
Better than Advertised Security for
Non-interactive Threshold Signatures

Mihir Bellare1 , Elizabeth Crites2, Chelsea Komlo3, Mary Maller4,
Stefano Tessaro5, and Chenzhi Zhu5(B)

1 Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

mihir@eng.ucsd.edu
2 University of Edinburgh, Edinburgh, UK

ecrites@ed.ac.uk
3 University of Waterloo, Zcash Foundation, Waterloo, Canada

ckomlo@uwaterloo.ca
4 Ethereum Foundation, Cambridge, UK

mary.maller@ethereum.org
5 Paul G. Allen School of Computer Science and Engineering,

University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

Abstract. We give a unified syntax, and a hierarchy of definitions of
security of increasing strength, for non-interactive threshold signature
schemes. These are schemes having a single-round signing protocol, pos-
sibly with one prior round of message-independent pre-processing. We
fit FROST1 and BLS, which are leading practical schemes, into our hier-
archy, in particular showing they meet stronger security definitions than
they have been shown to meet so far. We also fit in our hierarchy a more
efficient version FROST2 of FROST1 that we give. These definitions
and results, for simplicity, all assume trusted key generation. Finally,
we prove the security of FROST2 with key generation performed by an
efficient distributed key generation protocol.

1 Introduction

Threshold signatures, which originated in the late 1980s [17,18], are seeing
renewed attention, driven in particular by an interest in using them to secure
digital wallets in the cryptocurrencies ecosystem [22]. Parallel IETF [32] and
NIST [35] standardization efforts are evidence as to the speed at which the area
is moving into practice.

Whether securing a user’s digital wallet, or being used by a CA to create
a certificate, forgery of a digital signature is costly. The rising tide of system
breaches and phishing attacks makes exposure of a signing key too plausible
to ignore. The idea of a threshold signature scheme is to distribute the secret
signing key across multiple parties who then interact to produce a signature,
the intent being to retain security even in the face of compromise of up to a
threshold number of these parties. Over the years, threshold versions of many
schemes have been presented, including RSA [16,26,37], DSA/ECDSA [9,13,21–
23,25,34], Schnorr signatures [24,30,39] and BLS signatures [8].
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 517–550, 2022.
https://doi.org/10.1007/978-3-031-15985-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15985-5_18&domain=pdf
http://orcid.org/0000-0002-8765-5573
https://doi.org/10.1007/978-3-031-15985-5_18

518 M. Bellare et al.

Today, we see interest converging on schemes that are non-interactive. The
representative examples are BLS [8,12], and FROST [30]. FROST is a partially
non-interactive threshold signature scheme, consisting of a message-independent
pre-processing round and one round of signing. Threshold BLS is fully non-
interactive, i.e., consists of a single round, but it does require pairings.

Our Contributions. We advance the area of non-interactive threshold signa-
ture schemes via the following contributions.

1. Framework and Stronger Security. We contend that schemes like FROST and
BLS are better than advertised, meeting definitions of security that are stronger
than ones that have been previously defined, or that these schemes have been
shown to meet in existing literature. Furthermore, these definitions capture nat-
ural strengths of the schemes that may be valuable for applications.

The classical development paradigm in theoretical cryptography is to ask what
security we would like, define it, and then seek schemes that meet it. Yet if we look
back, there has been another path alongside: canonical, reference schemes guided
a choice of definitions that modeled them, and, once made, these definitions went
on to be influential targets for future schemes. (The formal definition of trapdoor
permutations [27], for example, was crafted to model RSA). We are inspired by
the latter path. BLS [11] yields a threshold scheme [8] so natural and simple that
it is hard to not see it as canonical, and, within the space of Schnorr threshold
schemes, FROST [30] has a similarly appealing minimality. Examining them, we
see strengths not captured by current definitions or results. We step back to create
corresponding abstractions, including a unified syntax and a hierarchy of defini-
tions of security for non-interactive threshold signature schemes. We then return
to ask where in this hierarchy we can fit the starting schemes, giving proofs that fit
BLS and FROST as high as possible. The proofs this requires, and that we provide,
turn out to be challenging and technically interesting.

Although inspired by specific schemes, our definitional development, once
begun, unfolds in a logical way, and yields definitions that go beyond even what
BLS and FROST achieve. These make intriguing new targets. We show how to
achieve them, with minimal modifications to the existing schemes.

2. FROST2 and its Security with DKG. We introduce FROST2, a variant of the orig-
inal FROST scheme (we hereafter refer to the original as FROST1) that reduces
the number of exponentiations required for signing and verification from linear in
the number of signers to constant. We analyze the security of FROST2 in our above
security framework, and highlight subtle differences between it and FROST1.

The above-discussed results are all in a setting with (ideal) trusted key gen-
eration. In practice however it is desirable that key generation itself be done
via a threshold, distributed key generation protocol (DKG). Accordingly, we
prove the security of FROST2 with a DKG, namely an efficient variant of Peder-
sen’s DKG (PedPoP) introduced in conjunction with FROST1 [30]. Unlike prior
proofs that modeled key generation using Pedersen’s DKG [24], our security

Non-interactive Threshold Signatures 519

proof allows concurrent executions of the signing protocol once key generation
has completed, and generalizes which honest parties are assumed to partici-
pate. We demonstrate that FROST2 instantiated with PedPoP is secure in the
random oracle model (ROM) [5] assuming extractable proofs of possession and
the one-more discrete logarithm (OMDL) assumption of [2]. The assumption of
extractable proofs of possession is required only for the simulation of PedPoP.
Indeed, our proofs for FROST1 and FROST2 without ideal key generation only
rely on the OMDL assumption, along with random oracles.

Our proofs here fill a gap towards demonstrating security with respect to well-
understood assumptions. We have a complete implementation of our security
proof in python1 in which we see that our reduction accurately outputs a valid
OMDL solution and that our simulated outputs pass verification.

Non-interactive threshold schemes. We consider schemes where the sign-
ing operations involve a leader and a set of ns nodes, which we refer to as servers,
with server i holding a secret share ski of the secret signing key sk. Signing is
done via an interactive protocol that begins with a leader request to some set of
at least t number of servers and culminates with the leader holding the signature,
where t ≤ ns, the threshold, is a protocol parameter.

In a fully non-interactive threshold signature scheme, this protocol is a sim-
ple, one-round one. The leader sends a leader request lr , which specifies a message
M and possibly other things, to any server i and obtains in response a partial
signature, psig i, that i computes as a function of ski and M . The leader can
request partial signatures asynchronously, at any time, and independently for
each server, and there is no server-to-server communication. Once it has enough
partial signatures, the leader aggregates them into a signature sig of M under
the verification key vk corresponding to sk. The canonical example is the thresh-
old BLS scheme [8,12], where sk, sk1, . . . , skns ∈ Zp for a public prime p, and
psig i ← h(M)ski where h : {0, 1}∗ → G is a public hash function with range
a group G of order p. Aggregation produces sig as a weighted product of the
partial signatures.

A partially non-interactive threshold signature scheme adds to the above
a message-independent pre-processing round in which, pinged by the leader at
any point, a server i returns a pre-processing token ppi. The leader’s request
for partial signatures will now depend on tokens it has received. The canonical
example is FROST [30]. This understanding of a non-interactive scheme encom-
passes what FROST calls flexibility: obtaining psig i from any ≥ t servers allows
reconstruction of the signature.

Which forgeries are non-trivial? For a regular (non-threshold) signature
scheme, the first and most basic notion of security is un-forgeability (UF) [27].
The adversary (given access to a signing oracle) outputs a forgery consisting of a
message M and a valid signature for it. To win, the forgery must be non-trivial,
meaning not obtained legitimately. This is naturally captured, in this context,
as meaning that M was not a signing query.

1 https://github.com/mmaller/multi and threshold signature reductions.

https://github.com/mmaller/multi_and_threshold_signature_reductions

520 M. Bellare et al.

Turning to define un-forgeability for a non-interactive threshold signature
scheme, we assume the adversary has corrupted the leader and up to t − 1
servers, where 1 ≤ t ≤ ns is the threshold. Furthermore, it has access to the hon-
est servers. Again, it outputs a forgery consisting of a message M and valid sig-
nature for it, and, to win, the forgery must be non-trivial, meaning not obtained
legitimately. Deciding what “non-trivial” means, however, is now a good deal
more delicate, and interesting, than it was for regular signatures.

In this regard, we suggest that many prior works have set a low bar, being
more generous than necessary in declaring a forgery trivial, leading to definitions
that are weaker than one can desire, and weaker even than what their own
schemes seem to meet. The definitions we formulate rectify this by considering
five non-triviality conditions of increasing stringency, yielding a corresponding
hierarchy TS-UF-0 ← TS-UF-1 ← TS-UF-2 ← TS-UF-3 ← TS-UF-4 of notions
of un-forgeability of increasing strength. (Here an arrow B ← A means A implies
B: any scheme that is A-secure is also B-secure). TS-UF-0, the lowest in the
hierarchy, is the notion currently in the literature.

Returning to regular (non-threshold) signature schemes, strong un-
forgeability (SUF) has the same template as UF, but makes the non-triviality
condition more strict, asking that there has been no signing query M that
returned sig . We ask if SUF has any analogue in the threshold setting. For non-
interactive schemes, we suggest it does and give a hierarchy of three definitions
of strong unforgeability TS-SUF-2 ← TS-SUF-3 ← TS-SUF-4. The numbering
reflects that TS-UF-i ← TS-SUF-i for i = 2, 3, 4.

The case of BLS. Boldyreva’s analysis of threshold BLS [8] adopts the for-
malism of Gennaro, Jarecki, Krawczyk, and Rabin [23,25,26]. The non-triviality
condition here is that no server was asked to issue a partial signature on the
forgery message M . This is TS-UF-0 in our hierarchy. But allowing asynchronous
requests is a feature of this scheme and model. A corrupted leader could ask one
honest server i for a partial signature. No other server would even be aware
of this request, but the adversary would now have psig i. Under TS-UF-0, the
forgery is now trivial, and the adversary does not win. Yet (assuming a thresh-
old t ≥ 2), there is no reason possession of just psig i should allow creation of a
signature, and indeed for threshold BLS there is no attack that seems able to
create such a signature, indicating the scheme is achieving more than TS-UF-0.
This leads to the next level of our hierarchy, TS-UF-1, where the non-triviality
condition is that a partial signature of M was requested from at most t − 1 − c
honest servers, where c is the number of corrupted servers. Does threshold BLS
achieve this TS-UF-1 definition? As we will see, proving this presents challenges,
but we will succeed in showing that the answer is yes, under a variant of the
computational Diffie-Hellman (CDH) assumption. (The proof is deferred to [7]
for lack of space). Yet, TS-UF-1 was not considered in the literature, and only
TS-UF-0 is proved for many other non-interactive schemes [10,29,37,40]. The
only exceptions are the work of Libert, Joye, and Yung [33] and recent concur-
rent work by Groth [28], which comes to a similar conclusion/result on BLS.
(We discuss the relation below). We note that Shoup [37] implicitly tackles a

Non-interactive Threshold Signatures 521

similar technical challenge by dealing with differing corruption and reconstruc-
tion thresholds, but the resulting security notion is not TS-UF-1.

The distinction between TS-UF-1 and TS-UF-0 is not just academic. Implicit
in applications of threshold signing in wallets is the fact that servers also perform
well-formedness checks of what is being signed (typically, as part of a transac-
tion). TS-UF-1 guarantees that every issued signature has been inspected by
sufficiently many servers, but TS-UF-0 does not.

The case of FROST. Yet the hierarchy needs to go higher, and this becomes
apparent when looking at partially non-interactive schemes like FROST1 [30],
and its optimized version, FROST2, which we introduce. Here, the discussion
becomes more subtle, and interesting.

