα+i,1 = Y

(β)
aβ+i,1, by ¬collm, XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1 is

satisfied, thus the outputs Z
(α)
aα+i−1,1 and Z

(β)
aβ+i−1,1 are separately sampled from

at least 2n−1 elements due to fix0. Thus, we have Pr[Y (α)
aα+i,1 = Y

(β)
aβ+i,1] ≤ 2/2n.

For the condition fix0(M̃ (α)
i ⊕C̃

(α)
i) = X

(β)
aβ+i,1, since C̃

(α)
i is chosen from {0, 1}n,

Z
(β)
aβ+i,0 is chosen from at least 2n − 1 elements, and X

(β)
aβ+i,1 = fix0(Z(β)

aβ+i,0) is

satisfied, we have Pr[fix0(M̃ (α)
i ⊕ C̃

(α)
i) = X

(β)
aβ+i,1] ≤ 2/(2n − 1) ≤ 4/2n.

Summing the bound (2/2n) · (4/2n) for each β, i, we have Pr[collc] ≤
8σD,C/22n.

5 A TBC Optimized for HOMA

HOMA requires a TBC that accepts a 0.5s-bit plaintext, an s-bit key, and a 2s+3-
bit tweak, where s = 128 for 128-bit security. We design a new TBC, SKINNYee,
which is optimized to be used in HOMA by basing the scheme on SKINNY64 [3].
We conjecture that SKINNYee is a TPRP and satisfies the requirement of HOMA.

5.1 SKINNY64 and SKINNYe with TK4

SKINNY64 is a TBC that supports a block size of 64 bits. SKINNY64 adopts
the tweakey framework [22], which enables the designers to avoid making a
distinction between a tweak and a key, and those two are treated as a single
object “tweakey.” The design is called TKn when the tweakey size is n times
as big as the block size. SKINNY64 supports the tweakey size of 64 bits (TK1),
128 bits (TK2), and 192 bits (TK3). Later, Naito et al. [26] proposed SKINNYe

334 Y. Naito et al.

(version 2) to extend the tweakey size of SKINNY64 to 256 bits (TK4). Here we
describe the specifications of SKINNYe, which is a base of our work.

SKINNYe operates on the data structure (state) of 16 sequences of 4-bit data
(nibble) d0, . . . , d15 that are formatted into a 4 × 4 two-dimensional array; The
first row is d0 . . . , d3, the second row is d4 . . . , d7, and so on. A 64-bit plaintext
is divided into 16 nibbles, and those form a data state. A 256-bit tweakey forms
4 tweakey states. Then, the following round transformation is iterated 44 times.

SubCells(SC). A 4-bit S-box is applied to each nibble.

AddConstants(AC). A 7-bit constant specified for each round is XORed to par-
ticular 7 bits of the state.

AddRoundTweakey(ART). A 32-bit value called sub-tweakey is generated from
the 256-bit tweakey state, and those are XORed to the top two rows of the data
state. Then 3 tweakey states are updated as explained later.

ShiftRows(SR). The position of each nibble in row i, i ∈ {0, 1, 2, 3} is cyclically
shifted to right by i positions.

MixColumns(MC). Let (x, y, z, w) be 4 nibbles in a column. The value is updated
to (x ⊕ z ⊕ w, x, y ⊕ z, x ⊕ z). This transformation is applied to each column.

Regarding AC, a 6-bit affine LFSR denoted by (rc5, rc4, rc3, rc2, rc1, rc0) is
used to generate round constants. In each round, this LFSR is updated by
(rc5‖rc4‖ · · · ‖rc0) → (rc4‖rc3‖rc2‖rc1‖rc0‖rc5 ⊕ rc4 ⊕ 1). Then, 3 nibble values
rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4, and 0x2 are XORed to the first, the second, and
the third rows of the left-most column of the state, respectively.

