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Abstract. We revisit the problem of finding B-block-long collisions in
Merkle-Damg̊ard Hash Functions in the auxiliary-input random oracle
model, in which an attacker gets a piece of S-bit advice about the ran-
dom oracle and makes T oracle queries.

Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work
of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a
simple attack for 2 ≤ B ≤ T (with respect to a random salt). The

attack achieves advantage ˜Ω(STB/2n + T 2/2n) where n is the output
length of the random oracle. They conjectured that this attack is opti-
mal. However, this so-called STB conjecture was only proved for B ≈ T
and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22)
confirmed STB conjecture for all constant values of B, and provided an
˜O(S4TB2/2n + T 2/2n) bound for all choices of B.

In this work, we prove an ˜O((STB/2n) · max{1, ST 2/2n} + T 2/2n)
bound for every 2 < B < T . Our bound confirms the STB conjecture for
ST 2 ≤ 2n, and is optimal up to a factor of S for ST 2 > 2n (note as T 2 is
always at most 2n, otherwise finding a collision is trivial by the birthday
attack). Our result subsumes all previous upper bounds for all ranges of

parameters except for B = ˜O(1) and ST 2 > 2n.
We obtain our results by adopting and refining the technique of

Chung, Guo, Liu, and Qian (FOCS 2020). Our approach yields more
modular proofs and sheds light on how to bypass the limitations of prior
techniques. Along the way, we obtain a considerably simpler and illumi-
nating proof for B = 2, recovering the main result of Akshima, Cash,
Drucker and Wee.

1 Introduction

Merkle-Damg̊ard paradigm [Mer89,Dam89] is a domain extension technique for
extending a compression function H : [N ] × [M ] → [N ] (where N := 2n and
M > N) with fixed input length into a full-fledged hash function to handle
arbitrary long inputs. Specifically, a B-block message m = (m1, · · · ,mB) with
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mi ∈ [M ] is hashed into MDH(a,m) as follows: MD1
H(a,m1) = H(a,m1) and

MD�
H(a, (m1, · · · ,m�)) = H(MD�−1

H (a, (m1, · · · ,m�−1)),m�), for � > 1,

where a ∈ [N ] is some random given salt. We say m �= m′ is a pair of B-
block collision with respect to a salt a if they both have at most B blocks and
MDH(a,m) = MDH(a,m′).

Merkle-Damg̊ard paradigm is widely used in practice for hash functions,
including MD5 and SHA family. The primary requirement of a hash function is
collision resistance. In this work, we are interested in the collision resistance prop-
erty of Merkle-Damg̊ard hash functions against preprocessing attackers, which
can have an arbitrary (but bounded) precomputed advice about H to help. The
power of preprocessing attacks was first demonstrated by Hellman [Hel80] for
inverting functions. Recently, several works [DGK17,CDG18,ACDW20,GK22]
set out to understand the power of such attacks for finding collisions. All of them
studied this question in the auxiliary-input random oracle model (AI-ROM) pro-
posed by Unruh [Unr07], for dealing with non-uniform and preprocessing attack-
ers. In this ideal model, H is treated as a random function, and an adversary
A consists of a pair of algorithms (A1,A2). (Computationally unbounded) A1

precomputes S bits of advice about H in an offline stage, then A2 takes this
advice and makes T oracle queries to H during the attack.

Dodis, Guo, and Katz [DGK17] studied the collision resistance of a salted ran-
dom function (which also corresponds to the B = 1 case for Merkle-Damg̊ard).
They proved an ˜O(S/N+T 2/N) security upper bound (with respect to a random
salt) where the notation ˜O(·) hides lower-order factors that are polynomial in
log N . This bound shows the optimality of the naive attack, which precomputes
collisions for S distinct salts as the advice (the T 2/N term is tight due to the
birthday attack).

Since most practical hash functions are based on the Merkle-Damg̊ard
paradigm, Coretti, Dodis, Guo and Steinberger [CDGS18] studied finding colli-
sions for salted Merkle-Damg̊ard hash functions (corresponds to the unbounded
B case). Interestingly, unlike the B = 1 case, they showed an attack achieving
advantage ˜Ω(ST 2/N), improving the birthday attack by a factor of S. They also
proved that this attack is optimal.

Akshima, Cash, Drucker and Wee [ACDW20] observed that the collision pro-
duced by the attack of [CDGS18] is very long, which is not appealing for practical
relevance. They, therefore, studied the question of finding short collisions, and
put forth the following intriguing conjecture.

STB conjecture [ACDW20]: The best attack with time T and space S
for finding collisions of length B in salted MD hash functions built from
hash functions with n-bit outputs achieves success probability Θ((STB +
T 2)/2n).

[ACDW20] showed that, a straightforward modification of the attack of [CDGS18]
finds B-block collisions with advantage Ω((STB + T 2)/N). Unfortunately, they
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also showed that the lower bound techniques of [CDGS18] can not rule out
attacks with success probability Ω(ST 2/N), even for B = 2. They presented new
approaches to prove the STB conjecture for B = 2 in AI-ROM. Combining with
known results for B = 1 and B = T , this demonstrates qualitative jumps in the
optimal attacks for finding length 1, length 2, and unbounded-length collisions.
Very recently, Ghoshal and Komargodski [GK22] confirmed STB conjecture for
all constant B. However, for other choices of B, there is still a significant gap
between the best-known attack [ACDW20] and known security upper bound
˜O(S4TB2/N + T 2/N) by [GK22] or ˜O(ST 2/N) by [CDGS18]. That motivates
us to study the following question in this paper:

Can we further bridge the gap between the security upper and lower bounds,
and prove STB conjecture for more choices of parameters?

Since prior techniques are limited or laborious even for B = 2, we start by asking:

Can we prove STB conjecture for B = 2 in a simpler way?

Looking ahead, we answer both questions affirmatively.

1.1 Our Results

Our main contribution is the following theorem.

Theorem 1 (Informal). For any 2 < B < T , the advantage of the best adver-
sary with S-bit advice and T queries for finding B-block collisions in Merkle-
Damg̊ard hash functions in the auxiliary-input random oracle model, is

˜O
(

(STB/N) · max{1, ST 2/N} + T 2/N
)

.

Our bound confirms the STB conjecture for any 2 < B < T for the range
of S, T such that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (other-
wise, finding a collision is trivial by the birthday attack), Our bound is at most
˜O(S2TB/N + T 2/N), which is optimal up to a factor of S.

Comparing to the ˜O(STB2(log2 S)B−2/N + T 2/N) bound by [GK22], our
bound works for any 2 < B < T , while their bound becomes vacuous when
B > log N . However, for B ≤ log N , unlike our bound, their bound could be
tight even when ST 2 > N . In particular, their bound confirms STB conjecture
for B = O(1).

Our bound strictly improves the ˜O(S4TB2/N + T 2/N) bound by [GK22],
and the ˜O(S2T/N) bound by [CDGS18] for any 2 < B < T and non-trivial
choices of S, T (specifically, when STB attack succeeds with at most a constant
probability, i.e., STB = O(N)). The two bounds by [GK22] only beat [CDGS18]
for B � √

T .
As an additional contribution, we give a considerably simpler proof for prov-

ing the tight bound for B = 2, recovering the main result of [ACDW20].
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Theorem 2 (Informal). The advantage of the best adversary with S-bit advice
and T queries for finding 2-block collisions in Merkle-Damg̊ard hash functions
in the auxiliary-input random oracle model, is ˜O

(

ST/N + T 2/N
)

.