In more detail, a FROST1 pre-processing token takes the form of a pair
ppi = (gri , gsi) of group elements for one-time use. (A server will ensure that
the pre-processing token in its name in the leader request is one it has previously
sent, and will never use it again). An honest request lr includes, along with the
message M to be signed, a sufficiently large server set lr .SS ⊆ [1..ns], and, for
each i in this set, a pre-processing token ppi that i previously sent. Each server
i ∈ lr .SS will then generate a signature share psig i = (R, zi), where R is a value
which can be computed (publicly) from the tokens included in lr , whereas zi

depends on the discrete logarithms of the server’s token and its own key share
ski. The zi’s can then be aggregated into a value z such that (R, z) is a valid
Schnorr signature for M .

In terms of our framework, we show that FROST1 achieves TS-SUF-3 secu-
rity. This considers a signature trivial even if some of the honest servers in lr .SS
do not respond to a (malicious) leader request, as long as the tokens associated
with these servers are not honestly generated. In particular, the honest servers
may not respond because they recognize these tokens as invalid, or because
the malicious leader did not submit the request to them. We show that, while
FROST2 fails to achieve TS-SUF-3, it achieves the next step down in our hier-
archy, TS-SUF-2. This is still stronger than the notions lower in the hierarchy.
Our proofs for FROST1 and FROST2 signing operations rely on the OMDL
assumption and the ROM.

Stronger goals. A stronger security goal (TS-UF-4 in our hierarchy) is to
expect that the only way to obtain a signature for a message M is to follow the
above blueprint, i.e., to issue the same honest leader request lr to all servers in
lr .SS. In fact, we may even ask for more, in terms of strong unforgeability—the
value R is uniquely defined by lr , and, along with the message M , it defines
a unique signature (although not efficiently computable given the verification
key alone). An ideal goal, which corresponds to our strongest security goal, is to
ensure that the only way to generate the signature associated with lr is to obtain
a signature share for lr from every honest server whose tokens are included in
lr . This is a notion we refer to as TS-SUF-4.

We will however show that neither FROST1 nor FROST2 meet TS-SUF-4.
To overcome this, we will show a general transformation which can boost
the security of a TS-SUF-3-secure scheme like FROST1 to achieve TS-SUF-4.

522 M. Bellare et al.

Our framework allows schemes more general than the FROST ones, and also
leaves the question open of better and more efficient designs achieving the
stronger notions. Moreover, we provide simple reference schemes for all of our
notions, which, while inefficient, guide us in understanding the subtle differ-
ences among notions and baseline requirements. In particular, these schemes
will enable us to separate the proposed notions.

A summary for our notions. In summary, our unforgeabilty notions declare
a signature for a message M trivial in the following cases:

– TS-UF-0: A partial signature for the message M was generated by at least
one honest server.

– TS-UF-1: A partial signature for the message M was generated by at least
t − c honest servers, where c is the number of corrupted servers.

– TS-UF-2: There exists a leader request lr for the message M which was
answered by at least t − c honest servers.

– TS-UF-3: There exists a leader request lr for the message M such that every
honest server i ∈ lr .SS either answered lr or the token ppi associated with i
in lr is maliciously generated.

– TS-UF-4: There exists a leader request lr for the message M such that every
honest server i ∈ lr .SS answered lr .

Analogous notions of strong unforgeability are obtained by further associat-
ing a request lr to a (unique) signature, in addition to a message M .

We stress that it is not clear which scenarios demand which notions in our
hierarchy. This is especially true because we are still lacking formal analyses of
full-fledged systems using threshold signatures, but it is not hard to envision a
potential mismatch between natural expectations from such schemes and what
they actually achieve. In both FROST variants, for example, it is natural to
expect that a signature can only be generated by a sufficient number of hon-
est servers answering the same request, a property which we show is actually
achieved. Further, one may also expect that all honest servers that generated
these honest tokens need to be involved in the generation of a valid signature, but
this stronger property is actually not achieved by either of the FROST variants.

FROST2 with DKG. Our syntax above assumes key generation is carried out
by a trusted algorithm, which allows us to focus on the signing protocol. However,
security in practice is enhanced when the key generation itself is a distributed
threshold protocol, so that the key is never in the clear in any one location,
even ephemerally. In this setting, we prove the security of FROST2 with the
distributed key generation protocol (DKG) originally proposed in [30], which
we refer to as PedPoP. Our proof for the combination of FROST2 and PedPoP
relies on the ROM, the OMDL assumption, and a new knowledge-type assump-
tion. However, we stress that the latter assumption is only necessary to handle
PedPoP, as indeed we give stronger proofs of security without this assumption
in a setting with ideal key generation.

What we do not do. Our framework does not handle adaptive corruptions,
i.e., we demand instead that the adversary declares its corruption set initially.
We could extend our definitions to adaptive corruptions rather easily, but our

Non-interactive Threshold Signatures 523

concrete bounds would be impacted. In particular, we would resort to a generic
reduction guessing the corrupted set beforehand, with a multiplicative loss of
2ns, which is acceptable for the smaller values of the number ns of parties that
we consider common in practice.

Our framework cannot cover recent protocols, like that of Canetti et al. [13],
which combine a multi-round message-independent pre-processing phase with a
final, message-dependent, round. (Conversely, their UC security analysis does
not give definitions which help our fine-grained framework).

Many prior works also consider robustness, i.e., the guarantee that a signature
is always produced. Here, we follow the same viewpoint as in FROST, and do
not focus on robustness explicitly. This allows us to prevent imposing a small t
(relative to ns) just for the sake of ensuring it. However, our schemes all implicitly
give verification keys vki for each server, and it is not hard to verify individual
partial signatures psig i. Any t valid partial signatures will always aggregate into
a valid signature.

Related and concurrent work. A recent preprint by Groth [28] presents
a general definition for fully non-interactive schemes in a setting with a (non-
interactive) DKG. His definition implies TS-UF-1, and he also provides a proof
sketch that BLS (with his newly proposed non-interactive DKG) is secure under a
variant of the OMCDH assumption, which is closely related to our variant of the
CDH assumption and which we also show to be hard in the GGM. Groth’s frame-
work is not suitable for partially non-interactive schemes like FROST, which are
the main focus of our work.

History of this paper. This paper is the result of a (hard) merge imposed
by the Crypto 2022 PC on two submissions. CKM [14] introduces FROST2.
BTZ [7] introduces the framework and definitions for non-interactive schemes
with trusted key generation and proofs for BLS, FROST1 and FROST2 in this
framework. CKM [14] provides a proof of security for FROST2 that includes dis-
tributed key generation. Most security proofs have been deferred to the respective
full versions. We see each group of authors as responsible for the contribution
relevant to their part of the work.

2 Preliminaries

Notation. If b ≥ a ≥ 1 are positive integers, then Za denotes the set {0, . . . , a−
1} and [a..b] denotes the set {a, . . . , b}. If x is a vector then |x| is its length (the
number of its coordinates), x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤
i ≤ |x| } is the set of all its coordinates. A string is identified with a vector over
{0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. By ε
we denote the empty vector or string. The size of a set S is denoted |S|. For sets
D,R let FNS(D,R) denote the set of all functions f : D → R.

Let S be a finite set. We let x ←$ S denote sampling an element uniformly
at random from S and assigning it to x. We let y ← AO1,...(x1, . . . ; r) denote
executing algorithm A on inputs x1, . . . and coins r with access to oracles O1, . . .
and letting y be the result. We let y ←$ AO1,...(x1, . . .) be the result of picking r

524 M. Bellare et al.

at random and letting y ← AO1,...(x1, . . . ; r). Algorithms are randomized unless
otherwise indicated. Running time is worst case.

Games. We use the code-based game playing framework of [6]. (See Fig. 2 for
an example). Games have procedures, also called oracles. Among the oracles are
Init (Initialize) and Fin (Finalize). In executing an adversary A with a game
Gm, the adversary may query the oracles at will, with the restriction that its
first query must be to Init (if present), its last to Fin, and it can query these
oracles at most once. The value returned by the Fin procedure is taken as the
game output. By Gm(A) ⇒ y we denote the event that the execution of game
Gm with adversary A results in output y. We write Pr[Gm(A)] as shorthand for
Pr[Gm(A) ⇒ true], the probability that the game returns true.

In writing game or adversary pseudocode, it is assumed that Boolean vari-
ables are initialized to false, integer variables are initialized to 0 and set-valued
variables are initialized to the empty set ∅.

Groups. Let G be a group of order p. We will use multiplicative notation for the
group operation, and we let 1G denote the identity element of G. We let G∗ =
G\{1G} denote the set of non-identity elements, which is the set of generators of
G if the latter has prime order. If g ∈ G∗ is a generator and X ∈ G, the discrete
logarithm base g of X is denoted DLG,g(X), and it is in the set Z|G|.

3 A Framework for Non-interactive Threshold Signatures

We present our hierarchy of definitions of security for non-interactive threshold
schemes, formalizing both unforgeability (UF) and strong unforgeability (SUF)
in several ways. We provide relations between all notions considered.

3.1 Syntax and Correctness

Maintaining state. Parties as implemented in protocols would maintain state.
When activated with some inputs (which include messages from other parties),
they would apply some algorithm Alg to these and their current state to get
outputs (including outgoing messages) and an updated state. To model this, we
do not change our definition of algorithms, but make the state an explicit input
and output that will, in definitions, be maintained by the overlying game. Thus,
we would write something like (· · · , st) ←$ Alg(· · · , st).

Syntax. A non-interactive threshold signature scheme TS specifies a number
ns ≥ 1 of servers, a reconstruction threshold t, a set HF of functions from
which the random oracle is drawn, a key generation algorithm Kg, a server
pre-processing algorithm SPP, a leader pre-processing algorithm LPP, a leader
signing-request algorithm LR, a server partial-signature algorithm PS, a leader
partial-signature aggregation algorithm Agg and a verification algorithm Vf. If
disambiguation is needed, we write TS.ns,TS.t,TS.HF,TS.Kg,TS.SPP,TS.LPP,
TS.LR,TS.PS,TS.Agg,TS.Vf, respectively. We now explain the operation and

Non-interactive Threshold Signatures 525

Game Gts-cor
TS

Init:

1 h ←$ TS.HF ; sk0 ← ⊥ ; (vk, aux, sk1, . . . , skns) ←$ Kg[h]
2 For i = [0..ns] do // Initialize party states with keys
3 sti.sk ← ski ; sti.vk ← vk ; sti.aux ← aux
4 Return vk, aux, sk1, . . . , skns

PPO(i): // i ∈ [1..ns]

5 (pp, sti) ←$ SPP[h](sti) ; st0 ← LPP[h](pp, st0)
6 Require: pp �= ⊥
7 Return pp

PPO(M,SS):

8 Require: SS ⊆ [1..ns] and |SS | ≥ t // Set of signers
9 (lr , st0) ←$ LR[h](M,SS , st0)

10 Require: lr �= ⊥ // Leader accepts request
11 If (lr .msg �= M or lr .SS �= SS) then win ← true
12 For i ∈ SS do
13 (psigi, sti) ←$ PS[h](lr , i, sti) // Server partial signatures
14 (sig , st0) ←$ Agg[h](lr , {psigi}i∈SS , st0)
15 If Vf[h](vk, M, sig) = false then win ← true

RO(x): // Random oracle

16 Return h(x)

Fin:

17 Return win

Fig. 1. Game used to define correctness of threshold signature scheme TS with thresh-
old t.

use of these components, the understanding of which may be aided by already
looking at the correctness game Gts-cor

TS of Fig. 1.
Parties involved are a leader (numbered 0, implicit in some prior works, but

made explicit here) and servers numbered 1, . . . , ns, for a total of ns+ 1 parties.
Algorithms have oracle access to a function h that is drawn at random from HF
in games (line 1 Fig. 1) and plays the role of the random oracle. Specifying HF
as part of the scheme allows the domain and range of the random oracle to be
scheme dependent.