Regarding ART, first, the 32-bit sub-tweakey value is computed by extract-
ing the top 2 rows from each of 4 tweakey states and XORing them. Sec-
ond, nibble positions are permuted by the permutation PT : (0, . . . , 15) →
(9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7). All tweakey states are updated with
the same PT . Third, all nibbles in the second, the third, and the fourth tweakey
states are updated by applying the following LFSR2, LFSR3, and LFSR4,
respectively.

LFSR2 : (x3‖x2‖x1‖x0) → (x2‖x1‖x0‖x3 ⊕ x2),
LFSR3 : (x3‖x2‖x1‖x0) → (x0 ⊕ x3‖x3‖x2‖x1),
LFSR4 : (x3‖x2‖x1‖x0) → (x1‖x0‖x3 ⊕ x2‖x2 ⊕ x1).

5.2 Elastic-Tweak Framework for Small Tweaks

Elastic-tweak is a design to convert BCs or TBCs to accept a few (more) bits
of tweak [11]. The input tweak is first expanded to a relatively large size for
security reasons and then XORed to the data state in every few rounds. The
framework was later improved to be more lightweight by realizing the expanded
tweak state with LFSR [27], but it still preserves the principle of expanding the
tweak, which is disadvantageous for small implementations.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 335

5.3 Design Approach of SKINNYee

We first give an overview of our approach to design our TBC. Recall that HOMA
requires a 64-bit block TBC that supports a 128-bit key and a 259-bit tweak. By
adopting the same approach as SKINNYe, such TBCs are realized if the tweakey
size of SKINNY64 can be extended to 448 bits (TK7). However, we found that
this approach is not reasonable for two reasons.

– The idea behind the tweakey of SKINNY is to not make any distinction
between a key and a tweak. For example, a 192-bit tweakey can be an x-
bit key and a (192−x)-bit tweak for some x, 1 ≤ x ≤ 192. This functionality
is not necessary for HOMA because the key size and the tweak size are fixed.

– We actually investigated the possibility of designing TK7 by searching for
LFSR5, LFSR6, and LFSR7 for the extra tweakey states. Because the
search space is limited, all 4-bit LFSRs can be tested exhaustively. Our exper-
iments showed that no LFSR exists to ensure security for TK7. TK7 can still
be achieved by replacing LFSRs with more complex computations, but this
requires to compromise implementation efficiency.

Our aim is not a general-purpose TBC. From the above considerations, we deter-
mined to treat a key and a tweak as independent objects instead of a tweakey.

Among 259 bits of the tweak, 3 bits are for the domain separation. The
elastic-tweak gives us a hint that those can be processed efficiently by introducing
different computations from the other tweak value. However, we found that the
elastic-tweak is not suitable for HOMA because an additional computation to
process a small tweak increases the memory size. Instead, we enlarge the size of
an LFSR to compute the round constant by a few bits and initialize the LFSR
to be different values depending on the 3-bit tweak.

Lastly, we design SKINNYee by reusing as many components of SKINNY as
possible for two reasons. First, the benchmark becomes fair when we later com-
pare the benchmark of our scheme with other SKINNY-based schemes. Second,
SKINNY has received a lot of third-party security analysis, and the fact that
SKINNY still stands against any cryptanalytic attempts enhances the reliability
of the design. To take over those cryptanalytic attempts, the amount of modifi-
cation from SKINNY should be minimized. In the end, we decided not to modify
SC, SR, and MC from the original. So, modifications from SKINNY are made on
AC, ART, and a new operation to process a 128-bit key.

5.4 Specifications of SKINNYee

SKINNYee accepts a 128-bit key, a 256-bit tweak, and a 3-bit tweak for the
domain separation. The design is based on SKINNYe (TK4). The round trans-
formation of SKINNYee is given in Fig. 5. Modifications we made are listed below.

– The 256-bit tweak is assigned to the 256-bit tweakey of SKINNYe.
– A new operation AddRoundKey is added between SB and SR. The 128-bit key

is divided into four 32-bit data K0,K1,K2,K3. In round i, a 32-bit subkey is
Ki mod 4. The subkey is XORed to the bottom two rows of the data state.

336 Y. Naito et al.

Fig. 5. Round Transformation of SKINNYee.