A comparison of our results with the prior works is summarized in Table 1.
Overall, our results subsume all previous upper bounds except for the range of
S, T,B such that B ≤ log N and ST 2 > N .

Table 1. Asymptotic security bounds on the security of finding B-block-long collisions
in Merkle-Dam̊gard Hash Functions constructed from a random function H : [N ] ×
[M ] �→ [N ] against (S, T )-algorithms. For simplicity, logarithmic terms and constant
factors are omitted.

Best attacks Security bounds Ref. Proof techniques

B = 1 S
N

+ T2

N
S
N

+ T2

N
[DGK17] Compression

B = 2 ST
N

+ T2

N
ST
N

+ T2

N
[ACDW20] Multi-instance problems

B = 2 ST
N

+ T2

N
ST
N

+ T2

N
Theorem 2 Multi-instance games

2 < B < T STB
N

+ T2

N
STB2(log2 S)B−2

N
+ T2

N
[GK22] Multi-instance problems

2 < B < T STB
N

+ T2

N
S4TB2

N
+ T2

N
[GK22] Multi-instance problems

2 < B < T STB
N

+ T2

N
STB

N
·max{1, ST2

N
}+ T2

N
Theorem 1 Multi-instance games

Unbounded ST2

N
ST2

N
[CDGS18] Presampling

1.2 Our Techniques

In this section, we describe our techniques, how to use them to prove our main
results, and what makes our techniques different from prior approaches used
in [CDGS18,ACDW20,GK22].

Existing Reduction to Sequential Multi-instance Games. Our initial inspiration is
the recent framework of Chung, Guo, Liu, Qian [CGLQ20] for establishing tight
time-space tradeoffs in the quantum random oracle model. Generally speaking,
they reduce proving the security of a problem with S-bit advice to proving the
security of multiple random instances of the problem, presented one at a time,
without advice. Specifically, they observe that1, if any adversary (with no advice)
can solve S instances of the problem “sequentially” with success probability at

1 The framework of Chung, Guo, Liu, Qian [CGLQ20] reduces to analyzing sequential
multi-instance security for S+log N +1 instances instead of S-instances. We slightly
improve their parameters and obtain a considerably cleaner version in Theorem 3.
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most δS , then any adversary with S-bit advice can solve one instance of the
problem with success probability at most 2δ.

This idea of reducing the security of a problem with advice to the security of
a multi-instance problem without advice was first introduced by Impagliazzo and
Kabanets in [IK10]. The idea was also used by later works [ACDW20,GK22].
The difference between [IK10] and the later works, including this work, is that we
reduce to a “sequential” multi-instance game as opposed to a “parallel” multi-
instance problem. More concretely, in the parallel multi-instance problem, the
adversary is presented with all the randomly chosen instances of the challenge
problems to solve once at the start. Whereas in the multi-instance game, the
adversary gets a new randomly chosen instance of challenge problem one at a
time and only after solving all the previous challenges.

Chung et al. [CGLQ20] recently demonstrated a separation between “sequen-
tial” multi-instance games and “parallel” multi-instance problems in the context
of function inversion in the quantum setting2. Guo, Li, Liu and Zhang [GLLZ21]
pointed out a connection between “sequential” multi-instance game and the pre-
sampling technique (first introduced by Unruh [Unr07], and further optimized by
Coretti et al. [CDGS18])—the main technique used by Coretti et al. [CDGS18]
for proving the O(ST 2/N) bound. Roughly speaking, all results relying on pre-
sampling technique can be reproved using “sequential” multi-instance games.
That suggested that “sequential” multi-instance games have the potential to
prove stronger results. Therefore we are motivated to adapt and take full advan-
tage of “sequential” multi-instance games in the context of collision finding.

To better illustrate the connection between “sequential” multi-instance
games and the presampling technique, we show how to recover the O(ST 2/N)
bound by Coretti et al. [CDGS18]. Recall that presampling technique by Coretti
et al. [CDGS18] generically reduces security proofs of unpredictability appli-
cations (including collision finding) in the AI-ROM to a much simpler P -bit-
fixing random-oracle model (BF-ROM), where the attacker can arbitrarily fix
the values of the random oracle on some P := O(ST ) coordinates, but then the
remaining coordinates are chosen at random. Coretti et al. [CDGS18] showed
that the security of finding collisions in Merkle-Dam̊agard Hash Functions in
the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage
of any adversary (with no advice) winning a new game, conditioning on win-
ning all previous (up to at most S) ones, by O(ST 2/N). The adversary wins all
games with advantage O(ST 2/N)S , which implies the desired security against
S-bit advice. The key point is that the adversary (with no advice) made at most
ST queries in previous games. Therefore, conditioning on any possible events of
earlier games, from the view of the adversary, the random oracle is essentially a

2 In particular, they showed that “sequentially” inverting S random images (with T
quantum queries per round to a given random function f : [N ] → [N ]) admits secu-
rity O(ST/N + T 2/N)S , and the corresponding “parallel” multi-instance problems
admits an attack with advantage Ω(ST 2/N)S .
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(convex combination of) bit-fixing random oracles (BF-ROM) [CDGS18], where
at most ST -positions are known, and the rest remains independent and ran-
dom. Hence, it suffices to prove the security of a single game in BF-ROM by
O(ST 2/N), which has been shown by Coretti et al. [CDGS18] as a necessary
step to use the presampling technique.

Barriers of the Above Idea. Akshima et al. [ACDW20] pointed out a barrier to
using the vanilla presampling technique towards proving B = 2. In particular,
one can only hope to achieve Ω(ST 2/N) in the BF-ROM even for B = 2. Recall
that, to prove the sequential multi-instance security, it is sufficient to bound
the advantage of any adversary that finds a 2-block collision for a fresh salt a,
conditioned on it finds 2-block collisions for all the previous random challenge
salts a1, · · · , aS .

We will call these ST queries made during the first S rounds as offline queries.
Among the T queries made for a, we will call the queries that were not made
during the first S rounds as online queries. Throughout the discussion, we will
focus on the case that the new salt a has never been queried before in offline
queries, because the other case happens with probability at most ST/N (so
won’t affect our conclusion). As a result, all queries starting with the challenge
salt a have to be online queries.

It is clear that the adversary learns about the function not only using the
online queries but also from the offline queries. The information this algorithm
can take advantage of from the offline queries varies by a lot. The followings are
two extreme cases:

1. The offline queries consist of exactly one single query for each of ST distinct
salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second
case, as long as an adversary can find a pre-image (starting with the challenge
salt a) of any of these ST/2 salts, it finds a 2-block collision (Fig. 1). Since there
are T online queries, the algorithm achieves advantage at least ST 2/(2N) in the
second case.

The vanilla presampling approach works for worst-case offline queries. Given
the above example, the best security bound one can hope to achieve in the
BF-ROM for B = 2 is Ω(ST 2/N).

Our Main Technical Novelty. Our main insight is that, unlike the presampling
technique in which offline queries can be arbitrary, the worst offline queries are
not typical and can be tolerated by refining the technique. In the above example,
the chance that offline queries form ST/2 pairs of collisions is quite unlikely. We
define the following “high knowledge gaining” event E1:

3 We do not prove it rigorously here. Instead, we focus on the more interesting case –
offline queries do provide advantages.



198 Akshima et al.

a

...

Fig. 1. Nodes indicate salts in [N ]. An arrow connected two salts means there is a
query on the starting salt and a message in [M ] such that the output is the other salt.
An online query hits an existing collision. Solid lines denote offline queries. The dotted
line denotes the online query that forms a 2-block collision.