The key generation algorithm Kg, run once at the beginning (line 1 of
Fig. 1), creates a public signature-verification key vk, associated public auxil-
iary information aux and an individual secret signing key ski for each server
i ∈ [1..ns]. (Usually, sk1, . . . , skns will be shares of a global secret key sk, but

526 M. Bellare et al.

the definitions do not need to make sk explicit. The leader does not hold any
secrets associated to vk). While key generation may in practice be performed by
a distributed key generation protocol, our syntax assumes it done by a trusted
algorithm to allow a modular treatment. Keys are held by parties in their state,
encoded into dedicated fields of the latter as shown at line 3 of Fig. 1. For specific
scheme, we will typically use aux to model additional information that can be
leaked by key generation step without violating security (e.g., the values gski in
most cases).

The signing protocol can be seen as having two rounds, which we think as
a pre-processing and online stage. In a pre-processing round, any server i can
run (pp, sti) ←$ SPP[h](sti) to get a pre-processing token pp which it sends to the
leader. (Here sti is the state of i.) Via st0 ← LPP[h](pp, st0), the leader updates
its state st0 to incorporate token pp. (In Fig. 1, this is reflected in lines 5–7).

In a signing round the leader begins with a message and a choice of a signer
set SS ⊆ [1..ns] of size at least t. Via (lr , st0) ←$ LR[h](M,SS , st0) it generates
a leader request lr that, through st0, implicitly depends on a choice of pre-
processing tokens. (Lines 8,9 of Fig. 1). The leader request is sent to each i ∈
SS , who, via (psig i, sti) ←$ PS[h](lr , sti), computes a partial signature psig i and
returns it to the leader. Via (sig , st0) ←$ Agg[h](lr , {psig i}i∈SS , st0), the leader
aggregates the partial signatures into a signature sig of M , the desired output
of the protocol. (Lines 12–14 of Fig. 1).

The verification algorithm, like in a standard signature scheme, takes vk, a
message M and a candidate signature, and returns a boolean validity decision.

Echo schemes. We define a sub-class of non-interactive threshold schemes that
we call echo schemes. Recall that a leader request lr is mandated to specify a
message lr .msg and a set lr .SS ⊆ [1..ns] of servers from whom partial signa-
tures are being requested. In an echo scheme, lr additionally specifies a function
lr .PP : lr .SS → {0, 1}∗. If the leader is honest, lr .PP(i) is a token pp that i had
previously sent to the leader. That is, the leader is echoing tokens back to the
servers, whence the name. In considering security, of course, lr .PP(i) is picked
by the adversary and may not be a prior token. As we will discuss in Sect. 4.1,
FROST is a typical example of an echo scheme.

Correctness of a TS scheme. The game of Fig. 1 defines correctness, and
serves also to detail the above. Recall that TS specifies a threshold t ∈ [1..ns].
The adversary will make the leader’s pre-processing requests, via oracle PPO.
It will likewise make signing requests via oracle PPO. If any condition listed
under Require: fails the adversary is understood as losing, the game automatically
returning false. We let Advts-corr

TS (A) = Pr[Gts-cor
TS (A)] be the advantage of an

adversary A. The default requirement is perfect correctness, which means that
Advts-corr

TS (A) = 0 for all A, regardless of computing time and number of oracle
queries, but this can be relaxed, as may be necessary for lattice-based protocols.

The way in which we are supposed to interpret the correctness definition
is that a request lr is associated with a set SS and a message M , and if such
a request is issued successfully by the leader (i.e., lr
= ⊥), then the servers
in SS would all accept lr producing partial signatures which aggregate into a

Non-interactive Threshold Signatures 527

Games Gts-uf-i
TS (i = 0, 1, 2, 3, 4) and Gts-suf-i

TS (i = 2, 3, 4)

Init(CS):

1 Require: CS ⊆ [1..ns] and |CS | < t // Set of corrupted parties
2 h ←$ TS.HF ; (vk, aux, sk1, . . . , skns) ←$ Kg[h]
3 HS ← [1..ns] \ CS // Set of honest parties
4 For i ∈ HS do
5 sti.sk ← ski ; sti.vk ← vk ; sti.aux ← aux
6 Return vk, aux, {ski}i∈CS

PPO(i):

7 Require: i ∈ HS
8 (pp, sti) ←$ SPP[h](sti) ; PPi ← PPi ∪ {pp} ; Return pp

PSignO(i, lr):

9 M ← lr .msg
10 Require: lr .SS ⊆ [1..ns] and M ∈ {0, 1}∗ and i ∈ HS
11 L ← L ∪ {lr} ; (psig , sti) ←$ PS[h](lr , i, sti)
12 If (psig �= ⊥) then
13 S1(M) ← S1(M) ∪ {i} ; S2(lr) ← S2(lr) ∪ {i}
14 Return psig

RO(x): // Random oracle

15 Return h(x)

Fin(M, sig):

16 For all lr ∈ L do
17 S3(lr) ← { i ∈ HS ∩ lr .SS : lr .PP(i) ∈ PPi } ; S4(lr) ← HS ∩ lr .SS
18 If (not Vf[h](vk, M, sig)) then return false
19 Return (not tfi(M)) // Game Gts-uf-i

TS for i = 0, 1
20 Return (not ∃ lr (lr .msg = M and tfi(lr))) // Game Gts-uf-i

TS for i = 2, 3, 4
21 Return (not ∃ lr (lr .msg = M and tsfi(lr , vk, sig))) // Game Gts-suf-i

TS

Fig. 2. Games used to define TS-UF-i and TS-SUF-i unforgeability of threshold sig-
nature scheme TS. Line 20 is included only in game Gts-uf-i

TS and line 21 only in game
Gts-suf-i

TS . These lines refer to the trivial-forgery predicates tfi(lr) and trivial-strong-
forgery predicates tsfi(lr , vk, sig) from Figure 3. In particular, the set S3(lr) and, thus,
TS-UF-3 and TS-SUF-3 unforgeability are defined only if TS is an echo scheme.

valid signature for M . We note that this definition assumes that we submit
requests to all servers in the same order. One can give a stronger (but more
complex) definition which ensures correctness even when servers process requests
in different orders, but note that for all schemes we discuss below they will be
equivalent, and we hence omit the more cumbersome game to define it.

528 M. Bellare et al.

3.2 Unforgeability and Strong Unforgeability

Unforgeability. Unforgeability as usual asks that the adversary be unable to
produce a valid signature sig on some message M of its choice except in a trivial
way. The question is what “trivial” means. For regular signatures, it means that
the adversary did not obtain a signature of M from the signing oracle [27]. For
threshold signatures, it is more subtle. We will give several definitions.

Figure 2 simultaneously describes several games, Gts-uf-i
TS for i = 0, 1, 2, 3, 4,

where Gts-uf-3
TS is only defined if TS is an echo scheme. (We will get to the second

set of games later). They are almost the same, differing only at line 20. The cor-
responding advantages of an adversary A are Advts-uf-i

TS (A) = Pr[Gts-uf-i
TS (A)].

The adversary calls Init with a choice of a set of servers to corrupt. It is also
viewed as having corrupted the leader. Playing the leader role, it can request
pre-processing tokens via oracle PPO. It can provide a server with a leader-
request lr of its choice to obtain a partial signature psig . At the end, it outputs
to Fin its forgery message M and signature sig . If the signature is not valid,
line 18 ensures that the adversary does not win. Now, to win, the signature must
be non-trivial. It is in how this is defined that the games differ. Associated to
i is a trivial-forgery predicate tfi that is invoked at line 20. The choices for
these predicates are shown in the table in Fig. 3, and the notion corresponding
to game tfi is denoted TS-UF-i. When i = 0 we have the usual notion from the
literature, used in particular in [8,23,25]. As i increases, we get more stringent
(less generous) in declaring a forgery trivial, and the notion gets stronger.

Concretely, TS-UF-0 considers a signature for a message M trivial if a request
lr with lr .msg was answered by server with a partial signature. Moving on,
TS-UF-1 strengthens this by declaring a signature trivial only if at least t−|CS |
servers have responded to some request for message M , where these requests
could have been different. In turn, TS-UF-2 strengthens this even further by
requiring that there was a single prior request lr for M which was answered by
t − |CS | servers.

The notion TS-UF-3 only deals with echo schemes. Recall that for these
schemes, a request lr contains a map lr .PP : lr .SS → {0, 1}∗, where lr .PP(i) is
meant to be a token issued by server i. Here, we consider a signature for message
M trivial if there exists a request lr for M which is answered by all honest servers
i for which lr .PP(i) is a valid token previously output by i, and this set consists of
at least t−|CS | servers. Finally, our strongest notion, TS-UF-4 simply considers
a signature trivial if there exists a request lr for M which is answered by all
honest servers in i ∈ lr .SS.

It is natural to expect TS-UF-3 and TS-UF-4 to be similar, but as we will see
below, they are actually not equivalent. (Although we will give a transformation
that boosts an TS-UF-3-secure scheme into an TS-UF-4-secure one).

Strong unforgeability. For standard signatures, strong unforgeability asks,
in addition to unforgeability, that the adversary be unable to produce a new
signature on any message, where new means different from any obtained legit-
imately for that message. We ask, does this have any counterpart in threshold

Non-interactive Threshold Signatures 529

tf0(M) : S1(M)
= ∅
tf1(M) : |S1(M)| ≥ t − |CS |
tf2(lr) : |S2(lr)| ≥ t − |CS |
tf3(lr) : tf2(lr) and S2(lr) = S3(lr)

tf4(lr) : tf2(lr) and S2(lr) = S4(lr)

tsf2(lr , vk, sig) : tf2(lr) and SVf[h](vk, lr , sig)

tsf3(lr , vk, sig) : tf3(lr) and SVf[h](vk, lr , sig)

tsf4(lr , vk, sig) : tf4(lr) and SVf[h](vk, lr , sig)

TS-UF-0 TS-UF-1 TS-UF-2 TS-UF-3 TS-UF-4

TS-SUF-2 TS-SUF-3 TS-SUF-4

Fig. 3. Top: Trivial-forgery conditions tfi(lr) (i = 0, 1, 2, 3, 4) and trivial-strong-
forgery conditions tsfi(lr , vk, sig) (i = 1, 2, 3, 4) used to define TS-SUF-i and TS-SUF-
i security in games Gts-uf-i

TS and Gts-suf-i
TS , respectively. Bottom: Relations between

notions of security.

signatures? In fact, FROST seems to have such a property. We now provide
formalisms to capture such properties.

It turns out that giving a general definition of strong unforgeability is rather
complex, and we will restrict ourselves to a natural sub-class of schemes (which
includes FROST). Concretely, we ask that there is an algorithm SVf, called a
strong verification algorithm, that takes a public key vk, a leader request lr , and
a signature sig as inputs and outputs true or false. We require that for any vk, lr
there exists at most one signature sig such that SVf(vk, lr , sig) = true. Also,
TS is asked to satisfy a strong correctness property which is defined using the
same game as Gts-cor

TS except the condition Vf[h](vk,M, sig) = false in line 15 is
replaced with SVf[h](vk, lr , sig) = false.

For a scheme TS with a strong verification algorithm, we consider the Gts-suf-i
TS

(i = 2, 3, 4) games in Fig. 2, where Gts-suf-3
TS is only defined if TS additionally is

an echo scheme. The differences (across the different values of i) are only in the
trivial-strong forgery predicates tsfi used at line 21, and the choices are again
shown in the table in Fig. 3. The corresponding advantage of an adversary A is
Advts-suf-i

TS (A) = Pr[Gts-suf-i
TS (A)]. The ensuing notion is called TS-SUF-i.

530 M. Bellare et al.

3.3 Relations and Transformations

Relations between notions. Figure 3 shows relations between the notions
of unforgeability and strong unforgeabilty that we have defined. A (non-dotted)
arrow A → B is an implication, saying that A implies B: any scheme that is
A-secure is also B-secure. Now see the nodes as forming a graph with edges the
non-dotted arrows. The thin arrow from TS-UF-0 to TS-UF-1 indicates us that
the implication only holds under a quantitatively loose reduction. (We prove this
in Theorem 1). We claim that in this graph, if there is no path from a notion
B to a notion A, they are separate or distinct: there exists a scheme that is
B-secure but not A-secure. The dotted arrows are separations that we explicitly
prove. These, together with the full arrows, prove the claim just made. The thick
dotted arrows indicate the existence of a generic transformation lifting security
of a scheme to achieve a stronger notion. (We establish this below as part of
Theorem 2).