– AC is drastically modified. We define a 10-bit LFSR rc9, . . . , rc0, which clocks
(rc9‖ · · · ‖rc0) to (rc8‖rc7‖rc6‖rc5‖rc4‖rc3‖rc2‖rc1‖rc0‖rc9⊕rc3⊕rc2⊕rc0).
At the beginning, rc9‖rc8‖rc7 is initialized to the 3-bit tweak for the domain
separation, and the other 7 bits are initialized to rc8 = . . . = rc1 = 0 and
rc0 = 1. In each round, for i = 0, 1, . . . , 15, we first XOR the 4-bit value
(rc3‖rc2‖rc1‖rc0) to the i-th nibble of the data state and then clock the
LFSR.

– The number of rounds increases to 56.

5.5 Design Rationale

Rationale for the AddRoundKey is as follows. First, the tweak value is not mixed
with the secret value derived by the key, which enables us not need to pro-
tect tweak states, otherwise the mixed state needs to be duplicated into several
shares. Second, if both the subtweak and the subkey are XORed in the top
two rows, some unknown interaction between the tweak and the key may occur.
Specifically, when all nibbles in the first tweak state (never updated with LFSR)
and all nibbles of the key have the same value, the XOR of the subtweak and
the subkey can be a constant value. To avoid such cases, we decided to XOR
subkeys to the bottom two rows. Note that the TPRP security required by the
mode is a security notion for a single key, thus we exclude the use case that the
adversary injects some difference in the key. Hence, we do not have to worry
about related-key attacks. Moreover, the tweak value is computed by the HOMA
mode, and the adversary cannot control it to be suitable for the attack. For the
key schedule, we chose to use 4 parts of 32 bits of the 128-bit key in turn. This
avoids using extra memory for the key schedule, thus it is very suitable for our

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 337

goal. Also note that the key schedule forms a cycle in every 4 rounds, and the
key state is back to the original after the whole encryption process (56 rounds).
This saves us the cost to implement the key schedule inverse.

We drastically modified AC. The first modification is the small-tweak depen-
dent initialization of the LFSR. A single-bit difference in the initial value of the
LFSR significantly changes the generated constant sequences, which is sufficient
to separate the TBC invocations for different small-tweak values. Besides, we
XOR the 4-bit constant to all nibbles by repeating exactly the same procedure
16 times in each round. This modification increases the total computational cost,
thus may speed-down the round-based implementation, which was the original
goal of SKINNY. Meanwhile, our goal is a small memory, thus iterating the same
procedure 16 times is more suitable. The size of the LFSR was determined from
the number of clocks for the whole encryption procedure. Our constant genera-
tion requires 16 clocks per round, thus it requires 16×56 = 896 clocks. We chose
the LFSR size to be 10 bits to avoid having the same LFSR state. The feedback
function of the 10-bit LFSR was chosen so that the cycle period is 1,023.

The number of rounds increased from that of SKINNY64 with TK3 (40
rounds) and SKINNYe with TK4 (44 rounds). This is because, in SKINNYee,
each key nibble is XORed to the data state only in every 4 rounds, while in the
previous designs, each key nibble is XORed in every 2 rounds. This does not
immediately imply that the number of rounds of SKINNYee must be doubled.
Many cryptanalyses, e.g. differential cryptanalysis, are divided into a ‘distin-
guisher’ and a ‘key-recovery part.’ The distinguisher is usually irrelevant to the
key schedule, and the less-frequent use of each key nibble only affects the key-
recovery part. We expect that the number of key-recovery rounds should be
doubled in the worst-case scenario for SKINNY64 and SKINNYe. The maximum
number of key-recovery rounds in literature was 11 [40],12 thus we increased the
number of rounds of SKINNYee by 12 from SKINNYe.

