

Salsa Verde versus the Actual State of the Art

Léo Ducas, Eamonn Postlethwaite Jana Sotáková

August 2023 (kindly represented by Thomas Espitau)

SALSA VERDE: a machine learning attack on Learning With Errors with sparse small secrets

Cathy Li Jana Sotáková Emily Wenger Zeyuan Allen-Zhu Francois Charton* Kristin Lauter* Meta AI

10404040404040	

LWE parameters $\log_2 q$ h		VERDE attack time			uSVD attack time (hug)
		Preprocessing (hrs) Training		Total (hrs)	us vi attack time (ms)
12	8	1.5	2 epochs	4.5	N/A
14	12	2.5	2-5 epochs	5.5-10	N/A
16	14	8.0	2 epochs	11	N/A
18	18	7.0	3 epochs	11.5	558
18	20	7.0	1-8 epochs	8.5-19	259
20	22	7.5	5 epochs	15	135-459
20	23	7.5	3-4 epochs	12-15	167-330
20	24	7.5	4 epochs	13.5	567
20	25	7.5	5 epochs	15	76 - 401

To summarize the comparison, VERDE outperforms existing classical attacks in two senses: 1) VERDE fully recovers sparse binary and ternary secrets for n and q where existing classical attacks do not succeed in several weeks or months using *fplll* BKZ 2.0 [19] with the required block size;

e a cara cara cara	

LWE parameters		VERDE attack time		State of the Art (hus)	
$\log_2 q$	h	Preprocessing (hrs)	Training	Total (hrs)	Attack
12	8	1.5	2 epochs	4.5	0.2 (МІТМ)
14	12	2.5	2-5 epochs	5.5-10	Implementation
16	14	8.0	2 epochs	11	in Progress
18	18	7.0	3 epochs	11.5	in Frogress
18	20	7.0	1-8 epochs	8.5-19	(Hybrid MITM-Lattice)
20	22	7.5	5 epochs	15	Models and predictions,
20	23	7.5	3-4 epochs	12-15	exists, but no open
20	24	7.5	4 epochs	13.5	source implem.
20	25	7.5	5 epochs	15	12 24 (rescaled uSVP)

To summarize the comparison, VERDE outperforms existing classical attacks in two senses: 1) VERDE fully recovers sparse binary and ternary secrets for n and q where existing classical attacks do not succeed in several weeks or months using *fplll* BKZ 2.0 [19] with the required block size;

e a cara cara cara	

LWE parameters		VERDE attack time			State of the Art		
$\log_2 q$	h	Preprocessing (hrs)	Training	<i>Total</i> (hrs	× CPU)	Attack (hrs, 1core)	
12	8	1.5	2 epochs	4.5	× ???	0.2 (MITM in Py)	
14	12	2.5	2-5 epochs	5.5-10	× 270	Implementation	
16	14	8.0	2 epochs	11	× ???	in Progress	
18	18	7.0	3 epochs	11.5	× 990	in rogicss	
18	20	7.0	1-8 epochs	8.5-19	× ???	(Hybrid MITM-Lattice)	
20	22	7.5	5 epochs	15	× ???	Models and predictions,	
20	23	7.5	3-4 epochs	12-15	× ???	exists, but no open	
20	24	7.5	4 epochs	13.5	× ???	source implem.	
20	25	7.5	5 epochs	15	× ???	12 24	

To summarize the comparison, VERDE outperforms existing classical attacks in two senses: 1) VERDE fully recovers sparse binary and ternary secrets for n and q where existing classical attacks do not succeed in several weeks or months using *fplll* BKZ 2.0 [19] with the required block size;

n a caracada caraca	

LWE parameters		VERDE attack time		State of the Art		
$\log_2 q$	h	Preprocessing (hrs)	Training	<i>Total</i> (hrs	× CPU)	Attack (hrs, 1core)
12	8	1.5	2 epochs	4.5	× ???	0.2 (MITM in Py)
14	12	2.5	2-5 epochs	5.5-10	× 270	Implementation
16	14	8.0	2 epochs	11	× ???	in Progress
18	18	7.0	3 epochs	11.5	× 990	in rogicss
18	20	7.0	1-8 epochs	8.5-19	× ???	(Hybrid MITM-Lattice)
20	22	7.5	5 epochs	15	× ???	Models and predictions,
20	23	7.5	3-4 epochs	12-15	× ???	exists, but no open
20	24	7.5	4 epochs	13.5	× ???	source implem.
20	25	7.5	5 epochs	15	× ???	12 24
						(rescaled uSVP)

To summarize the comparison, VERDE is several orders of magnitude behind the state of the art, even on these custom made instances.

.

The scripts for these two instances are available on the branch

human-LWE

of the leaky-lwe-estimator.

https://github.com/lducas/leaky-LWE-Estimator/tree/human-LWE/human-LWE

< 100 lines of code in total.

.....