Reference schemes and proofs of relations. In [7], we give a set of
(fully) non-interactive threshold schemes that we call reference schemes. They
represent simple, canonical ways to achieve the different notions. They may not
be of practical interest, because they have key and signature sizes proportional
to ns, but the point is to embody notions in a representative way. A few things
emanate from these schemes. One is that we use them to establish the sepa-
rations given by the dotted lines in Fig. 3, thereby showing that any notions
between which there is no path, in the graph given by the full arrows, are indeed
separate. Second, we get a scheme that achieves our strongest notion, TS-SUF-4,
which neither FROST nor BLS achieve. (Although we can get such a scheme
by applying our transformation from Theorem2 to FROST1). Finally, reference
schemes, as canonical examples, are ways to understand the notions.

From TS-UF-0 to TS-UF-1, loosely. The following theorem shows TS-UF-1
security is implied by TS-UF-0 security, although with an exponential loss in t,
which is acceptable in settings where t is expected to be constant.

Theorem 1. Let TS be a threshold signature scheme. For any TS-UF-1 adver-
sary A there exists a TS-UF-0 adversary B such that Advts-uf-1

TS (A) ≤ (
ns

t−1

) ·
Advts-uf-0

TS (B). Moreover, B runs in time roughly equal that of A, and the number
of B’s queries to each oracle is at most that of A.

If the adversary always corrupts t − 1 parties, it is clear that TS-UF-0 and
TS-UF-1 are equivalent. Otherwise, in general, for an adversary that breaks TS-
UF-1 security and corrupts a subset CS of servers with size less than t−1, if the
adversary wins the game Gts-uf-1

TS by outputting (M∗, sig∗), we know |S1(M∗)| <
t − |CS |. Therefore, we can modify the adversary to initially guess a subset
ECS ⊆ [1..ns] \CS with size t−|CS |− 1 and corrupt all parties in ECS . If ECS
happens to contain S1(M∗), the adversary actually wins. It is not hard to see
that the probability that this is true is 1/

(ns−|CS|
t−|CS|−1

) ≥ 1/
(

ns
t−1

)
. We give a formal

proof in [7].

Non-interactive Threshold Signatures 531

Protocol ATS[TS,DS]

Kg[h]:

1 vk, taux, {tski}i∈[1..ns] ← TS.Kg
2 For i ∈ [1..ns] do
3 (svki, sski) ←$ DS.Kg
4 ski ← (tski, sski)
5 aux ← (taux, svk1, . . . , svkns)
6 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):

7 (tpp, sti) ←$ SPP[h](sti)
8 (tski, sski) ← sti.sk
9 tsig ←$ DS.Sig(sski, tpp)

10 Return ((tpp, tsig), sti)

LPP[h](i, pp, st0):

11 (tpp, tsig) ← pp
12 st0.SigMap(i, tpp) ← tsig
13 Return TS.LPP[h](i, tpp, st0)

OriginLR(lr):

14 For i ∈ lr .SS do
15 (tpp, tsig) ← lr .PP(i)
16 lr .PP(i) ← tpp
17 Return lr

LR[h](M,SS , st0):

18 (lr , st0) ← TS.LR[h](M,SS , st0)
19 For i ∈ SS do
20 tppi ← lr .PP(i)
21 lr .PP(i) ← (tppi, st0.SigMap(i, tppi))
22 Return (lr , st0)

PS[h](lr , i, sti):

23 (taux, svk1, . . . , svkns) ← sti.aux
24 For i ∈ lr .SS do
25 (tppi, tsigi) ← lr .PP(i)
26 If DS.Vf(svki, tppi, tsigi) = false then
27 Return ⊥
28 Return TS.PS[h](OriginLR(lr), i, sti)

Agg[h](PS, st0):

29 Return TS.Agg[h](PS, st0)

Vf[h](vk, M, sig):

30 Return TS.Vf[h](vk, M, sig)

SVf[h](vk, lr , sig):

31 Return TS.SVf[h](vk,OriginLR(lr), sig)

Fig. 4. The threshold signature ATS[TS,DS] constructed from an echo scheme TS
and a digital signature scheme DS such that ATS.ns = TS.ns and ATS.t = TS.t. The
algorithm OriginLR transforms a well-formed leader request lr for ATS to a well-formed
leader request in TS. st0.SigMap is a table that stores the signature corresponding to
each token generated by honest servers, which is initially set to empty. PS denotes a
set of partial signatures.

From TS-(S)UF-3 to TS-(S)UF-4. Figure 4 gives a general transformation from
TS-(S)UF-3 security to TS-(S)UF-4 security. Concretely, we give a construction
ATS from any TS-(S)UF-3-secure echo scheme TS and a digital signature scheme
DS. The size of signatures produced by ATS and the verification algorithm Vf are
exactly the same as TS. The main idea is to use signatures to authenticate each
token contained in a leader request lr from TS, so that an honest server only
answers the request if all the authentications are valid. The rest of the protocol
remains the same.

In the game Gts-(s)uf-4
ATS , we can show that as long as the adversary does

not break the strong unforgeability of DS, for any leader request lr such that

532 M. Bellare et al.

Game Gsuf-cma
DS

Init:

1 (vk, sk) ←$ DS.Kg
2 Return vk

PPO(M):

3 sig ←$ DS.Sig(sk, M)
4 Q ← Q ∪ {(M, sig)}
5 Return sig

Fin(M, sig):

6 If DS.Vf(vk, M, sig) and (M, sig) �∈ Q

then
7 Return true
8 Return false

Fig. 5. The game Gsuf-cma
DS , where DS is a digital signature scheme.

S2(lr) > 0, it holds that S3(lr) = S4(lr), which implies the conditions tf3 and
tf4 are equivalent. Therefore, we can reduce TS-(S)UF-4 security of ATS to
TS-(S)UF-3 security of TS and SUF-CMA security of DS. (The latter notion
is formally defined via the game in Fig. 5). This is captured by the following
theorem. (The proof is in [7]).

Theorem 2. Let XX ∈ {SUF ,UF}. Let TS be an echo scheme and DS be a
digital signature scheme. For any TS-XX-4 adversary A there exists a TS-XX-3
adversary B and a SUF-CMA adversary C such that

Advts-xx-4
ATS[TS,DS](A) ≤ Advts-xx-3

TS (B) + ns · Advsuf-cma
DS (C).

Moreover, B and C run in time roughly equal that of A. The number of B’s
queries to each oracle is at most that of A. The number of C’s PPO queries is
at most the number of PPO queries made by A.

4 The Security of FROST

4.1 The FROST1 and FROST2 Schemes

Scheme descriptions. This section revisits the security of FROST, first pro-
posed in [31] by Komlo and Goldberg, as a (partially) non-interactive threshold
signature scheme.

First, we consider the original scheme, which we refer to as FROST1. We then
present FROST2, an optimized version that reduces the number of exponentia-
tions required for signing and verification from |lr .SS| to one. We give a detailed
description of both schemes in Fig. 6. The leader state st0 contains a set curPPi

for each server i representing the set of tokens generated by server i that has not
yet been used in a signing request. The state sti for server i contains a function
mapPP that maps each token pp to the randomness that is used to generate pp
and sti.mapPP(pp) = ⊥ if pp is not generated by server i yet or has already

Non-interactive Threshold Signatures 533

Protocol FROST1 , FROST2 [G]

Kg[h]:

1 For i ∈ [0..t − 1] do
2 ai ←$ Zp

3 For i ∈ [1..ns] do
4 ski ←$

∑t−1
j=0 ij · aj ; vki ← gski

5 vk ← ga0

6 aux ← (vk1, . . . , vkns)
7 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):

8 r ← Zp ; s ← Zp

9 pp ← (gr, gs)
10 sti.mapPP(pp) ← (r, s)
11 Return (pp, sti)

LPP[h](i, pp, st0):

12 st0.curPPi ← st0.curPPi ∪ {pp}
13 Return st0

LR[h](M,SS , st0):

14 If ∃ i ∈ SS : st0.curPPi = ∅ then
15 Return ⊥
16 lr .msg ← M ; lr .SS ← SS
17 For i ∈ SS do
18 Pick ppi from st0.curPPi

19 lr .PP(i) ← ppi

20 st0.curPPi ← st0.curPPi\{ppi}
21 Return (lr , st0)

Vf[h](vk, M, sig):

22 (R, z) ← sig
23 c ← h2(vk, M, R)
24 Return (gz = R · vkc)

CompPar[h](vk, lr):

25 M ← lr .msg
26 For i ∈ lr .SS do
27 di ← h1(vk, lr , i)
28 di ← h1(vk, lr)
29 (Ri, Si) ← lr .PP(i)
30 R ← ∏

i∈lr.SS RiS
di
i

31 c ← h2(vk, M, R)
32 Return (R, c, {di}i∈lr.SS)

PS[h](lr , i, sti):

33 ppi ← lr .PP(i)
34 If sti.mapPP(ppi) = ⊥ then
35 Return (⊥, sti)
36 (ri, si) ← sti.mapPP(ppi)
37 sti.mapPP(ppi) ← ⊥
38 (R, c, {dj}j∈lr.SS)

← CompPar[h](sti.vk, lr)
39 zi ← ri + di · si + c · λlr.SS

i · sti.sk
40 Return ((R, zi), sti)

Agg[h](PS, st0):

41 R ← ⊥ ; z ← 0
42 For (R′, z′) ∈ PS do
43 If R = ⊥ then R ← R′

44 If R �= R′ then return (⊥, st0)
45 z ← z + z′

46 Return ((R, z), st0)

SVf[h](vk, lr , sig):

47 (R∗, z∗) ← sig
48 (R, c, {dj}j∈lr.SS)

← CompPar[h](vk, lr)
49 Return (R = R∗) ∧ (gz∗

= R · vkc)

Fig. 6. The protocol FROST1[G] and FROST2[G], where G is a cyclic group with prime
order p and generator g. Further, ns is the number of parties, and t is the threshold
of the schemes. We require t ≤ ns ≤ p − 1. The protocol FROST1 contains all but the
dashed box, and the protocol FROST2 contains all but the solid box. The function hi(·)
is computed as h(i, ·) for i = 1, 2. PS denotes a set of partial signatures.

534 M. Bellare et al.

Game Gomdl
G

Init:

1 cid ← 0; � ← 0; T ← ()

Chal():

2 cid ← cid + 1; xcid ←$ Zp

3 Return gxcid

Dlog(X):

4 If T (X) �= ⊥ then return T (X)
5 � ← � + 1; T (X) ← DLG,g(X)
6 Return T (X)

Fin({yi}i∈[cid]):

7 If � ≥ cid then return false
8 If ∀ i ∈ [cid] : yi = xi then
9 Return true

10 Return false

Fig. 7. The OMDL game, where G is a cyclic group with prime order p and generator g.

been used in a signing request. The coefficient λlr .SS
i in line 39 is the Lagrange

coefficient for the set lr .SS, which is defined (for any set S ⊆ [1..ns]) as

λS
i :=

∏

j∈S,i�=j

j

j − i
.

The algorithm CompPar is a helper algorithm that computes the parame-
ters R, c, {di}i∈lr .SS used during signing. The difference between FROST1 and
FROST2 is the way di is computed in CompPar. In FROST1, each di is a differ-
ent hash value for each server i, while in FROST2, di’s are the same hash value
for all servers.

It is not hard to verify that both schemes satisfy perfect correctness.