5.6 Security Analysis Against Various Cryptanalyses

The security goal of SKINNYee is the TPRP security, which is a notion for a
single-key. Hence, we focus on the evaluation in the single-key setting. When an
adversary can inject any difference in the plaintext and the tweak, the number of
active S-boxes for SKINNYee (in the single-key) is the same as one for SKINNYe in
the related-tweakey (TK4) setting. The minimum number of active S-boxes can
be evaluated by using mixed integer linear programming (MILP). The results
are shown in Table 2, which show that 29 rounds ensure at least 64 S-boxes [26],
and the maximum differential characteristic probability is upper-bounded by
2−2×64 = 2−128. Hence 56 rounds of SKINNYee is sufficiently secure.

Another popular approach is linear cryptanalysis. It has some advantage with
respect to working in the known-plaintext setting, which allows an attacker to
ignore the effects of random IV implemented in HOMA. The evaluation with

12 The longest attack in literature with respect to the number of distinguisher rounds
plus key-recovery rounds reaches 22 + 8 = 30 rounds with TK3 [19].

338 Y. Naito et al.

Table 2. Tight bounds of the number of active Sboxes of SKINNYee.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Diff 0 0 0 0 0 0 0 0 1 2 3 6 9 12 16
Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diff 19 21 24 30 35 39 41 43 46 50 54 58 62 66 72
Lin 70 76 80 85 90 96 102 107 110 115 121 127 130 135 141

MILP ensures at least 64 linearly active S-boxes only after 15 rounds [26]. Hence
we conclude that HOMA is secure against linear cryptanalysis.

There are several cryptanalytic approaches that focus on features defined
over 4 plaintext-ciphertext pairs. Boomerang-type attacks and differential-linear
attacks are such examples. Roughly speaking, boomerang-type attacks combine
2 independent relatively short differential characteristics instead of a single long
differentials characteristic, meanwhile the probability of each active S-box is
squared. Table 2 shows that two 15-round characteristic with 16 active S-boxes
may be able to be combined to construct 30-round distinguisher with probabil-
ity (2(−2)×16)2 × (2(−2)×16)2 = 2−128. Dependency between two characteristics
may increase or decrease the number of rounds a bit, but we conclude that 56
rounds of SKINNYee is sufficiently secure. In differential-linear attacks two dif-
ferential characteristics and one linear characteristic is combined. For example,
two 15-round differential characteristic with 16 active S-boxes may be able to
be combined with a 8-round linear characteristic with 32 S-boxes. Again, depen-
dency between two characteristics may increase or decrease the number of rounds
a bit, but we conclude that 56 rounds of SKINNYee is sufficiently secure.

Meet-in-the-middle attacks divide the computation structure to two indepen-
dently computed sub-parts. The designers of SKINNY [3] evaluated the maxi-
mum number of attacked rounds based on the number of rounds required for
the full diffusion, which showed that the meet-in-the-middle attack would not
reach 23 rounds. The use of large tweak in SKINNYee may extend the number of
rounds for the full diffusion by 3, which may increase the number of rounds of
independently computed parts and two techniques (partial-matching and initial
structure) by 3. Hence, the number of attacked rounds is at most 23+5×3 = 38
even with an optimistic evaluation for the attacker.

Some attacks, such as invariant subspace and non-linear invariant, work
regardless of the number of rounds (often with a weak key restriction), but
no such attacks have been reported for SKINNY or its variants.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 339

6 Implementation

6.1 Targets and Design Policy

We evaluate the hardware performance of HOMA instantiated with SKINNYee.
Hereafter, we refer to the SKINNYee’s 256-bit tweak as TK1||TK2||TK3||TK4

wherein each TKi is a 64-bit chunk scheduled independently. We use them for
the following purposes:

– TK1: Upper 64 bits of the nonce,
– TK2: Upper 36 bits: a lower part of the nonce, lower 28 bits: a counter,
– TK3: Unprotected data,
– TK4: Either an associated data block Ai or a ciphertext block Ci (see Fig. 1).