E1: By making ST queries, there are more than S distinct salts with 1-block
collision.

The name “high knowledge gaining” suggests that whenever this event happens,
the online algorithm can behave significantly better than average (following the
attack in Fig. 1). If this event E1 does not happen, the probability that an
online algorithm finds a query hitting an existing offline collision is bounded by
O((S/N)·T ); it is much better compared to the worst case – which is O(ST 2/N).
Remember that we have not shown how to prove that E1 happens with a tiny
probability. We will not do that in this section since this is not our main technical
novelty.

We then show two more “high knowledge gaining” events, which are all the
events we consider. Conditioned on none of them happens, no online algorithms
can find 2-block collisions with advantage better than O(ST/N + T 2/N). The
second event E2 is defined as:

E2: By making ST queries, there are more than S2 pairs of queries forming
collisions.

In Fig. 2a, we denote a multi-collision by a claw. E2 says that many pair-wise
collisions are found among all the offline queries. E1 only cares about collisions
starting with the same salt, whereas E2 counts every pair of collisions (even
starting with distinct salts). If there are many pairs of collisions, as long as an
online adversary can hit two queries that form a collision, it finds a 2-block
collision. The probability that an online algorithm having two queries hitting
one particular existing collision is at most O(T 2/N2); if E2 does not happen, by
union bound, the advantage of this type of attack is bounded by O(S2 ·(T 2/N2)),
again smaller than O(ST/N).

The final event E3 is very similar to E1:

E3: By making ST queries, there are more than S distinct salts with
self-loops.
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a

...

(a) E2

a

...

(b) E3

Fig. 2. Other two “high knowledge gaining” events and their corresponding attacks.

If an online algorithm hits an offline self-loop, it forms a 2-block collision. Fol-
lowing the same reasoning as E1, if E3 does not happen, the probability that
an online algorithm finds a query hitting an existing self-loop is bounded by
O((S/N) · T ).

By identifying the “high knowledge gaining” events and managing to show
that they are all unlikely (which is intuitive but non-trivial to prove), we obtain
a considerably simpler proof for the B = 2 result from [ACDW20] using our
approach in Sect. 3 for illustration. More precisely, with all these “high knowledge
gaining” events, we show that4: (1) these events happen with probability at most
O(N−S), even conditioned on the adversary winning all the previous rounds; (2)
when none of them happens, an online algorithm making T queries can find a
2-block collision with advantage O(ST/N + T 2/N): such a 2-block collision will
consist of either hybrid queries (both online and offline queries) or solely online
queries; but for both cases, the probability is small.

It is an upside of our technique that it modularises and separates the bad
events, making the overall proof more straightforward and intuitive. Following
the same structure, we then extend our proof to larger B by identifying a few
events, and obtaining our main result.

Applying Our New Techniques to Larger B. As for B = 2, we present results for
the sequential multi-instance model and use the reduction to prove results in the
auxiliary input model. We simplify the sequential multi-instance model into the
offline phase and online phase as in the B = 2 result and again use our insight
that worst offline queries are unlikely and better bounds than O(ST 2/N) can
be achieved using a more refined analysis. However, unlike for B = 2 analysis,
our larger B analysis is not as straightforward and requires some creative case
analysis in terms of collision types.

We call offline queries that share an image under H with other offline
query/queries as marked queries. We define the following “high knowledge gain-
ing” event:

4 This is not a formal argument but captures the intuition behind our technique. For
the formal proofs, please refer to Sect. 3.
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a

· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Fig. 3. Dotted lines denote online queries. Solid lines denote offline queries. Dash-
dotted lines can be either offline or online queries. Red lines denote ‘colliding’ queries.
(Color figure online)

a

· · ·

· · ·

≤ B-length

Fig. 4. The B-length collision uses some marked query. The solid red line denotes the
first marked query along the B-length collisions. The dotted blue line denote the closest
online query to the red line along the B-length collisions. (Color figure online)

E: By making ST queries, there are more than κ marked queries where κ =
S · max{1, ST 2/N}.

We can show that this event happens with probability at most O(N−S),
even conditioned on the adversary finding B-length collisions in all the previous
rounds. When event E does not happen, there are two possibilities: 1) The B-
length collisions found ‘use’ at least one of these (at most) κ marked queries 2)
The B-length collisions found ‘use’ none of those κ marked queries. For case (1),
we will show that some online query should hit one of (at most) κ · B offline
queries en route to one of κ queries within B steps to succeed, and this happens
with probability at most O(κTB/N). For case (2), note that it implies at least
one of the two ‘colliding’ queries among the B-length collisions is a ‘new’ online
query. Then, using this fact along with the structural knowledge of the type of
B-length collision, we can show that probability of finding any of these types of
B-length collisions is bounded by O(STB/N + T 2/N).

Here, we focus on one type of B-length collisions to reiterate our strategy
with more details. Refer to Sect. 4 for the complete proof. Consider the type of
B-length collision depicted in Fig. 3a on input salt a.

First, as we have discussed at the beginning of the section, note that the
probability that the input salt a has been queried in the offline queries is at
most ST/N (as a is randomly and independently sampled). So, it suffices to
focus on the case that a has not being queried during offline queries depicted
in Fig. 3b. For this case, there should exist some queries (including the queries
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a

· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Fig. 5. The B-length collision uses no marked queries. The solid red line (if any)
denotes the colliding query made in the offline phase. The dotted blue lines denote the
two closest online queries to the colliding queries along the B-length collisions (they
can also be colliding queries themselves). (Color figure online)

on a) along with the outputted B-length collisions that are online queries (i.e.,
made for the first time during the online phase).

In addition, we can also condition on event E not happening as we can show
that the probability of event E is at most O(N−S), even conditioned on the
adversary winning all the previous rounds. Now observe that the queries in any
found this type of B-length collisions would satisfy one of the two following
possibilities:

1. The B-length collision uses some marked query.
2. None of the offline queries used by B-length collision is a marked query.

We first analyze B-length collisions with queries satisfying (1) above. Refer to
Fig. 4 for a pictorial depiction of such collisions. Conditioned on event E not
happening, there will be at most κ marked queries. Consider the first such query
along the B-length collisions. There is a unique ‘chain’ consisting of at most
B offline queries connecting some online query to this marked query. Thus, the
probability of finding B-length collisions satisfying (1) conditioned on event E
is at most the probability of some online query whose output is one of (the salts
of) these κB offline queries, which is at most O(κTB/N).

Note that when queries in the B-length collision satisfy (2) above, it implies
at least one of the ‘colliding queries’ (two queries denoted by red arrows in
Fig. 3b) is made for the first time in the online phase.

The probability of both the colliding queries happening for the first time in
the online phase (see Fig. 5b) is bounded by O(T 2/N).

In the case exactly one of the colliding queries happens in the offline phase,
there are at most ST possibilities for this offline colliding query. There is a
unique ‘chain’ of at most B offline queries from some online query to this query
and the output of another online query should be the output of this query (see
Fig. 5a). Thus, the probability of finding such B-length collisions is bounded by
O(STB · T/N · T/N) = O(STB/N + T 2/N).

For other types of B-length collisions, we can analyze each type in a similar
way. Instead of analyzing each type of B-length collisions, we further abstract out
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5 conditions such that any type of B-length collisions must satisfy one of them.
By considering one more “high knowledge gaining” event, and upper bounding
the probability for every condition, we show that the probability of finding B-
length collisions is bounded by O(κTB/N + T 2/N). Please see Sect. 4 for the
details. It is worth noting that the S2T 2/N term in κ cannot be further improved,
because it is expected to have Ω(S2T 2/N) marked queries among ST random
oracle queries. Thus, it seems unlikely to obtain a better bound by just improving
event E and its analysis.