Overview of our results. We begin by showing that FROST2 is TS-SUF-2-
secure (under OMDL) but not TS-UF-3-secure. We then show that FROST1 is TS-
SUF-3-secure but not TS-UF-4-secure. Theoretically, our results imply the sepa-
rations between TS-(S)UF-2 and TS-(S)UF-3 and between TS-(S)UF-3 and TS-
(S)UF-4. Practically speaking, our results indicate a separation between the secu-
rity of FROST1 and FROST2. To complete the picture, a TS-SUF-4-secure vari-
ant of FROST1 can be obtained via the general transformation from Theorem2,
although it is an interesting open question whether a more efficient variant exists.

4.2 TS-SUF-2 Security of FROST2

We first show that FROST2 is TS-SUF-2-secure in the ROM under the OMDL
assumption, which is formally defined in Fig. 7. Formally, we show the following
theorem.

Theorem 3. For any TS-SUF-2 adversary A making at most qs queries to
PPO and at most qh queries to RO, there exists an OMDL adversary B making
at most 2qs + ns queries to Chal such that

Advts-suf-2
FROST2[G](A) ≤

√
q · (Advomdl

G (B) + 3q2/p) ,

Non-interactive Threshold Signatures 535

where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that
of A, plus the time to perform at most (4ns+ 2) · q + 2qs + 2ns2 exponentiations
and group operations.

The core of the proof is a reduction from OMDL [2], which will need to
use rewinding (via a variant of the Forking Lemma). The main challenge is to
ensure that the reduction can simulate properly with a number of queries to
Dlog which is smaller than the number of DL challenges. Further below, we
are going to show that FROST2 is not TS-UF-3 secure, thus showing the above
result is optimal with respect to our hierarchy.

Proof (of Theorem 3). Let A be an adversary as described in the theorem. Denote
the output message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of
generality, we assume A always queries RO on h2(vk,M∗, R∗) before A returns
and always queries RO on h1(vk, lr) prior to the query PSignO(i, lr) for some
i and lr . (This adds up to qs additional RO queries, and we let q = qh + qs +1).
Denote lr∗ as the leader query such that h1(vk, lr∗) is the first query prior to
the query h2(vk,M∗, R∗) satisfying SVf[h](vk, lr∗, sig∗) = true. If such lr∗ does
not exists, lr∗ is set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t − |CS|).
It is clear that if A wins the game Gts-suf-2

FROST2, then E1 must occur, which implies
Pr[E1] ≥ Advts-suf-2

FROST2[G](A). Therefore, the theorem will follow from the following
lemma. (We isolate this statement as its own lemma also because it will be helpful
in the proof of Theorem5 below). ��
Lemma 4. There exists an OMDL adversary B making at most 2qs + t queries
to Chal such that

Pr[E1] ≤
√

q · (Advomdl
G (B) + 3q2/p).

Moreover, B runs in time roughly twice that of A, plus the time to perform at
most (4ns + 2) · q + 2qs + 2ns2 exponentiations and group operations.

The proof of Lemma 4 is in [7]. It uses a variant of the general Forking Lemma
of [3], also given in 4, that allows us to get better bounds in our analysis.

4.3 TS-SUF-3 Security of FROST1

In this section, we show that FROST1 is TS-SUF-3-secure in the ROM under
the OMDL assumption. Formally, we show the following theorem.

Theorem 5. For any TS-SUF-3 adversary A making at most qs queries to
PPO and at most qh queries to RO, there exists an OMDL adversary B making
at most 2qs + t queries to Chal such that

Advts-suf-3
FROST1[G](A) ≤ 4ns · q ·

√
Advomdl

G (B) + 6q/p ,

where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that
of A, plus the time to perform at most 6ns · q + 4qs + 2ns2 exponentiations and
group operations.

536 M. Bellare et al.

The proof here follows a similar pattern than that of Theorem3, but will be
more complex. In particular, the lesser tight bound is due to the fact that we need
to consider an additional bad event, whichwe upper bound via a different reduction
from OMDL. As we explain in detail below, this reduction will make use of a looser
Forking Lemma, which is a variant of the “Local Forking Lemma” [1], which only
resamples a single random oracle output when rewinding. The extra looseness is
due to needing to ensure an extra condition when rewinding.

Proof (of Theorem 5). Let A be the adversary described in the theorem. Denote
the output message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of
generality, we assume A always queries RO on h2(vk,M∗, R∗) before A returns
and always queries RO on h1(vk, lr , i) prior to the query PSignO(i, lr) for some
i and lr . (This adds up to qs additional RO queries, and we let q = qh + qs +1).
Denote lr∗ as the leader query such that h1(vk, lr∗, i) is the first RO query prior
to the h2(vk,M∗, R∗) query for some i satisfying SVf[h](vk, lr∗, sig∗) = true. If
such lr∗ does not exist, lr∗ is set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t − |CS|).
Denote the event E2 as

Vf[h](vk,M∗, sig∗) ∧ lr∗
= ⊥ ∧ S2(lr∗)
= S3(lr∗).

If A wins the game Gts-suf-3
FROST2 and lr∗
= ⊥, we know either S2(lr∗) < t − |CS| or

S2(lr∗)
= S3(lr∗). Therefore, if A wins the game Gts-suf-3
FROST2, then either E1 or E2

occurs, which implies

Advts-suf-3
FROST1[G](A) ≤ Pr[E1] + Pr[E2] ≤ 2max{Pr[E1],Pr[E2]}.

Thus, we conclude the theorem with the following two lemmas.

Lemma 6. There exists an OMDL adversary B making at most 2qs + t queries
to Chal such that

Pr[E1] ≤
√

q · (Advomdl
G (B) + 3q2(ns + 1)2/p) ,

Moreover, B runs in time roughly equal two times that of A, plus the time to
perform at most 6ns · q + 4qs + 2ns2 exponentiations and group operations.

Lemma 7. There exists an OMDL adversary B making at most 2qs queries to
Chal such that

Pr[E2] ≤ ns · q

√
2(Advomdl

G (B) + 1/p).

Moreover, B runs in time roughly equal two times that of A, plus the time to
perform at most 6ns · q + 4qs + 2ns2 exponentiations and group operations.

The proof of Lemma 6 is almost the same as Lemma 4, so we omit the full
proof. The only difference is that C takes as input h1, . . . , h(ns+1)q in order to
simulate all RO queries. For a RO query h1(vk, lr , i), C first enumerates all
i′ ∈ [ns] and assigns h(ctrh−1)(ns+1)+i′ to h1(vk, lr , i′). Then, C computes the
nonce R for lr and assigns hctrh(ns+1) to h2(vk, lr .msg, R) if it is not assigned
any value yet. Similarly, for a new RO query h1(vk,M,R), its value is set to
hctrh(ns+1). The rest follows by similar analysis.

Non-interactive Threshold Signatures 537

Adversary AInit,PPO,PSignO,RO:

1 CS ← {3, 4} ; (vk, aux, {sk3, sk4}) ←$ Init(CS)
2 (R1, S1) ←$ PPO(1) ; (R2, S2) ←$ PPO(2) ; γ ← λ

{1,3,4}
1 /λ

{1,2,3}
1

3 lr .msg ← M ; lr .SS ← {1, 2, 3}
4 lr .PP(1) ← (R1, S1) ; lr .PP(2) ← (R2, S2)
5 lr .PP(3) ← (Rγ−1

1 R−1
2 , Sγ−1

1 S−1
2)

6 z1 ← PSignO(1, lr)
7 d ← RO(1, vk, lr) ; R ← Rγ

1Sγ·d
1 ; c ← RO(2, vk, R, M)

8 z ← γ · z1 + c(λ
{1,3,4}
3 · sk3 + λ

{1,3,4}
4 · sk4)

9 Return (M, (R, z))

Fig. 8. Adversary A that wins the game Gts-uf-3
FROST2, where M is a fixed message.

Adversary AInit,PPO,PSignO,RO:

1 CS ← {5, 10} ; (vk, aux, {sk5, sk10}) ←$ Init(CS)
2 (R1, S1) ←$ PPO(11) ; s2, r2, s3, r3 ←$ Zp

3 lr .msg ← M ; lr .SS ← {11, 15, 20}
4 lr .PP(11) ← (R1, S1) ; lr .PP(15) ← (gr2 , gs2) ; lr .PP(20) ← (gr3 , gs3)
5 z1 ← PSignO(11, lr)
6 For i ∈ {11, 15, 20} do di ← RO(1, vk, lr , i)
7 R ← R1S

d11
1 gr2+r3+s2·d15+s3·d20 ; c ← RO(2, vk, R, M)

8 z ← z1 + r2 + r3 + s2 · d15 + s3 · d20 + c(λ
{5,10,11}
5 · sk5 + λ

{5,10,11}
10 · sk10)

9 Return (M, (R, z))

Fig. 9. Adversary A that wins the game Gts-uf-4
FROST1, where M is a fixed message.

To prove Lemma 7, we need a variant of the Local Forking Lemma of [1],
which is given in [7] along with the proof of Lemma7 itself.

4.4 Attacks for FROST1 and FROST2

FROST2 is not TS-UF-3 secure. Consider the setting where ns = 4 and
t = 3 and the adversary A for the game Gts-uf-3

FROST2 described in Fig. 8. We
now show that Advts-uf-3

FROST2(A) = 1. From the execution of PSignO, we know

gz1 = R1S
d
1vk

λ
{1,2,3}
1 ·c

1 . Therefore,

gz = Rγ
1Sd·γ

1 vk
γ·λ{1,2,3}

1 ·c
1 vk

λ
{1,3,4}
3 ·c

3 vk
λ

{1,3,4}
4 ·c

4

= Rgc·∑i∈{1,3,4} λ
{1,3,4}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {1} and
S3(lr) = {1, 2}, which implies the condition tf3(lr) does not hold. Therefore, A
wins the game Gts-uf-3

FROST2 with probability 1.

538 M. Bellare et al.

FROST1 is not TS-UF-4 secure. Consider the setting where ns = 20 and
t = 3 and the adversary A for the game Gts-uf-4

FROST1 described in Fig. 9. We
now show that Advts-uf-4

FROST1(A) = 1. From the execution of PSignO, we know

gz1 = R1S
d11
1 vk

λ
{11,15,20}
11 ·c

11 . The key observation here is that λ
{11,15,20}
11 =

15·20
(15−11)(20−11) = 25

3 = 5·10
(5−11)(10−11) = λ

{5,10,11}
11 . Therefore,

gz = R1S
d11
1 gr2+r3+s2·d15+s3·d20vk

λ
{11,15,20}
11 ·c

11 vk
λ

{5,10,11}
5 ·c

5 vk
λ

{5,10,11}
10 ·c

10

= Rgc·∑i∈{5,10,11} λ
{5,10,11}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {11}
and S4(lr) = {11, 15, 20}, which implies the condition tf4(lr) does not hold.
Therefore, A wins the game Gts-uf-4

FROST1 with probability 1.
The reason why the attack is possible for FROST1 is because the honest

server 11 replies to the leader request lr with tokens lr .PP(15) and lr .PP(20)
not generated by the honest servers 15 and 20 but by the adversary instead.
Therefore, the attack is prevented by the general transformation from TS-SUF-
3 security to TS-SUF-4 security described in Fig. 4 since after the transformation,
an honest server replies to a leader request only when all the tokens within the
request are authenticated by the corresponding servers, and thus the adversary
cannot generate tokens on behalf of honest servers anymore.

5 FROST2 with Distributed Key Generation

In this section, we prove the security of FROST2 together with distributed key
generation (DKG). In particular, we prove the security of FROST2 with the
variant of the Pedersen DKG protocol [24] with proofs of possession originally
proposed in combination with FROST1 [30]. We call this protocol PedPoP and
provide a description in Fig. 10.

Throughout this section, we denote public keys by X, instead of vk, and
corresponding secret keys by x, instead of sk. We also denote the joint public
key by X̃ and aggregated nonce by R̃. Hash function hi(·) is computed as hi(·)
for i = 0, 1, 2.