For a fair comparison, we also implement the current state-of-the-art
PFB Plus instantiated with SKINNYe [26] (see Table 1) with the same design
policy. The circuit components needed for SKINNYe and SKINNYee are mostly
common, which help us to evaluate the difference from the modes of operation.
We respect PFB Plus’s original tweak configuration: TK1||TK2 stores the secret
key, while TK3||TK4 stores the nonce and counter concatenated.13

We follow the design policy of the conventional PFB Plus implementation [26],
which works as a coprocessor that provides a set of commands for block-wise
processing. We can realize all AEAD operations by combining those commands.
The implementation keeps the key, nonce, and a counter during their lifetime to
avoid the hidden cost of an external storage.

6.2 Masked S-box Implementation

We choose Cassiers et al.’s HPC2 [9,10] as a target masking scheme for its glitch
resistance, composability, and the availability of an open-source implementa-
tion [8]. In particular, composability ensures the security of a circuit composed
of the gadgets, which greatly simplifies the security analysis of the entire imple-
mentation [9]. Although HPC2 is a great option, we stress that HOMA’s low-
memory advantage (see Table 1) is independent of a particular masking scheme.
An efficient masking scheme in the future will make the HOMA’s advantage even
higher because an efficient masking makes memory elements even more dominant
in hardware cost.

Figure 6-(left) shows our 3-stage pipelined implementation of the SKINNY
4-bit S-box using the HPC2 AND gadgets. The gadget has built-in registers,
and its two input ports have different latency. We arrange the gadgets in the
pipeline in a way that minimizes the number of pipeline stages on the basis of
Cassiers et al.’s S-box representation optimized for HPC2 [10]. The circuit uses
four HPC2 AND gadgets, and each pipeline stage calculates (a part of) the S-
box independently. Each AND gadget uses (7d2 + 11d + 4)/2 bits of internal

13 For both implementations, we use 28 bits as a counter and the remaining bits as a
nonce, by following the conventional PFB Plus implementation [26].

340 Y. Naito et al.

t3 y1

~x1

x2

t0

q2

q3

t2

l2 q4

x3

y2

x0

y3

~x2

~x2

~x3

x0+x1+x2

x0+x2+x3

x1

y0

~x1

~x3

t1

x1

x2

x0

x3

HPC2 AND Gadget

1st stage 2nd stage 3rd stage

b

b

b

b

a

a

a

a

c

c

c

c

HPC2 AND Gadget

HPC2 AND Gadget

HPC2 AND Gadget

State
array

Data output

TK1array

TK1
input

TK2
input

TK3
input

KeySR

3-stage
S-box

RC gen

domain
separation

Secret-key
input

TK4
input

Unshare

4 4 4 4 3

4

4(d+1)

4(d+1)

4(d+1)

4(d+1)

4(d+1)

4(d+1)

Data
input

Public/Unprotected

TK2array
TK4array

TK3array

4

Fig. 6. (Left) three-stage pipelined implementation of the SKINNY 4-bit S-box. The
shaded boxes are the HPC2 AND gadgets. We follow the original expression for the
symbol names [10]. (Right) hardware architecture of HOMA.

registers. We also need 10d bits of the pipeline registers, as shown in the bottom
of Fig. 6-(left), for carrying the inputs to later stages. As a result, the S-box
circuit uses (14d2 + 18d + 8) bits of registers in total. Each HPC2 AND gadget
uses d(d+1)/2 bits of a random number, and the S-box circuit consumes 2d(d+1)
random bits/cycle at maximum. The total number of random bits for running a
TBC is 2d(d + 1) × 16 × Nround wherein Nround is the round number.

6.3 Hardware Design

Architecture. Figure 6-(right) shows the proposed nibble-serial hardware
architecture, which uses the 2-dimensional arrays of registers as a basic build-
ing block, by following the conventional PFB Plus and SKINNY implementa-
tions [3,26].

The state array is a 64-bit register arranged in a 4×4 matrix, which efficiently
realizes the nibble-wise data scan, as well as the MixColumns and ShiftRows
operations. We use a scan flip-flop, a special register with a built-in 2-way
selector, for efficiently implementing the array. Each round function takes 24
cycles, and the entire SKINNYee operation finishes in 1344 (=24 × 56) cycles.14

The TK1–TK4 arrays are the similar 4 × 4 matrices that efficiently realize the
nibble-wise data scan and the tweakey schedule [26]. We implement the newly-
introduced 128-bit key K0||K1||K2||K3 using a simple (4 × 32)-bit shift register
shown as KeySR in Fig. 6-(right).