A Detailed Comparison with Prior Techniques. The similarity between [ACDW20,
GK22] and us is that we all adopt the idea of reducing the problem of interest to
a multi-instance variant, in which an adversary has to solve multiple copies of the
given problem.

Both [ACDW20] and [GK22] directly analyze the probability of solving all
instances using the compression paradigm, which typically requires a non-trivial
case analysis of the more complicated multi-instance problem. These case analy-
ses may be quite laborious and detached from the single-instance problem (thus
may not give many insights for the single-instance problem).

Our approach differs significantly from [ACDW20] and [GK22] in two places.
First, we focus on analyzing a simple variant of the single-instance problem (cor-
responding to a single round of the sequential multi-instance game conditioning
on winning previous games), which is sufficient to establish desired results in
multi-instance security. This variant is more similar to the original problem, and
may be easier to analyze than the multi-instance problems. The first step (reduc-
ing to a variant of the single-instance problem) is somewhat used and captured
in the presampling technique (via a different route [CDGS18]). We do think this
step is more modular than [ACDW20] and [GK22], but don’t consider this as
our main technical novelty.

The second place, also our main technical novelty, is that we further intro-
duce “knowledge gaining events” for analyzing the variant of the single-instance
problem. These events can be isolated and analyzed on their own, and precisely
highlight the correlation in finding collisions given “typical” presampled random
oracles. Before this work, all the presampling techniques for time-space trade-
offs considered worst-case presampled random oracles. The worst-case presam-
pling may make the existing analyses sub-optimal. Our approach analyzes the
“average-case” presampling random oracles and shows that those “worst-case”
ones can never happen except with a tiny probability. To our best knowledge,
this is the first work that takes advantage of “average-case” presampling and
achieves tight bounds.

Overall, we consider our proofs more modular, because we utilize sequen-
tial games to focus on variants of the single-instance game (rather than directly
compressing multi-instance games used by [ACDW20] and [GK22]). We further
introduce “knowledge gaining events” to take advantage of “average-case” pre-
sampling (rather than working with worst-case ones used by [CDGS18]).
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1.3 Discussions and Open Problems

A Better Attack or Security Bound for ST 2 > N? Our main result suggests
that the attack by [ACDW20] is optimal when ST 2 ≤ N , and is potentially sub-
optimal when ST 2 > N . This attack shares many similarities with the Hellman’s
attack for inverting random functions. Interestingly, Hellman’s attack is also
known to be optimal when ST 2 ≤ N , and is potentially sub-optimal when
ST 2 > N . A better attack for ST 2 > N will be exciting and may give insights
for improving Hellman’s attack. We think that our framework has the potential
to prove a better security bound or even the STB-conjecture, by identifying the
right set of “high knowledge gaining” events.

Tight Quantum Time-Space Tradeoffs for Finding Collisions in MD? Motivated
by analyzing post-quantum non-uniform security, several recent works [CGLQ20,
GLLZ21] studied the same question in the quantum setting, in which the adver-
sary is given S-(qu)bit of advice and T quantum oracle queries. However, unlike
the classical setting, no matching bounds are known, even for B = 2 and B = T .
The Ω(ST 3/N) security bound by [GLLZ21], suggests that the optimal attack
may speed up the trivial quantum collision finding by a factor of S. However,
the best-known attack achieves O(ST 2/N + T 3/N) for every 2 ≤ B ≤ T . Is
there a security jump for finding 2-block collisions and unbounded collisions in
the quantum setting? Can we leverage our new proof for B = 2 to prove a tight
security bound in the quantum setting?

Other Related Works. We mention that time-space lower bounds of attacks
(or non-uniform security) against other fundamental cryptographic primitives,
such as one-way functions, pseudorandom random generators, discrete log, have
been investigated in various idealized models [DTT10,CHM20,CGK18,CGK19,
GGKL21,DGK17,CDG18,CDGS18].
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2 Preliminaries

Notation. For non-negative integers N, k, we write [N ] for {1, 2, · · · , N} and
(

[N ]
k

)

for the collection of all size-k subsets of [N ]. For a finite set X, we write
X+ for the set of tuples of 1 or more elements of X. Random variables will be
written in bold, and we write x ←$ X to indicate that x is a uniform random
variable in X.

Chernoff Bound. Suppose X1, · · · ,Xt are independent binary random variables.
Let X denote their sum and μ = E[X]. For any δ ≥ 0,

Pr[X ≥ (1 + δ)μ] ≤ exp
(

− δ2μ

2 + δ

)

.

Random Oracle [BR93]. In random oracle model, we model a hash function as a
random function H that is sampled uniformly at random from all functions at
the beginning. H is publicly accessible to every entity.

A useful property about random oracle model is that, instead of sampling H
uniformly at random, one can assume H is initialized as a function that always
outputs ⊥; which indicates the response has not been sampled. Whenever an
input x is queried and H(x) has not been sampled (i.e. H(x) = ⊥), the random
oracle samples y uniformly from the range and H(x) := y.

Definition 1 (Lazy Sampling and Databases). We refer to the table of sam-
pled queries (for those H(x) �= ⊥) on H and their responses as the database or
the partially sampled random oracle.

The set of offline queries is the set of distinct queries made in the offline
stage. The set of online queries is the set of distinct queries made in the online
stage and had not been made in the offline stage.

While dealing with algorithms with both offline and online stages, the table
of only the offline queries on H and their responses is referred to as the offline
database.

Note that the outputs of the offline and online queries are independent and
uniformly distributed.

2.1 Merkle-Dam̊agard Hash Functions (MD)

A hash function usually is required to function over inputs with different lengths.
Many practical hash functions are based on the Merkle-Dam̊agard construction
(MD). It takes a hash function with fixed length input to a new hash function
with arbitrary input lengths.

We treat the underlying hash function as a random oracle H : [N ] × [M ] →
[N ]. We call a message m is a B-block message if m can be written as m =
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(m1, · · · ,mB) where each mi ∈ [M ]. The function MDH(a,m) evaluates on a
salt a ∈ [N ] and a message m as the follows:

MDH(a,m) = MD�
H(a, (m1, · · · , m�)) =

{

H(MD�−1
H (a, (m1, · · · , m�−1)), m�) � > 1

H(a, m1) � = 1

It applies the fixed-length hash function H on the salt a and the first block m1

to get a new salt a2; it then applies H again on a2 and m2 until finally it outputs
a single string in [N ].

2.2 Collision-Resistance Against Auxiliary Input (AI)

We start by defining the security game of collision-resistance against auxiliary
input adversaries. The adversary is unbounded in the preprocessing stage and
leave nothing but a piece of bounded-length advice for the online stage.

Definition 2 ((S, T)-AI algorithm). A pair of algorithms A = (A1,A2) is
an (S, T ) − AIadversary for MD if

– AH
1 is unbounded (making unbounded number of oracle queries to H) and

outputs S bits of advice σ;
– AH

2 takes σ and a salt a ∈ [N ], issues T queries to H and outputs m1,m2.

We are ready to define the security game of collision-resistance against an
(S, T )-AI adversary.

Definition 3 (Auxiliary-Input Collision-Resistance). We define the fol-
lowing game B-AICR for a fixed random oracle H and a salt a ∈ [N ] in Fig. 6,
where B is a function of N (the range size of the random oracle). The game
outputs 1 (indicating that the adversary wins) if and only if A outputs a pair of
MD collision with at most B(N) blocks.