Efficient distributed key generation. The Pedersen DKG can be viewed
as ns parallel instantiations of Feldman verifiable secret sharing (VSS) [19], which
itself is derived from Shamir secret sharing [36] but additionally requires each par-
ticipant to provide a vector commitment �C to ensure their received share is con-
sistent with all other participants’ shares. In addition, PedPoP requires each par-
ticipant to provide a Schnorr proof of knowledge of the secret corresponding to
the first term of their commitment. This is to ensure that unforgeability (but not
liveness) holds even if more than half of the participants are dishonest.

Schnorr Knowledge of Exponent Assumption. We introduce the
Schnorr knowledge of exponent assumption (Schnorr-KoE), which we show is
true under the discrete logarithm (DL) assumption in the algebraic group model

Non-interactive Threshold Signatures 539

PedPoP.KeyGen(t, ns)

1. Each party Pi chooses a random polynomial fi(Z) over Zp of degree t−1

fi(Z) = ai,0 + ai,1Z + · · · + ai,t−1Z
t−1

and computes Ai,k = gai,k for k =∈ [0..t − 1]. Denote xi = ai,0 and
Xi,0 = Ai,0. Each Pi computes a proof of possession of Xi,0 as a Schnorr
signature on Xi,0 as follows. They sample r̄i ←$ Zp and set R̄i ← gr̄i .
They compute c̄i ← h0(Xi,0,Xi,0, R̄i) and set z̄i ← r̄i + c̄i ·xi. They then
derive a commitment �Ci = (Ai,0, ..., Ai,t−1) and broadcast ((R̄i, z̄i), �Ci).

2. After receiving commitments from all other parties, each participant ver-
ifies the Schnorr signatures by computing c̄j ← h0(Aj,0, Aj,0, R̄j) and
checking that

gz̄j = R̄jAj,0
c̄j for j ∈ [1..ns]

If any checks fail, they disqualify the corresponding participant.
3. Each Pi computes secret shares x̄i,j = fi(idj) for j ∈ [1..ns], where idj is

the participant identifier, and sends x̄i,j secretly to party Pj .
4. Each party Pj verifies the shares they received from the other parties by

checking that

gx̄i,j =
t−1∏

k=0

A
idk

j

i,k

If the check fails for an index i, Pj broadcasts a complaint against Pi.
5. For each of the complaining parties Pj against Pi, Pi broadcasts the share

x̄i,j . If any of the revealed shares fails to satisfy the equation, or should Pi

not broadcast anything for a complaining player, then Pi is disqualified.
The share of a disqualified party Pi is set to 0.

6. The secret share for each Pj is x̄j =
∑ns

i=1 x̄i,j .
7. If Xi,0 = Xj,0 for any i
= j, then abort. Else, the output is the joint

public key X̃ =
∏ns

i=1 Xi,0.

Fig. 10. PedPoP: The Pedersen distributed key generation protocol with proofs of
possession.

(AGM) without any tightness loss. The purpose of the Schnorr-KoE assumption
is to ensure that the Pedersen DKG can be run in the honest minority setting,
where we assume the existence of at least a single honest party and up to t − 1
corrupt parties. The Schnorr-KoE assumption can be avoided if we assume an
honest majority in the DKG. However, we prefer to allow more corruptions with
the tradeoff of a stronger assumption.

540 M. Bellare et al.

Game Gsch-koe
G,Ext (A)

Init:

1 ω ←$ {0, 1}rlA // Coins given to A
2 Return ω

FSignO:

3 x, r̄ ←$ Zp

4 X ← gx ; R̄ ← gr̄

5 c̄ ← h̃0(X, X, R̄)
6 z̄ ← r̄ + c̄ · x
7 QFSignO ← QFSignO ∪ {(X, R̄, z̄)}
8 Return (X, R̄, z̄)

Chal(X, R̄, z̄):

9 c̄ ← h̃0(X, X, R̄)
10 If (X, R̄, z̄) ∈ QFSignO or gz̄ �= R̄X c̄

11 Return ⊥
12 α ←$ Ext(G, ω, QFSignO,Qh̃0

)
13 If gα �= X then win ← true
14 Return α

RO(θ): // Random oracle

15 If h̃(θ) = ⊥ then h̃(θ) ←$ Zp

16 Return h̃(θ)

Fin({0, 1}∗): // A outputs a bit string

17 Return win

Fig. 11. Game used to define the Schnorr knowledge of exponent (Schnorr-KoE)
assumption, where G is a cyclic group of order p with generator g. By rlA we denote
the randomness length of A. h̃ is initialized to be an empty table.

The Schnorr-KoE assumption allows us to prove the security of multi-party
signatures in the setting where each participant is required to provide a proof
of possession of their secret key during a key generation and registration phase.
By formatting our desired security property directly as an assumption, we avoid
the complexity of rewinding adversaries, which is required when proving secu-
rity of Schnorr signatures in the ROM only, and which may result in a loss of
tightness exponential in the number of parties that the adversary controls [38].
The Schnorr-KoE assumption implies that if an adversary can forge a Schnorr
signature for some public key, then it must know the corresponding secret key.
It is a non-falsifiable assumption.

Our proof for Schnorr-KoE extends a result by Fuchsbauer et al. [20], which
showed that the security of Schnorr signatures can be tightly reduced to the DL
assumption in the AGM. We improve on their result by considering extraction
rather than forgeability and by allowing extraction even when the adversary
chooses their own public key. While new to the setting of multi-party signatures,
Schnorr-KoE is reminiscent of prior knowledge of exponent assumptions [4,15]
employed to prove the security of Succinct NIZK arguments (SNARKs).

For the definition, consider the game in Fig. 11 associated to group G, adver-
sary A, and an algorithm Ext, called an extractor. The adversary A is run with
coins ω. A has access to a signing oracle FSignO that outputs a Schnorr sig-
nature under a randomly sampled key X on the message X. (The name, Full
Sign Oracle, reflects that the oracle samples a fresh public key with each invoca-
tion). It can call its challenge oracle Chal with a triple (X, R̄, z̄). If this is not
a triple returned by the full signing oracle, yet verifies as a Schnorr signature

Non-interactive Threshold Signatures 541

under public key X, the extractor is asked to find the discrete logarithm α of
X, and the adversary wins (the game sets win to true) if the extractor fails. The
inputs to the extractor are the coins of the adversary, the description of the
group G, the set QFSignO and a list Qh̃0

. The latter, for every query (X,X, R̄)
that A made to random oracle h̃0, stores the response of the oracle. (The length
of the list is thus the number of h̃0 queries made by A). Note that multiple
queries to Chal are allowed, so that this captures the ability to perform multi-
ple extractions.

Asymptotically, we would say that the Schnorr-KoE assumption holds with
respect to G if for all PPT adversaries A, there exists a PPT extractor Ext such
that Advsch-koe

G,Ext (A), which would now be a function of the security parameter,
is negligible.

The proof of the following can be found in [14]. For convenience, the state-
ment is asymptotic. Note that the random oracle model is implicit through h̃0
being a random oracle in the game of Fig. 11.

Theorem 8 (DL ⇒ Schnorr-KoE). The Schnorr-KoE assumption with respect
to the group G is implied by the DL assumption with respect to G in the AGM.

TS-UF-0 Security. In terms of our framework, our proof of FROST2+PedPoP
considers a single honest player and so aligns with the notion of TS-UF-0 secu-
rity defined in Fig. 2. Since we now consider distributed key generation instead
of trusted key generation, the initialization oracle Init is replaced with a sin-
gle execution of PedPoP.KeyGen as defined in Fig. 10. The proofs of possession
required by PedPoP.KeyGen ensure that the simulator in our security reduction
is able to extract sufficient information (via the Schnorr-KoE assumption) to
simulate signing as in the TS-UF-0 definition, in which all secret key material
is generated by the simulator directly. The signing oracles PPO and PSignO

remain identical to Fig. 2. We have not currently investigated whether TS-UF-2
security holds.

5.1 Security of FROST2 + PedPoP

We now prove the security of FROST2 with distributed key generation protocol
PedPoP under the Schnorr-KoE assumption and OMDL assumption in the ROM.

Theorem 9 (FROST2+PedPoP). FROST2 with distributed key generation pro-
tocol PedPoP is TS-UF-0 secure under the Schnorr-KoE assumption and the
OMDL assumption in the ROM.

We make use of an intermediary assumption, the binonce Schnorr compu-
tational (Bischnorr) assumption, which we define and prove secure under the
OMDL assumption in the ROM (Fig. 12).

Equipped with this assumption, our proof proceeds as follows. Let A be
a PPT adversary attempting to break the TS-UF-0 security of FROST2. We
construct a PPT adversary B1 playing game Gsch-koe

G,Ext (B1) and thence, from the

542 M. Bellare et al.

Game Gbi-sch
G :

Init:

1 ẋ ←$ Zp

2 Ẋ ← gẋ

3 Return Ẋ

BinonceO():

4 r, s ←$ Zp

5 (R, S) ← (gr, gs)
6 QBin ← QBin ∪{(R, S, r, s)}
7 Return (R, S)

BisignO(k, M, {(γi, Ri, Si)}i∈SS):

8 If (Rk, Sk, rk, sk) �∈ QBin or (Rk, Sk) ∈ QUsed

9 Return false
10 QUsed ← QUsed ∪ {(Rk, Sk)}
11 d ← ĥ1(Ẋ, M, {(γi, Ri, Si)}i∈SS)
12 R̃ ← ∏

i∈SS RiS
d
i

13 c ← ĥ2(Ẋ, M, R̃)
14 zk ← rk + d · sk + c · γk · ẋ
15 QBis ← QBis ∪ {(M, R̃)}
16 Return zk

RO(θ): // Random oracle

17 If ĥ(θ) = ⊥ then ĥ(θ) ←$ Zp

18 Return ĥ(θ)

Fin(M∗, R∗, z∗):

19 If gz∗
= R∗Ẋ ĥ2(Ẋ,M∗,R∗) and (M∗, R∗) /∈ QBis

20 Return true
21 Else return false

Fig. 12. Game used to define the binonce Schnorr computational (Bischnorr) assump-
tion, where G is a cyclic group of order p with generator g. ĥ is initialized to be an
empty table.

Schnorr-KoE assumption, obtain an extractor Ext for it. We construct a PPT
adversary B2 playing game Gbi-sch

G (B2) such that whenever A outputs a valid
forgery, either B1 breaks the Schnorr-KoE assumption or B2 breaks the Bischnorr
assumption. Formally, for security parameter κ, we have

Advts-uf-0
FROST2(A) ≤ Advsch-koe

G,Ext (B1) + Advbi-sch
G (B2) + negl(κ)

Binonce Schnorr Assumption. The Bischnorr assumption equips an adver-
sary with two oracles, BinonceO and BisignO, and two hash functions, ĥ1 and
ĥ2, and asks it to forge a new Schnorr signature with respect to a challenge
public key Ẋ. The BinonceO oracle takes no input and responds with two ran-
dom nonces (R,S). The BisignO oracle takes as input an index k, a message
M , and a set of nonces and scalars {(γi, Ri, Si)}i∈SS . It checks that (Rk, Sk)
is a BinonceO response and that it has not been queried on (Rk, Sk) before.
It returns an error if not. It then computes an aggregated randomized nonce
R̃ =

∏
i∈SS RiS

d
i , where d = ĥ1(Ẋ,M, {(γi, Ri, Si)}i∈SS). BisignO then returns

z such that (R̃, z) is a valid Schnorr signature with respect to ĥ2. The adversary
wins if it can output a verifying (M∗, R∗, z∗) that was not output by BisignO.

The oracle BisignO can only be queried once for each pair of nonces (R,S)
output by BinonceO. The index k denotes which (γk, Rk, Sk) out of the list
{(γi, Ri, Si)}i∈SS is being queried; the remaining scalars and nonces appear only

Non-interactive Threshold Signatures 543

to inform BinonceO what to include as input to ĥ1. The scalar γk allows the
response zk to be given as zk = rk +d ·sk +c ·γk · ẋ, as opposed to rk +d ·sk +c · ẋ.
This is useful for threshold signatures, where γk corresponds to the Lagrange
coefficient. Note that {γi}i∈SS (in addition to the nonces) must be included as
input to ĥ1 or else there is an attack.