HOMA needs to update TK3 and TK4 using the TBC output namely YTBC ,
such as TK3 ← TK3 ⊕ YTBC and TK4 ← Mi ⊕ YTBC , in addition to SKINNYee
encryption. Our architecture implements those operations in a nibble-oriented
manner. The TK2 array also integrates a 28-bit adder for updating the counter
in place, meanwhile the state array integrates the fix0 operation.

14 19 cycles for S-box calculation with pipeline latency, 4 cycles for MixColumns, and 1
cycle for ShiftRows.

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 341

Table 3. Hardware performances in gate equivalent (GE) for d ∈ {0, · · · , 5}.

Component HOMA PFB Plus

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

Total 4,981 6,283 8,226 10,392 12,782 15,487 4,569 6,884 9,667 12,675 15,941 19,724

S-box 161 501 1,087 1,897 2,931 4,189 161 501 1,087 1,897 2,931 4,189
State array 542 1,046 1,573 2,097 2,621 3,240 540 1,049 1,571 2,094 2,619 3,238
TK1 array 636 549 549 549 549 549 637 1,231 1,845 2,459 3,083 3,818
TK2 array 844 749 744 748 744 748 674 1,296 1,938 2,578 3,239 3,989
TK3 array 675 585 586 585 585 586 746 656 657 656 656 656
TK4 array 675 577 576 577 577 576 865 782 782 780 780 781

KeySR 735 1,468 2,201 2,935 3,668 4,402 — — — — — —
Shift reg. — — — — — — 377 754 1,131 1,508 1,885 2,262

Implementation of Shares. The state array and KeySR are simply dupli-
cated for masking, which ensures the component-wise independence. The com-
ponents in the unprotected region (see Fig. 6-(right)) have no SCA protection.
The Unshare module interfaces the protected and unprotected regions by con-
verting the data in shared representation into its bare form. Besides the S-box
circuit, this Unshare module is the only place wherein shares can interact. To
avoid an exploitable leakage by unsharing the unwanted intermediate data, the
Unshare module has a dedicated input register, which strictly controls the incom-
ing data from flowing into the XOR gates that make actual unsharing.

PFB Plus Implementation. Our PFB Plus design follows the conventional
one [26] and is adjusted for the pipelined S-box circuit in Fig. 6. As a result, the
state array and the S-box circuit are mostly the same between our HOMA and
PFB Plus implementations. Meanwhile, there are important differences in the
tweakey arrays. In particular, the TK1 and TK2 arrays for PFB Plus store the
secret key, which stays in the protected region and is duplicated for masking.
PFB Plus needs an additional state outside the TBC, and we implemented it
using a simple shift register similar to KeySR.

6.4 Performance Evaluation and Comparison

We describe the HOMA and PFB Plus implementations at the register-transfer
level except for the direct instantiation of the scan flip-flops [26]. We evaluate the
performances by synthesizing the circuits using Synopsys Design Compiler with
the NanGate 45-nm standard cell library [31]. To make component-wise compari-
son, we preserve the hierarchy of the components shown in Fig. 6-(right). Tables 3
show the post-synthesis performances of HOMA and PFB Plus. We examine the
protection orders d ∈ {0, · · · , 5} by considering the experimental security evalu-
ation in the original paper [9,10].

The results are consistent with the memory advantage in Table 1, and HOMA
outperforms PFB Plus in all the cases with SCA protection, i.e., d > 0. In those
cases, HOMA’s area reduction is larger than that of the entire S-box. For example,
at d = 5, HOMA saves 4,237 GE wherein the S-box circuit uses 4,189 GE. In

342 Y. Naito et al.

other words, HOMA achieves the area reduction that is impossible with the
conventional approaches focusing on S-box, i.e., reducing S-box’s multiplicative
complexity [1,16,17] and improving each AND gadget [9,10].