Game B-AICRH,a(A)
σ H

1

m1,m2

A
AH

2 (σ, a)
If m1 or m2 consists of more than B(N) blocks

Then Return 0
If m1 �= m2 and MDH(a,m1) = MDH(a,m2)

Then Return 1
Else Return 0

Fig. 6. B-AICRH,a(A)

For an (S, T )-AI adversary A = (A1,A2), we define the advantage of A
as its winning probability in the B-AICRH,a with uniformly random H ← {f :
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Game 2-AICRH,a(A)
σ H

1

m1,m2

A
AH

2 (σ, a)
If m1 or m2 consists of more than 2 blocks

Then Return 0
If m1 �= m2 and MDH(a,m1) = MDH(a,m2)

Then Return 1
Else Return 0

Fig. 7. 2-AICRH,a(A)

[N ] × [M ] → [N ]} and random a ← [N ]. We define the (S, T,B)-auxiliary-
input collision-resistance of Merkle-Damg̊ard, denoted by AdvAI-CR

B-MD (S, T ), as the
maximum of advantage taken over all (S, T )-AI adversaries A.

For convenience, we similarly define AdvAI-CR
2-MD (S, T ) as the maximum of

advantage of winning the game 2-AICR (see Fig. 7) taken over all (S, T )-AI
adversaries A.

Multi-Instance Collision-Resistance (MI). We then define the sequential multi-
instance collision-resistance of Merkle-Damg̊ard. As shown by [CGLQ20], the
AI-security is closely related to the (sequential) MI-security. Note that in the MI
security, an adversary does not take any advice but tries to solve independent
instances sequentially.

Definition 4 (Multi-Instance Collision-Resistance). Fixing functions B
and S, and a random oracle H, we define the following game B-MICRS in Fig. 8.
In this game, A will receive S freshly independent and uniform salts and it needs
to find a MD collision with respect to each salt ai of at most B blocks, in a
sequential order. In other words, A will never see the next challenge salt until it
solves the current one.

Game B-MICRS
H,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai [N ]
m1,m2 AH(ai)
If m1 or m2 consists of more than B blocks,
or MDH(ai,m1) �= MDH(ai,m2)

Return 0
Return 1

Fig. 8. Games B-MICRS
H,a(A).
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In this security game, A is a stateful algorithm that maintains its internal
state between each stage. We usually consider an (S, T )-MI adversary A which
makes at most T queries in each of these S stages. We similarly define 2-MICR
by setting B = 2 in B-MICR.

For an (S, T )-MI adversary A, we define the advantage of A as its winning
probability in the B-MICRS

H,a with uniformly random H and a ← [N ].
We define the (S, T,B)-multi-instance collision-resistance of Merkle-

Damg̊ard, denoted by AdvMI-CR
B-MD (S, T ), as the maximum of advantage taken over

all (S, T )-MI adversaries A.

For convenience, we similarly define AdvMI-CR
2-MD (S, T ) as the maximum of

advantage of winning the game 2-MICRS
H,a (for random H, a) taken over all

(S, T )-MI adversaries A.

The following theorem will be useful for proving the AI collision-resistance
of Merkle-Damg̊ard. It says a lower bound for the MI collision-resistance implies
a lower bound for the AI security. Therefore, in the rest of the paper, we will
focus on the MI collision-resistance of Merkle-Damg̊ard with different lengths B.
The theorem is based on the idea of Theorem 4.1 in [CGLQ20], which implies
that if AdvMI-CR

B-MD (S + log N + 1, T ) ≤ δS+log N+1, then AdvAI-CR
B-MD (S, T ) ≤ 4δ. We

slightly improve their parameter, and obtain a considerably cleaner statement.

Theorem 3. For any S, T,B and 0 ≤ δ ≤ 1, if AdvMI-CR
B-MD (S, T ) ≤ δS, then

AdvAI-CR
B-MD (S, T ) ≤ 2δ.

Proof of Theorem 3. We prove by contradiction. Assume there is an (S, T )-AI
adversary A = (A1,A2) such that

Pr
H,a

[B-AICRH,a(A) = 1] > 2δ,

Consider the following (S, T )-MI adversary B:

1. B samples a uniformly random σ of S bits.
2. For each stage i ∈ [S]:

– B receives ai from the challenger.
– B runs AH

2 (σ, ai) to obtain and output m1,m2.

We will show that PrH,a1,...,aS

[

B-MICRS
H(B) = 1

]

> δS . For every fixed choice
of H, we define

δH := Pr
a

[B-AICRH,a(A) = 1] .

Observe that EH [δH ] = PrH,a [B-AICRH,a(A) = 1] > 2δ. For every fixed choice
of H, conditioning on that B guesses the output of AH

1 correctly, then B perfectly
simulates A. Therefore,

Pr
a1,...,aS

[B-MICRH(B) = 1] ≥ Pr
a1,...,aS

[B-MICRH(B) = 1| σ = AH
1 ] · Pr[σ = AH

1 ] = δ
S
H/2

S
.



208 Akshima et al.

By averaging over the randomness of H,

Pr
H,a1,...,aS

[B-MICRH,a(B) = 1] ≥ EH [δS
H ]/2S ≥ E[δH ]S/2S > δS ,

where the second inequality is by Jensen’s inequality, and the last inequality is
by EH [δH ] > 2δ. ��

3 Auxiliary Input Collision Resistance for B = 2
Merkle-Damg̊ard

In this section we prove the following theorem, which recovers Theorem 7 in
[ACDW20].

Theorem 4. For any S, T and N ≥ 64,

AdvAI-CR
2-MD (S, T ) ≤ (200 log2 N) · ST + T 2

N
.

By Theorem 3, it suffices to prove the following lemma.

Lemma 1. For any S, T and N ≥ 64, AdvMI-CR
2-MD (S, T ) ≤ 100(ST+T 2) log2 N

N .

The purpose of this section is to show the simplicity of our new framework.
The proof will also serve as a stepping stone for a better understanding of our
proof for larger B cases.

Proof of Lemma 1. Let H be a random oracle in the game 2-MICRS and A be
an arbitrary (S, T )-MI adversary. We show that its advantage of succeeding in
2-MICRS is at most (100(ST +T 2) log2 N/N)S . In this proof, we will also assume
the random oracle H is lazily sampled by the challenger, which is equivalent to
being sampled at the very beginning.

Let Xi be the indicator variable that A wins the i-th stage on a uniformly
random salt ai. The advantage of A can be then written as Pr[X1 ∧ · · · ∧ XS ].
We additionally define the indicator variable X<i = X1 ∧ · · · ∧ Xi−1, meaning
whether A wins the first (i − 1) stages of the sequential game. Then

Pr[X1 ∧ . . . ∧ XS ] =
S

∏

i=1

Pr[Xi|X<i]. (1)

We will bound Pr[X<i+1] < (δS)i for each i ∈ {1, · · · , S} by induction, where
δS = 100 · (ST+T 2) log2 N

N .
If Pr[X<i] is already bounded by (δS)i, then it trivially holds for Pr[X<i+1].

Otherwise, we assume Pr[X<i] ≥ (δS)i.

We want to bound Pr[Xi|X<i] ≤ δS for any arbitrary i ∈ [S]. In the following
proof, we will carefully deal with the conditioning on X<i, since A learns about
the function H not only using the T queries in the i-th stage, but also from
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these (i − 1)T queries in the early stages. We will call all the queries made in
the previous (i − 1) stages as “offline” queries and those made in the i-th stage
as “online” queries. We also recall the definition for “databases” in Definition 1.