Asymptotically, we would say that the Bischnorr assumption holds with
respect to G if for all PPT adversaries A, we have that Advbi-sch

G (A), which
would now be a function of the security parameter, is negligible.

The proof of the following can be found in [14]. For convenience, the state-
ment is asymptotic.

Lemma 10 (OMDL ⇒ Bischnorr). Let ĥ1, ĥ2 be random oracles. The Bischnorr
assumption is implied by the OMDL assumption with respect to the group G and
ĥ1, ĥ2.

Equipped with this assumption, we are now ready to prove Theorem9.

Proof (of Theorem 9). Let A be a PPT adversary attempting to break the
TS-UF-0 security of FROST2. We construct a PPT adversary B1 playing game
Gsch-koe

G,Ext (B1) and thence, from the Schnorr-KoE assumption, obtain an extractor
Ext for it. We construct a PPT adversary B2 playing game Gbi-sch

G (B2) such that
whenever A outputs a valid forgery, either B1 breaks the Schnorr-KoE assump-
tion or B2 breaks the Bischnorr assumption. Formally, for security parameter κ,
we have

Advts-uf-0
FROST2(A) ≤ Advsch-koe

G,Ext (B1) + Advbi-sch
G (B2) + negl(κ)

The Reduction B1: We first define the reduction B1 against Schnorr-KoE. Let
CS = {idj} be the set of corrupt parties, and let HS = {idk} be the set of
honest parties. Assume that |CS | = t − 1 and |HS | = ns − (t − 1). We will
show that when PedPoP outputs public key share X̃k = gx̄k for each honest
party idk ∈ HS , B1 returns (αk, βk) such that X̃k = Ẋαkgβk . B1 is responsible
for simulating honest parties in PedPoP (Fig. 10) and queries to h0, h1, and h2.
B1 receives as input a group G and random coins ω. It can query the random
oracle RO from Schnorr-KoE. It can also query FSignO to receive signatures
under h̃0 and Chal on inputs (X, R̄, z̄) to challenge the extractor Ext to output
a discrete logarithm α for X.

Initialization. B1 may program h0, h1, and h2, but not h̃0 (because it is part
of B1’s challenge). Let Qh0 be the set of h0 queries and their responses. B1

first queries FSignO and receives (Ẋ, R̄, z̄). B1 computes αk for each honest
party idk ∈ HS as follows. First, B1 computes the t Lagrange polynomials
{L′

k(Z), {L′
j(Z)}idj∈CS} relating to the set idk∪CS . Then, B1 sets αk ← L′

k(0)−1.
(It will become clear why αk is computed this way).

Hash Queries. B1 handles A’s hash queries throughout the DKG protocol as
follows.
h0: When A queries h0 on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qh0 and,
if so, returns c̄. Else, B1 queries c̄ ← h̃0(X,X, R̄), appends (X,X, R̄, c̄) to Qh0 ,
and returns c̄.

544 M. Bellare et al.

h1: When A queries h1 on (X, lr) = (X,M, {(idi, Ri, Si)}i∈SS), B1 queries d̂ ←
h̃1(X,M, {(idi, Ri, Si)}i∈SS) and returns d̂.

h2: When A queries h2 on (X,M,R), B1 queries ĉ ← h̃2(X,M,R) and returns ĉ.

Simulating the DKG. B1 runs A on input coins ω and simulates PedPoP as
follows. B1 embeds Ẋ as the public key of the honest party that the adversary
queries first. Let this first honest party be idτ . B1 simulates the public view
of idτ but follows the PedPoP protocol for all other honest parties {idk}k �=τ as
prescribed. Note that A can choose the order in which it interacts with honest
parties, so B1 must be able to simulate any of them.
Honest Party idτ . B1 is required to output

(R̄τ , z̄τ), �Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1)

that are indistinguishable from valid outputs as well as t−1 shares fτ (idj) = x̄τ,j ,
one to be sent to each corrupt party idj ∈ CS . Here, (R̄τ , z̄τ) is a Schnorr signa-
ture proving knowledge of the discrete logarithm of Xτ,0, and �Cτ is a commitment
to the coefficients that represent fτ . B1 simulates honest party idτ as follows.

1. B1 sets the public key Xτ,0 ← Ẋ.
2. B1 simulates a verifiable Shamir secret sharing of the discrete logarithm of Ẋ

by performing the following steps.
(a) B1 samples t − 1 random values x̄τ,j ←$ Zp for idj ∈ CS .
(b) Let fτ be the polynomial whose constant term is the challenge fτ (0) = ẋ

and for which fτ (idj) = x̄τ,j for all idj ∈ CS . B1 computes the t Lagrange
polynomials {L′

0(Z), {L′
j(Z)}idj∈CS} relating to the set 0 ∪ CS .

(c) For 1 ≤ i ≤ t − 1, B1 computes

Aτ,i = ẊL′
0,i

∏

idj∈CS

gx̄τ,j ·L′
j,i (1)

where L′
j,i is the ith coefficient of L′

j(Z) = L′
j,0+L′

j,1Z + · · ·+L′
j,t−1Z

t−1.
(d) B1 outputs (R̄τ , z̄τ), �Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1) for the broadcast

round, and then sends shares x̄τ,j for each idj ∈ CS .
3. B1 simulates private shares fτ (idk) = x̄τ,k for honest parties idk ∈ HS

by computing α′
k, β′

k such that gx̄τ,k = Ẋα′
kgβ′

k . First, B1 computes the t
Lagrange polynomials {L′

k(Z), {L′
j(Z)}idj∈CS} relating to the set idk ∪ CS .

Then, implicitly,

fτ (0) = ẋ = x̄τ,k · L′
k(0) +

∑

idj∈CS

x̄τ,j · L′
j(0)

Solving for x̄τ,k, B1 sets α′
k = L′

k(0)−1 and β′
k = −α′

k

∑
idj∈CS x̄τ,j · L′

j(0).

All Other Honest Parties. For all other honest parties idk ∈ HS , k
= τ , B1 fol-
lows the protocol. B1 samples fk(Z) = ak,0 + ak,1Z + ... + ak,t−1Z

t−1 ←$ Zp[Z]
and sets Ak,i ← gak,i for all i ∈ [0..t−1]. B1 provides a proof of possession (R̄k, z̄k)
of the public key Xk,0 = Ak,0 and computes the private shares x̄k,i = fk(idi).
Adversarial Contributions. When A returns a contribution

(R̄j , z̄j), �Cj = (Aj,0 = Xj,0, Aj,1, ..., Aj,t−1)

Non-interactive Threshold Signatures 545

if (Xj,0, R̄j , z̄j) verifies (i.e., gz̄j = R̄jX
h̃0(Xj,0,Xj,0,R̄j)
j,0) and Xj,0
= Ẋ, then B1

queries Chal(Xj,0, R̄j , z̄j) from the Schnorr-KoE game.
Complaints. If A broadcasts a complaint, B1 reveals the relevant x̄k,j . If A
does not send verifying x̄j,k to party idk ∈ HS , then B1 broadcasts a complaint.
If x̄j,k fails to satisfy the equation, or should A not broadcast a share at all, then
idj is disqualified.
DKG Termination. When PedPoP terminates, the output is the joint public
key X̃ =

∏ns
i=0 Xi,0. B1 simulates private shares x̄k for honest parties idk ∈ HS

by computing αk, βk such that X̃k = gx̄k = Ẋαkgβk . Implicitly, x̄k = x̄τ,k +∑ns
i=1,i �=τ x̄i,k and x̄τ,k = ẋ · α′

k + β′
k from Step 3 above, so αk = α′

k and βk =
β′

k +
∑ns

i=1,i �=τ x̄i,k. B1 returns {ak}idk∈HS ,k �=τ , {(αk, βk)}idk∈HS .

We now argue that: (1) A cannot distinguish between a real run of the DKG
protocol and its interaction with B1; and (2) Ext(G, ω,QFSignO,Qh̃0

) outputs aj,0

such that Xj,0 = gaj,0 whenever B1 queries Chal(Xj,0, R̄j , z̄j).
(1) See that B1’s simulation of PedPoP is perfect, as performing validation of

each player’s share (Step 4 in Fig. 10) holds, and by Eq. 1, interpolation in the
exponent correctly evaluates to the challenge Ẋ.

(2) See that h0(Xj,0,Xj,0, R̄j) = h̃0(Xj,0,Xj,0, R̄j) unless (Xj,0, R̄j) =
(Ẋ, R̄τ). The latter happens only if Xj,0 = Xτ,0, but in this case PedPoP will
not terminate. We thus have that (Xj,0, R̄j , z̄j) is a verifying signature under h̃0
and either Ext succeeds, or B1 breaks the Schnorr-KoE assumption. Therefore,
the probability of the event occurring where Ext fails to outputs aj,0 is bounded
by Advsch-koe

G,Ext (B1).
The Reduction B2: We next define the reduction B2 against Bischnorr. We will
show that when PedPoP outputs the joint public key X̃, B2 returns y such that
X̃ = Ẋgy. Together with the (αk, βk) returned by B1 such that X̃k = Ẋαkgβk ,
this representation allows B2 to simulate FROST2 signing under each X̃k. B2 is
responsible for simulating honest parties during signing and queries to h0, h1,
and h2. B2 receives as input a group G and a challenge public key Ẋ. It can
query RO, BinonceO, BisignO from the Bischnorr game.
Initialization. B2 may program h0, h1, and h2, but not ĥ1 or ĥ2 (because they
are part of B2’s challenge). Let QPPO be the set of PPO queries and responses
in the pre-processing round, and let QPSignO be the set of PSignO queries and
responses in the signing round.
DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ
as follows. B2 samples c̄τ , z̄τ ←$ Zp, computes R̄τ ← gz̄τ Ẋ−c̄τ , and appends
(Ẋ, Ẋ, R̄τ , c̄τ) to Qh0 . Then, B2 runs

{ak,0}idk∈HS ,k �=τ , {(αk, βk)}idk∈HS ← B1(G;ω)

on coins ω. B2 handles B1’s queries as follows. When B1 queries h̃0 on (X,X, R̄),
B2 checks whether (X,X, R̄, c̄) ∈ Qh̃0

and, if so, returns c̄. Else, B2 queries
c̄ ← ĥ0(X,X, R̄), appends (X,X, R̄, c̄) to Qh̃0

, and returns c̄. When B1 queries
h̃1, h̃2, B2 handles them the same way it handles A’s h1, h2 queries, described
below. The first time B1 queries its FSignO oracle, B2 returns (Ẋ, R̄τ , z̄τ). When

546 M. Bellare et al.

B1 queries Chal(Xj,0, R̄j , z̄j), B2 runs aj,0 ← Ext(G, ω,QFSignO,Qh̃0
) to obtain

aj,0 such that Xj,0 = gaj,0 and aborts otherwise. Then y =
∑ns

i=1,i �=τ ai,0 such
that X̃ = Ẋgy.
A’s Hash Queries. B2 handles A’s hash queries throughout the signing proto-
col as follows.
h0: When A queries h0 on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qh0 and,
if so, returns c̄. Else, B2 queries c̄ ← ĥ0(X,X, R̄), appends (X,X, R̄, c̄) to Qh0 ,
and returns c̄. Note that B1 and B2 share the state of Qh0 .
h1: When A queries h1 on (X, lr) = (X,M, {(idi, Ri, Si)}i∈SS), B2 checks
whether (X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) ∈ Qh1 and, if so, returns d̂. Else, B2

checks whether there exists some k′ ∈ SS such that (idk′ , Rk′ , Sk′) ∈ QPPO.
If not, B2 samples a random message M̂ and a random value d̂, appends
(X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) to Qh1 , and returns d̂.