The results confirm that the memory elements still dominate the overall cir-
cuit area with the practical protection orders, and HOMA saves a considerable
amount of hardware resources. As discussed in Sect. 6.2, the cost of the AND gad-
gets and the entire S-box circuit grows quadratically with the protection order
d, which will eventually overwhelm the memory elements that grow only lin-
early. Although we can confirm the S-box circuit’s quadratic growth in Tables 3,
the memory elements still dominate the total cost with d ∈ {0, · · · , 5}. Besides,
the simple key schedule of SKINNYee greatly contributes to the small area: the
shift-register based KeySR achieves lower per-bit cost than that of the TK1 and
TK2 arrays that PFB Plus uses for storing the key.

HOMA essentially trades the area with latency; HOMA (resp. PFB Plus) calls
the TBC twice (resp. once) for each 64-bit message block. Also, the number of
clock cycles for each TBC is extended by roughly 56/44 because SKINNYee has
56 rounds compared with 44 rounds of SKINNYe. However, we believe the area
has priority in embedded-system applications, and that would be why serialized
architectures having only a single S-box circuit is popular in previous literature.

7 Conclusions

We proposed an AEAD scheme that has the smaller memory usage with (d + 1)
high-order masking. Achieving this goal, we proposed the strategy that a key-
dependent state is separated into public and secret states. We then proposed the
new mode HOMA that the half of the state is public, and the new TBC needed
for its instantiation. We proved that for (d + 1) high-order masking, our scheme
outperforms the previous state-of-the-art with respect to circuit area.

Designing an AEAD scheme with a smaller memory usage with (d+1) high-
order masking is an interesting future research. One promising approach is to
extend the ratio of unprotected state in our design strategy. While SKINNYee
was designed based on SKINNY for the purpose of clarifying performance com-
parisons, designing a new TBC with a new structure for the extended mode that
requires a higher number of TK states is another interesting challenge.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

2. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated encryption in the
face of protocol and side channel leakage. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 693–723. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 24

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 343

3. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

4. Beläıd, S., Grosso, V., Standaert, F.-X.: Masking and leakage-resilient primitives:
one, the other(s) or both? Cryptogr. Commun. 7(1), 163–184 (2014). https://doi.
org/10.1007/s12095-014-0113-6

5. Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated encryption
with a masked tweakable block cipher. IACR Trans. Symmetric Cryptol. 2020(S1),
295–349 (2020)

6. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: TEDT, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

8. Cassiers, G.: FullVerif (2021). https://github.com/cassiersg/fullverif
9. Cassiers, G., Gregoire, B., Levi, I., Standaert, F.X.: Hardware private circuits: from

trivial composition to full verification. IEEE Trans. Comput. 1 (2020)
10. Cassiers, G., Levi, I.: AND depth 2, 4 ANDs, 4-bit (optimized) S-boxes. IACR

Cryptol. ePrint Arch. 2020, 185 (2020). https://eprint.iacr.org/2020/185
11. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.:

Elastic-tweak: a framework for short tweak tweakable block cipher. IACR Cryptol.
ePrint Arch. 2019, 440 (2019). https://eprint.iacr.org/2019/440

12. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

13. Dobraunig, C., et al.: ISAP v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–
416 (2020)

14. Dobraunig, C., Mennink, B.: Leakage resilient value comparison with application
to message authentication. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 377–407. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6 13

15. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2008. pp. 293–302 (2008)

16. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

17. Goudarzi, D., et al.: Pyjamask: block cipher and authenticated encryption with
highly efficient masked implementation. IACR Trans. Symmetric Cryptol. 2020,
31–59 (2020)

18. Grosso, V., et al.: SCREAM & iSCREAM side-channel resistant authenticated encryp-
tion with masking. Submitted to CAESAR (2014)

19. Hadipour, H., Bagheri, N., Song, L.: Improved rectangle attacks on SKINNY and
CRAFT. IACR Cryptol. ePrint Arch. 1317 (2020)

20. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/s12095-014-0113-6
https://doi.org/10.1007/s12095-014-0113-6
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://github.com/cassiersg/fullverif
https://eprint.iacr.org/2020/185
https://eprint.iacr.org/2019/440
https://doi.org/10.1007/978-3-030-77886-6_13
https://doi.org/10.1007/978-3-030-77886-6_13
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-540-45146-4_27

344 Y. Naito et al.

21. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: the romu-
lus and remus families of lightweight AEAD algorithms. IACR Trans. Symmetric
Cryptol. 2020(1), 43–120 (2020)

22. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

23. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 243–268 (2020)

24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

25. Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: a lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(2), 192–217 (2018)

26. Naito, Y., Sasaki, Y., Sugawara, T.: Lightweight authenticated encryption mode
suitable for threshold implementation. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 705–735. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 24

27. Naito, Y., Sasaki, Y., Sugawara, T.: LM-DAE: low-memory deterministic authen-
ticated encryption for 128-bit security. IACR Trans. Symmetric Cryptol. 2020(4),
1–38 (2020)

28. Naito, Y., Sasaki, Y., Sugawara, T.: Secret can be public: low-memory AEAD mode
for high-order masking. IACR Cryptol. ePrint Arch. 2022, 812 (2022). https://
eprint.iacr.org/2022/812

29. Naito, Y., Sugawara, T.: Lightweight authenticated encryption mode of operation
for tweakable block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1),
66–94 (2020)

30. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 15

31. NanGate: NanGate FreePDK45 Open Cell Library (2021). https://si2.org/open-
cell-library/. Accessed 06 May 2021

32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

33. NIST: National Institute of Standards and Technology: Submission Requirements
and Evaluation Criteria for the Lightweight Cryptography Standardization Process
(2018). https://csrc.nist.gov/Projects/lightweight-cryptography

34. NIST: National Institute of Standards and Technology: Lightweight Cryptography
Standardization: Finalists Announced (2021). https://csrc.nist.gov/News/2021/
lightweight-crypto-finalists-announced

35. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

36. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: CCS 2015, pp. 96–108 (2015)

https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-45724-2_24
https://doi.org/10.1007/978-3-030-45724-2_24
https://eprint.iacr.org/2022/812
https://eprint.iacr.org/2022/812
https://doi.org/10.1007/978-3-642-55220-5_15
https://doi.org/10.1007/978-3-642-55220-5_15
https://si2.org/open-cell-library/
https://si2.org/open-cell-library/
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced
https://csrc.nist.gov/News/2021/lightweight-crypto-finalists-announced
https://doi.org/10.1007/978-3-642-04159-4_21

Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 345

37. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

38. Reparaz, O.: A note on the security of higher-order threshold implementations.
IACR Cryptol. ePrint Arch. 1 (2015). http://eprint.iacr.org/2015/001

39. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

40. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57339-7 7

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
http://eprint.iacr.org/2015/001
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-319-57339-7_7

	Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking
	1 Introduction
	1.1 Low-Memory AEAD for Masking
	1.2 Summary of Contributions
	1.3 Related Work

	2 Preliminaries
	3 Design of AEAD Mode for High-Order Masking
	3.1 Intuition and Design of HOMA
	3.2 Specification of HOMA
	3.3 Protected and Unprotected Values of HOMA

	4 Security Claim and Proof of HOMA
	4.1 AE Security for Masking
	4.2 AEL-Security of HOMA
	4.3 Proof of Theorem 1

	5 A TBC Optimized for HOMA
	5.1 SKINNY64 and SKINNYe with TK4
	5.2 Elastic-Tweak Framework for Small Tweaks
	5.3 Design Approach of SKINNYee
	5.4 Specifications of SKINNYee
	5.5 Design Rationale
	5.6 Security Analysis Against Various Cryptanalyses

	6 Implementation
	6.1 Targets and Design Policy
	6.2 Masked S-box Implementation
	6.3 Hardware Design
	6.4 Performance Evaluation and Comparison

	7 Conclusions
	References