As mention in the introduction, one bad example is that the previous (i−1)T
queries consist of (i − 1)T/2 distinct salts, each has a pair of 1-block collision.
An online adversary can use T queries to hit any of these salts and form a 2-
block collision with probability roughly iT 2/N . Below, we will show that this
event (and other events that give non-trivial advantage to the online adversary)
happens with very small probability.

Defining Knowledge-Gaining Events. To bound the knowledge that A learns in
the previous stages, we define the following events: all events are defined for the
lazily sampled random oracle right after the first (i − 1) stages. We are going to
show that these events are the “only events” that A can learn take advantage of
the previous queries but they happen with very small probability.

– Let Ei
1 be the event that 1-block collisions can be found for at least 10i log N

distinct salts within (i − 1)T queries.
Formally, in the database, there exist 10i log N salts: for each such salt a,
there exists m �= m′ ∈ [N ] satisfying H(a,m) = H(a,m′). See Fig. 9a.

...

(a) Ei
1

...

(b) Ei
2

...

(c) Ei
3

Fig. 9. All events Ei
1,E

i
2,E

3
i . Nodes indicate salts in [N ]. An arrow connected two salts

means there is a query on the starting salt and a message in [M ], and the output is
the other salt.

– Let Ei
2 be the event that at least 10i2 log3 N pairs of block collisions can be

found within (i − 1)T queries.
Formally, in the database, there exist 10i2 log3 N pairs of inputs (a,m) �=
(a′,m′) satisfying H(a,m) = H(a′,m′). We emphasize that we do not ask a
pair of collision to start with distinct salts. See Fig. 9b.

– Let Ei
3 be the event that self loops can be found for at least 10i log N distinct

salts within (i − 1)T queries.
Formally, in the database, there exist 10i log N distinct salts: for each such
salt a, there exists some m ∈ [N ] satisfying H(a,m) = a. See Fig. 9c.
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Then

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] + Pr[Ei

1 ∨ Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
.

Here we use the fact that Pr[A|B] ≤ Pr[A]/Pr[B] for Pr[B] > 0.
Next, we will show that assuming none of Ei

1,E
i
2,E

i
3 happens, an adversary

can not take too much advantage of the information from the previous stages.
We show that its advantage Pr[Xi|X<i ∧Ei

1 ∧Ei
2 ∧Ei

3] is bounded by 98 · (ST +
T 2) log2 N/N . Secondly, any of these event happens with very small probability.
We can safely “assume” these events never happen. In total, the conditional
probability is at most 100 · (ST + T 2) log2 N/N = δS .

Claim 1. For any i ∈ [S] and T 2 ≤ N/2, Pr[Ei
1] ≤ N−10i.

Claim 2. For any i ∈ [S], iT + T 2 < N/2 and N ≥ 64, Pr[Ei
2] ≤ 4N−2i.

Claim 3. For any i ∈ [S], N ≥ 4 and T ≤ N/2, Pr[Ei
3] ≤ N−4i.

The proofs for these lemma are in the full version of the paper. Readers may
skip the proofs for all these claims. The proofs are not necessary for understand-
ing the rest of the proof.

Recall that we assume Pr[X<i] ≥ (δS)i, otherwise Pr[X1 ∧ . . . ∧ Xi] ≤ (δS)i

holds trivially for the first i stages. Therefore,

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
(2)

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

1
N

, (3)

where the last inequality comes from the fact that 1/Pr[X<i] ≤ N i but (Pr[Ei
1]+

Pr[Ei
2] + Pr[Ei

3]) ≤ 6N−2i.

Bounding the Last Term. Finally, we are going to bound Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧
Ei

3]. In order to do that, we define another event G as the event that the input
salt ai has been queried among the queries in the previous (i−1) iterations; i.e.,
for some m ∈ [N ], (ai,m) is in the lazily sampled hash function. Then it holds
that:

Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]

≤Pr
[

G
∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]

+ Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

≤ (i − 1)T
N

+ Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

.



Time-Space Lower Bounds for Finding Collisions in MD Hash Functions 211

Now all that remains to bound is Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

, which
requires collision type-wise analysis. By enumeration, there are total 6 types of
2-block collisions (Fig. 10).

A dashed line origins from ai. It indicates that the query should be made
online, conditioned on G. Other queries can be either made online or offline in
the previous iterations. The label ♣, ♦, ♥ and ♠ will be used later for a better
presentation of our proof. By enumerating each solid edge being an online query
or a offline query, we show that it is sufficient to consider the cases in Claim 4.

ai

( )

(a) Type 1

ai
( )

( )

(b) Type 2

ai

( )

( )

(c) Type 3

ai
( ) ( )

( )

(d) Type 4

ai
( )

( ) ( )

(e) Type 5

ai
( )

( )

( )

( )

(f) Type 6

Fig. 10. All types of 2-block collisions.

Claim 4. For any i ∈ [S], to find a 2-block collision on ai conditioned on G,
the queries should satisfy at least one of the following conditions:

1. There exists an online query (i.e., a query among the T queries in the i-
th iteration after receiving the challenge input ai), denoted (a,m) such that
H(a,m) = a.
In other words, a self loop is found among the online queries. This covers the
case when (♣) edge in type 1 collisions and the (♦) edge in type 2 collisions
are online queries. See Fig. 11a.

2. There exists two online queries, denoted (a,m) and (a′,m′), such that
(a,m) �= (a′,m′) and H(a,m) = H(a′,m′).
A collision is found among the online queries. This covers the case when
the (♣) and (♦) edges in Type 3 collisions, the (♦) and (♥) edges in Type 4
collisions, the (♣) and (♥) edges in Type 5 collisions, the (♥) and (♠) edges
in Type 6 collisions are online queries. See Fig. 11b.

3. There exists an online query, denoted by (a,m), and one offline query, denoted
by (a′,m′), such that a �= a′, H(a,m) = a′ and H(a′,m′) = a′.
This denotes an online query hits an existing self loop. This covers the case
when the (♣) edge in type 2 collisions is an online query. See Fig. 11c.
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4. There exists an online query, denoted by (a,m), and two offline queries,
denoted by (a′,m′) and (a′,m′′), such that a �= a′, H(a,m) = a′ and
H(a′,m′) = H(a′,m′′).
This denotes an online query hits an existing collision (starting with the same
salt a′). This covers the case when (♣) edge in type 4 collisions is an online
query. See Fig. 11d.

5. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline
query, denoted by (a′,m′′) such that a �= a′, H(a,m) = a′ and H(a′,m′) =
H(a′,m′′).
This covers the case when the (♣) and (♦) edges in type 4 collisions are online
queries. See Fig. 11e.

6. There exists two online queries, denoted by (a,m) and (a′,m′), and an
offline query, denoted by (a′′,m′′) such that H(a,m) = a′ and H(a′,m′) =
H(a′′,m′′).
This denotes two online queries hit two ends of an existing queries. This
covers the case when the (♣) and (♦) edges in type 5 collisions, the (♣) and
(♠) edges in type 6 collisions are online queries. See Fig. 11f.