If there does exist some k′ ∈ SS such that (idk′ , Rk′ , Sk′) ∈ QPPO, B2 computes
the Lagrange coefficients {λi}i∈SS , where λi = Li(0) and {Li(Z)}i∈SS are the
Lagrange polynomials relating to the set {idi}i∈SS . B2 sets γk = λk ·αk for all idk ∈
HS and γj = λj for all idj ∈ CS in the set SS . B2 then samples a random message
M̂ (to prevent trivial collisions), queries d̂ ← ĥ1(Ẋ, M̂ , {(γi, Ri, Si)}i∈SS), and
appends (X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) to Qh1 . B2 computes R̂ =

∏
i∈SS RiS

d̂
i

and checks if there exists a record (X,M, R̂, M̂ , ĉ) ∈ Qh2 . If so, B2 aborts. Else,
B2 queries ĉ ← ĥ2(Ẋ, M̂ , R̂) and appends (X̃,M, R̂, M̂ , ĉ) to Qh2 . Finally, B2

returns d̂.

h2: When A queries h2 on (X,M,R), B2 checks whether (X,M,R, M̂, ĉ) ∈ Qh2

and, if so, returns ĉ. Else, B2 samples a random message M̂ , queries ĉ ←
ĥ2(Ẋ, M̂ ,R), appends (X,M,R, M̂, ĉ) to Qh2 , and returns ĉ.
Simulating FROST2 Signing. After B1 completes the simulation of PedPoP,
B2 then simulates honest parties in the FROST2 signing protocol.
Pre-processing Round. When A queries PPO on idk ∈ HS , B2 queries
BinonceO to get (Rk, Sk), appends (idk, Rk, Sk) to QPPO, and returns (Rk, Sk).
Signing Round. When A queries PSignO on (k′, lr) = (k′,M, {(idi, Ri,
Si)}i∈SS), B2 first checks whether (idk′ , Rk′ , Sk′) ∈ QPPO and, if not, returns
⊥. Then, B checks whether (Rk′ , Sk′) ∈ QPSignO and, if so, returns ⊥.

If all checks pass, B2 internally queries ĥ1 on (X̃,M, {(idi, Ri, Si)}i∈SS) to
get d̂′ and looks up M̂ ′ such that (X̃,M, {(idi, Ri, Si)}i∈SS), M̂ ′, d̂′) ∈ Qh1 . B2

computes R̂′ =
∏

i∈SS RiS
d̂′
i and internally queries ĥ2 on (X̃,M, R̂′) to get ĉ′.

Next, B2 computes the Lagrange coefficients {λi}i∈SS , where λi = Li(0) and
{Li(Z)}i∈SS are the Lagrange polynomials relating to the set {idi}i∈SS . B2 sets
γk = λk ·αk for all idk ∈ HS and γj = λj for all idj ∈ CS in the set SS . Then, B2

queries BisignO on (k′, M̂ ′, {(γi, Ri, Si)}i∈SS) to get zk′ . Finally, B2 computes

z̃k′ = zk′ + ĉ′ · λk′ · βk′ (2)

For A’s query to PSignO, B2 returns z̃k′ .

Non-interactive Threshold Signatures 547

Output. When A returns (X̃,M∗, sig∗) such that sig∗ = (R̃∗, z∗) and
Vf(X̃,M∗, sig∗) = 1, B2 computes its output as follows. B2 looks up M̂∗ such
that (X̃,M∗, R̃∗, M̂∗, ĉ∗) ∈ Qh2 and outputs (M̂∗, R̃∗, z∗ − ĉ∗ · y).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between a real run of the protocol and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return aj,0 such that Xj,0 = gaj,0 for some j. This
happens with maximum probability Advsch-koe

G,Ext (B1).
B2 aborts if A queries h2 on (X̃,M,

∏
i∈SS RiS

d̂
i) before having first queried

h1 on (X̃,M, {(idi, Ri, Si)}i∈SS). This requires A to have guessed d̂ ahead of
time, which occurs with negligible probability qH/p.

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between a real run
of the protocol and its interaction with B2.

Indeed, B1’s simulation of PedPoP is perfect.
When A queries h2 on (X,M,R), B2 queries ĉ ← ĥ2(Ẋ, M̂ ,R) on a random

message M̂ . The random message prevents trivial collisions; for example, if A
were to query h2 on (X,M,R) and (X ′,M,R), where X ′
= X, A would receive
the same value c ← ĥ2(Ẋ,M,R) for both and would know it was operating inside
a reduction. Random messages ensure that the outputs are random, so A’s view
is correct. B2 also ensures that A receives h1 values that are consistent with h2
queries.

After the signing rounds have been completed, A may verify the signature
share z̃k′ on M as follows. A checks if

gz̃k′ = Rk′S
h1(X̃,M,{(idi,Ri,Si)}i∈SS)
k′ X̃

λk′h2(X̃,M,
∏

i∈SS RiS
h1(X̃,M,{(idi,Ri,Si)}i∈SS)
i)

k′ (3)

When B2 queried BisignO on (k′, M̂ ′, {(γi, Ri, Si)}i∈SS) in the Signing Round,
the signature share zk′ was computed such that

gzk′ = Rk′S
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS)
k′ Ẋγk′ ĥ2(Ẋ,M̂ ′,

∏
i∈SS RiS

ĥ1(Ẋ,M̂′,{(γi,Ri,Si)}i∈SS)
i)

B computed the signature share z̃k′ (Eq. 2) as

z̃k′ = zk′ + ĉ′ · λk′ · βk′ = rk′ + d · sk′ + ĉ′ · γk′ · ẋ + ĉ′ · λk′ · βk′

= rk′ + d · sk′ + ĉ′ · λk′(αk′ · ẋ + βk′)

where ĉ′ = ĥ2(Ẋ, M̂ ′,
∏

i∈SS RiS
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS)
i). Thus, z̃k′ satisfies

gz̃k′ = Rk′S
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS)
k′ X̃

λk′ ĥ2(Ẋ,M̂ ′,
∏

i∈SS RiS
ĥ1(Ẋ,M̂′,{(γi,Ri,Si)}i∈SS)
i)

k′

(4)
B2 has programmed the hash values in Eqs. 3 and 4 to be equal and therefore
simulates z̃k′ correctly.

(3) A’s forgery satisfies Vf(X̃,M∗, sig∗) = 1, which implies:

gz∗
= R̃∗(X̃)h2(X̃,M∗,R̃∗) = R̃∗(Ẋgy)h2(X̃,M∗,R̃∗)

gz∗−h2(X̃,M∗,R̃∗)·y = R̃∗Ẋh2(X̃,M∗,R̃∗)

548 M. Bellare et al.

At some point, A queried h2 on (X̃,M∗, R̃∗) and received one of two values:
(1) ĉ∗ ← ĥ2(Ẋ, M̂∗,

∏
i∈SS∗ R∗

i (S
∗
i)d̂∗

) related to a query A made to h1 on
(M∗, {(id∗

i , R
∗
i , S

∗
i)}i∈SS∗), where it received d̂∗ ← ĥ1(Ẋ, M̂∗, (γ∗

i , R∗
i , S

∗
i)i∈SS∗),

or (2) ĉ∗ ← ĥ2(Ẋ, M̂∗, R̃∗) without having queried h1 first. In either case, B2 has
a record (X̃,M∗, R̃∗, M̂∗, ĉ∗) ∈ Qh2 such that ĉ∗ ← ĥ2(Ẋ, M̂∗, R̃∗). (Note that
B2 can check which case occurred by looking for M̂∗ in its Qh1 records). Thus,
A’s forgery satisfies

gz∗−ĥ2(Ẋ,M̂∗,R̃∗)·y = R̃∗Ẋ ĥ2(Ẋ,M̂∗,R̃∗)

and B2’s output (M̂∗, R̃∗, z∗ − ĉ∗ · y) under Ẋ is correct.

Acknowledgements. Bellare was supported in part by NSF grant CNS-2154272 and
a gift from Microsoft. Elizabeth Crites was supported by Input Output through their
funding of the Edinburgh Blockchain Technology Lab. Tessaro and Zhu are supported
in part by NSF grants CNS-1930117 (CAREER), CNS-2026774, CNS-2154174, a JP
Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

1. Bellare, M., Dai, W., Li, L.: The local forking lemma and its application to deter-
ministic encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part
III. LNCS, vol. 11923, pp. 607–636. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34618-8 21

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006, pp. 390–399. ACM Press, October/November 2006

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

6. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

7. Bellare, M., Tessaro, S., Zhu, C.: Stronger security for non-interactive threshold
signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833 (2022).
https://eprint.iacr.org/2022/833

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

https://doi.org/10.1007/978-3-030-34618-8_21
https://doi.org/10.1007/978-3-030-34618-8_21
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2022/833
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3

Non-interactive Threshold Signatures 549

9. Boneh, D., Gennaro, R., Goldfeder, S.: Using level-1 homomorphic encryption to
improve threshold DSA signatures for bitcoin wallet security. In: Lange, T., Dunkel-
man, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 352–377. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25283-0 19

10. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 19

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

13. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J.,
Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1769–1787. ACM Press,
November 2020

14. Crites, E., Komlo, C., Maller, M.: How to prove Schnorr assuming Schnorr: security
of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375
(2021). https://eprint.iacr.org/2021/1375

15. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

16. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: 26th ACM STOC, pp. 522–533. ACM Press, May 1994

17. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

18. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

19. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th FOCS, pp. 427–437. IEEE Computer Society Press, October 1987

20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

21. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp.
1179–1194. ACM Press, October 2018

22. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 31

24. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of Pedersen’s
distributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol.
2612, pp. 373–390. Springer, Heidelberg (2003)

25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/3-540-45682-1_30
https://eprint.iacr.org/2021/1375
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31

550 M. Bellare et al.

26. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptol. 13(2), 273–300 (2000)

27. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

28. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021). https://eprint.iacr.org/2021/339

29. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 12

30. Komlo, C., Goldberg, I.: FROST: flexible round-optimized Schnorr threshold sig-
natures. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020.
LNCS, vol. 12804, pp. 34–65. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81652-0 2

31. Komlo, C., Goldberg, I.: FROST: flexible round-optimized Schnorr threshold sig-
natures. Cryptology ePrint Archive, Report 2020/852 (2020). https://eprint.iacr.
org/2020/852

32. Komlo, C., Goldberg, I., Wilson-Brown, T.: Two-Round Threshold Signatures with
FROST. Internet-Draft draft-irtf-cfrg-frost-01, Internet Engineering Task Force,
August 2021. Work in Progress

33. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In:
Halldórsson, M.M., Dolev, S. (eds.) 33rd ACM PODC, pp. 303–312. ACM, July
2014

34. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. Cryptology
ePrint Archive, Report 2018/987 (2018). https://eprint.iacr.org/2018/987

35. National Institute of Standards and Technology: Multi-Party Threshold Cryptog-
raphy (2018-Present). https://csrc.nist.gov/Projects/threshold-cryptography

36. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

37. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

38. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

39. Stinson, D.R., Strobl, R.: Provably secure distributed Schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-47719-5 33

40. Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 32

https://eprint.iacr.org/2021/339
https://doi.org/10.1007/3-540-36178-2_12
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2020/852
https://eprint.iacr.org/2018/987
https://csrc.nist.gov/Projects/threshold-cryptography
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/978-3-642-20465-4_32

	Better than Advertised Security for Non-interactive Threshold Signatures*-10pt
	1 Introduction
	2 Preliminaries
	3 A Framework for Non-interactive Threshold Signatures
	3.1 Syntax and Correctness
	3.2 Unforgeability and Strong Unforgeability
	3.3 Relations and Transformations

	4 The Security of FROST
	4.1 The FROST1 and FROST2 Schemes
	4.2 TS-SUF-2 Security of FROST2
	4.3 TS-SUF-3 Security of FROST1
	4.4 Attacks for FROST1 and FROST2

	5 FROST2 with Distributed Key Generation
	5.1 Security of FROST2 + PedPoP

	References