7. There exists two online queries, denoted by (a,m) and (a,m′), and two offline
queries, denoted by (b, y), (b′, y′) such that b �= b′, H(a,m) = b,H(a,m′) = b′

and H(b, y) = H(b′, y′).
This covers the case when the (♣) and (♦) edges in type 6 collisions are online
queries. See Fig. 11g.

a

m

(a) Case 1

a

a′

m

m′

a = a′

m

m′

(b) Case 2

m

m′

a a′

(c) Case 3

m

m′

m′′

a a′

(d) Case 4

m

m′

m′′

a a′

(e) Case 5

m′

m m′′

a

a′′

a′

m′

m m′′

a = a′

a′′

(f) Case 6

m y′

m′ ya

b

b′

(g) Case 7

Fig. 11. All possible types of collisions. A dotted line denotes an online query. A solid
line denotes a offline query.

Proof for Claim 4. We only prove for type 6 collisions. Other five cases are easier
and similar.
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When both (♥) and (♠) are offline queries, it is Case 7. If only one of the
two edges is offline, it is Case 6. If they are all online queries, we can reduce it
to Case 2. ��

Finally, we show that for each case in Claim 4, the advantage is bounded by
(98(ST + T 2) log2 N)/N .

Case 1. By making T new queries, each query (a,m) has 1/N chance to
satisfy H(a,m) = a. Therefore, the probability is bounded by T/N .
Case 2. The probability of finding a collision among these T new queries is
smaller than T 2/N , by birthday bound.
Case 3. Recall Ei

3: there are at most 10i log N salts that has a self loop in the
offline queries. By making T new queries, each query (a,m) has (10i log N)/N
chance to hit any of these salts. Therefore, the probability is bounded by
(10iT log N)/N .
Case 4. Recall Ei

1: there are at most 10i log N salts that has a collision start-
ing from it in the offline queries. By making T new queries, each query (a,m)
has (10i log N)/N chance to hit any of these salts. Therefore, the probability
is bounded by (10iT log N)/N .
Case 5. and Case 6. The proofs are identical. Fixing any offline query
(a′′,m′′), by making T queries, the chance of hitting both ends is T 2/N2.
This is because we can enumerate which are the first queries that hit the
starting salt a′′ and the end H(a′′,m′′). Each case happens w.p. at most
1/N2.
Since there are total (i − 1)T offline queries, by union bound, the advantage
is at most (i − 1)T · T 3/N2 ≤ iT

N · T 2

N for both cases.
Case 7. Recall Ei

2: there are at most 10i2 log3 N pair-wise collisions. For every
such collision that start with different salts, the probability of hitting both
salts within T queries is T 2/N2. This is due to the same counting argument
in the analysis of Case 5 and Case 6.
By union bound, the advantage is at most (10i2T 2 log3 N)/N2.

We have shown all the cases in Claim 4. Therefore,

Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] ≤ 98(iT + T 2) log2 N

N
.

Combining with Eq. (1) and Eq. (2), we conclude Lemma 1: Pr[X1 ∧ . . .∧XS ] ≤
(δS)S . ��

4 Auxiliary Input Collision Resistance for B
Merkle-Damg̊ard

In this section we prove the following theorem.

Theorem 5. For any functions S, T,B, and N ≥ 64

AdvAI-CR
B-MD (S, T ) ≤ (34 log2 N) · STB

N
· max

{

1,
ST 2

N

}

+ 2 · T 2

N
.
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Lemma 2. For any functions S, T,B, and N ≥ 64,

AdvMI-CR
B-MD (S, T ) ≤

(

17κTB log2 N + T 2

N

)S

where κ = S · max{1, ST 2/N}.
As for the case of B = 2, we prove an upper bound on the advantage of

B-block collision finding adversary in the MI-CR model, which implies an upper
bound in the AI-CR model via Theorem 3.

Proof of Lemma 2. We prove this lemma in similar fashion as Lemma 1. Let H
be a random oracle (which is lazily sampled) in the game B-MICRS and A be
any (S, T )-MI adversary.

We analogously define Xi to be the indicator variable that A finds at most
B-length collisions on uniformly random salt ai given as input in the i-th stage
of the game. We also define X<i = X1 ∧ · · · ∧ Xi−1. So, the advantage of A is

Pr[X1 ∧ . . . ∧ XS ] =
S

∏

i=1

Pr[Xi|X<i].

As in the proof for B = 2 case, we will inductively bound Pr[X<i+1] for each
i ∈ [S]. Here we will bound Pr[X<i+1] to ((17κiTB log2 N + T 2)/N)i where
κi = i · max{1, iT 2/N}. Recall that we will analogously assume Pr[X<i] ≥
((17κiTB log2 N +T 2)/N)i. Otherwise Pr[X<i+1] ≤ ((17κiTB log2 N +T 2)/N)i

holds trivially.
In order to prove the lemma, it suffices to upper bound Pr[Xi|X<i] by

17κiTB log2 N/N +T 2/N for any arbitrary i ∈ [S]. That is because Pr[X<i+1] =
Pr[Xi|X<i] · Pr[X<i] where Pr[X<i] ≤ ((17κiTB log2 N + T 2)/N)i−1 by the
inductive hypothesis. In the proof, we will handle the conditioning on X<i in a
similar fashion to our proof for B = 2 case.
First we state some useful definitions.

Definition 5. A list of elements (a1,m1), . . . , (a�,m�) in [N ] × [M ] are said to
form a chain for H when for every j ∈ [� − 1], H(aj ,mj) = aj+1.

A chain (a1,m1), . . . , (a�,m�) for H is called a cycle when H(a�,m�) = a1.
The length of a cycle is the number of elements in it, � here.

Definition 6. Two distinct chains (a1,m1), . . . , (a�,m�) and (a′
1,m

′
1), . . . ,

(a′
�′ ,m′

�′) are called colliding chains for H if H(a�,m�) = H(a′
�′ ,m′

�′).

Definition 7. For any a ∈ [N ], a set of elements (a1,m1), . . . , (a�,m�) in [N ]×
[M ] are said to form a claw at a under H if � > 1, a1, . . . , a� are distinct and
H(a1,m1) = . . . = H(a�,m�) = a. We refer to a1, . . . , a� as the pre-images of a.

Next, we define events to illustrate the bound on ‘useful’ information gained
by A from the prior iterations in the B-MICR game. Each of these events are
defined over responses from the random oracle in the first (i − 1) iterations.
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– Let Y be the set of salts with more than one pre-image on it in the offline
database. Then we define Ei

2 to be the event that
∑

a∈Y (# pre-images on

a) ≥ 16κi log2 N after (i − 1)T queries where κi = max
{

i, i2T 2

N

}

.
– Let Ei

3 be the event that there exists at least i log N ‘special’ cycles of length
in [B − 1] among the (i − 1)T offline queries. A cycle (a1,m1), . . . , (a�,m�) is
called ‘special’ if the number of pre-images on ai is exactly 1 for every i ∈ [�].

Next, we can write

Pr[Xi|X<i] = Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] + Pr[Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
Pr[Ei

2]
Pr[X<i]

+
Pr[Ei

3]
Pr[X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
1
N

where the last inequality holds via Claim 5, Claim 6 (which are stated next) and
our assumption that Pr[X<i] ≥ ((17κiTB log2 N + T 2)/N)i.

Claim 5. For any i ∈ [S], iT + T 2 < N/2, 2i log N + 1 ≤ N/2 and N ≥ 64,
Pr[Ei

2] ≤ 5
N2i .

Claim 6. For any i ∈ [S], Pr[Ei
3] ≤ (

T
N

)i log N
.

As before, we will prove Claim 5 and 6 in the full version of the paper. Readers
may safely skip the proofs and assume these “knowledge-gaining events” happen
with exponentially small probability.

Next, we want to study Pr[Xi|X<i ∧Ei
2 ∧Ei

3]. We define G to be the event that
input salt ai has been queried among the previous (i−1) iterations or that input
salt ai is the output of some query among the previous (i − 1) iterations. So, we
can rewrite Pr[Xi|X<i ∧ Ei

2 ∧ Ei
3] as follows:

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] + Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] +
2(i − 1)T

N
.

Note that ai is chosen uniformly and independently and as queries in the previous
iterations could be made on at most (i − 1)T distinct salts and can output at
most (i−1)T distinct salts in the previous (i−1) iterations, it is easy to bound

Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

≤ 2(i − 1)T
N

.

Finally, we analyze Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G].
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Claim 7. For any i ∈ [S],

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] ≤ 16κiTB log2 N + T 2

N
.

Proof of Claim 7 requires different analysis for different types of colliding chains
which we show in Subsect. 4.1. Before we move onto that subsection, we first
show how we obtain the lemma by putting together all the claims.

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] + Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

+ Pr[Ei
2 ∨ Ei

3|X<i]

≤ 16κiTB log2 N + T 2

N
+

2(i − 1)T

N
+

1

N

≤ 17κiTB log2 N

N
+

T 2

N

where the last inequality holds from that κi = max{i, i2T 2/N} and N ≥ 4.

4.1 Proof of Claim 7

To this end, we state the following claim.

Claim 8. For any i ∈ [S], to find a B-length collision on ai, the queries in the
database should satisfy at least one of the following conditions given there exists
no query in the offline database that takes ai as input or outputs ai:

1. There exists an online query (i.e., a query among at most T queries that were
made for the first time in the i-th iteration after receiving the challenge input
ai), denoted (a,m) such that H(a,m) = ai.

2. There exists two distinct online queries, denoted (a,m) and (a′,m′) such that
H(a,m) = H(a′,m′).
This includes both of the following possibilities: the online queries are such
(1) a = a′ (and thus m and m′ will be distinct); (2) a �= a′.

3. There exists an online query, denoted (a,m), a chain (recall Definition 5) of
offline queries5, denoted (b1,m1), . . . , (b�,m�) for some 0 < � < B, and an
offline query (b,m′) �= (b�,m�) such that H(a,m) = b1, H(b,m′) = H(b�,m�)
and the number of pre-images for every salt in {b2, . . . , b�} in the offline
database is exactly 1.

5 The set of Offline queries is the set of distinct queries made in the previous (i−1)
iterations. So there are at most (i − 1)T of these queries and their outputs are
independent and uniformly distributed. The set of Online queries is the set of
distinct queries made in the i-th iteration after receiving the challenge input ai that
had not been made in any of the previous (i − 1) iterations. Note that the outputs
of online queries are also independent and uniformly distributed.
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(a) (b)

· · ·

(c)

· · ·
· · ·

· · ·
(d)

· · ·

· · ·
(e)

Fig. 12. All types of colliding chains

4. There exists two online queries, denoted (a,m) and (a′,m′), and a chain
of offline queries, denoted (b1,m1), . . . , (b�,m�) for some � < B, such that
H(a,m) = b1, H(a′,m′) = H(b�,m�) and the number of pre-images on every
salt in {b2, . . . , b�} in the offline database is exactly 1.

5. There exists an online query, denoted (a,m), and a cycle in the offline
database, denoted (b1,m1), . . . , (b�,m�) for some � < B, such that H(a,m) =
b1 and the number of pre-images on every salt in {b1, b2, . . . , b�} in the offline
database is exactly 1.

Proof for Claim 8. Figure 12 enumerates all the possible types of colliding chains.
Depending on where the queries in the chains are first made for each of the types,
we show that the list of conditions in the claim is complete. (Refer to Fig. 13 for
a visual representation of the conditions in the claim.)

We know that all the queries with output ai or of the form (ai, ·) in the
colliding chains are online queries. This implies if the colliding chains are of the
types in Fig. 12a or 12b, the queries in the database will satisfy condition 1.

For the remaining types of colliding chains (ref Fig. 12c, 12d, 12e), one of the
following 3 cases can happen:

1. Both the ‘colliding’ queries are online. In this case, the queries in the
database will satisfy condition 2.

2. Both the ‘colliding’ queries are offline. In this case, the queries in the
database will satisfy condition 3. Note that b� can be thought of as the earliest
query among the chains that has more than one pre-image in the offline
database.

3. One of the ‘colliding’ queries is offline and online each. For the col-
liding chains of types in Fig. 12d and 12e), the queries in the database will
satisfy condition 4. For the colliding chains of type in Fig. 12c, there are two
possibilities as shown in Fig. 14. For the possibility in Fig. 14a, the queries
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a

m

ai

(a)

a

a′

m

m′

a = a′

m

m′

(b)

a b1 b2 b�

b

m1 · · · m�m

m′

(c)

a b1 b2 b�

a′

m1 · · · m�m

m′

(d)

m1

b1

b2

m2

m� b�

m
a

(e)

Fig. 13. Pictorial depiction of Conditions 1–5. A dotted line denotes an online query.
A solid line denotes an offline query.

· · ·
a

(a)

· · ·
a

(b)

Fig. 14. A dotted line denotes an online query. A solid line denotes an offline query.

in the database satisfy condition 4. On the other hand, for the possibility in
Fig. 14b, the queries in the database satisfy condition 5.

��
Claim 9. For j ∈ [5], let εj be the advantage in achieving condition j from
Claim 8 when Ei

2, Ei
3 and G hold. Then for any i ∈ [S], the results summarized

in Table 2 on the upper bounds of εj hold.

Table 2. Summary of upper bounds on εj for j ∈ [5] where κi := max{i, i2T 2/N}.

Condition j 1 2 3 4 5

εj
T
N

T2

N
16κiTB log2 N

N
iT
N

· T2

N

iTB log N
N
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We prove the bounds stated in Claim 9 next.

Condition 1. Recall that online queries are ‘new’ queries, as in they are made
for the first time among the T queries in the i-th iteration after receiving ai.
Thus, the output of online queries is independent of output from offline queries
and has 1/N chance to be ai under H via lazy sampling. By taking a union
bound over at most T online queries, we can bound the probability to T/N .

Condition 2. By birthday bound, it holds that the probability of finding ‘col-
liding’ queries among T online queries is at most T 2/N .

Condition 3. Given Ei
2 implies that there can be at most 16κi log2 N queries in

the offline database that are part of some claw. As per the definition of condition
4, there will be a unique chain of length < B in the offline database ending in
each of these at most 16κi log2 N queries, such that an online query hits the
start of this chain. The probability of hitting one of these at most B ·16κi log2 N
salts within T queries is at most 16κiTB log2 N/N .

Condition 4. As per the definition of condition 5, there can be at most iT such
chains of length < B in the offline database, such that an online query hits the
start of this chain and another online hits the end of this chain. The probability
of hitting both the salts within at most T queries is bounded by T 2/N2. By
union bound the advantage is at most iT 3/N2.

Condition 5. Given Ei
3 implies there are at most i log N ‘special’ cycles in the

offline database, each with at most B queries in it. So, there are at most iB log N
queries in these cycles and the probability of hitting one of the starting salts of
these queries within T online queries is bounded by iB log N · T/N .

From Claim 9 it holds that the advantage of achieving any of the conditions
in Claim 8 given Ei

2, Ei
3 and G is bounded by (16κiTB log2 N + T 2)/N . Note

that for i ≤ S, when ST 2 < N implies iT 2 < N . Hence κi = i if κS = S.
��
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